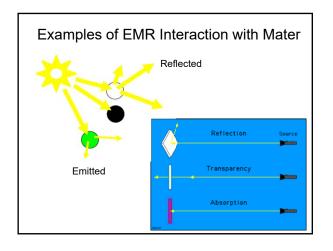
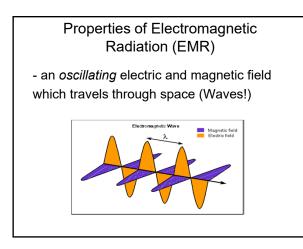
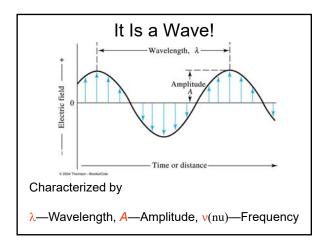

Chapter 24


Introduction to Spectrochemical Methods

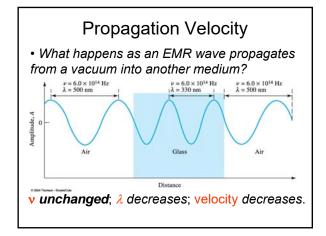




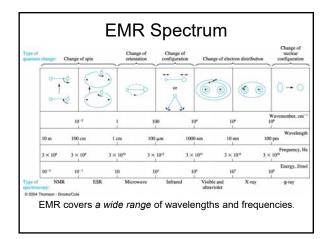
Also, EMR

--a discrete series of "particles" that have a specific energy but have no Mass (Particles!)

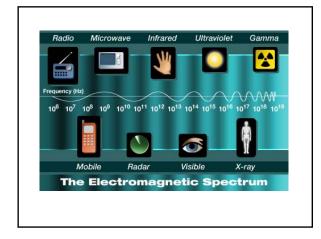
Waves + Particles

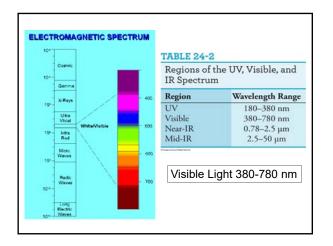

Wave Properties of EMR The product of λ and v is constant: $\lambda \times v = c$ Since v has units of sec⁻¹(hz) and λ has units of length, their product, c, is the *velocity* of the wave: - in a vacuum, all EMR travels at a velocity of: 2.99792458 x 10⁸ m/s (= c) ("The Speed of Light") $C = 3 \times 10^8$ m/s = 3×10^{10} cm/s = 3×10^{18} Å/s

• Wavenumber


```
\overline{v} = 1/\lambda
```

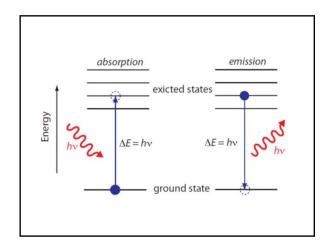
-the number of waves per centimeter


 \overline{v} has the units of cm⁻¹

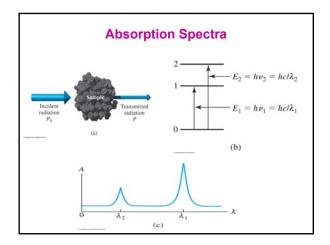


Particle Properties of EMR

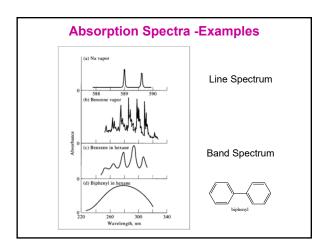
- EMR: A beam of energetic particles ("photons").
- Photon are "destroyed" after absorption by a sample.
- Energy of a photon is related to its frequency.

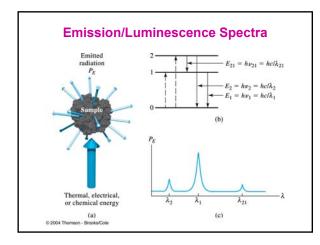

$$E = hv = h\frac{c}{\lambda} = hc\overline{v}$$

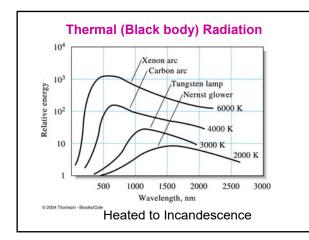
h is Plank's constant
$$(6.63 \times 10^{-34} \text{ J} \cdot \text{s})$$


What is the energy of a photon from the sodium D line at 589 nm? **SOLUTION**

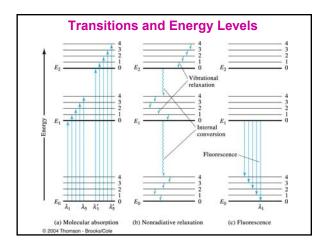
The photon's energy is

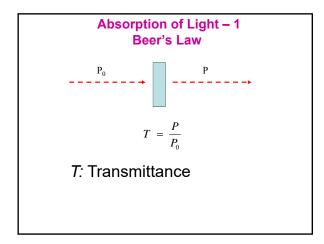

$$E = \frac{h_c}{\lambda} = \frac{(6.626 \times 10^{-34} \text{Js}) (3.00 \times 10^8 \text{ m/s})}{589 \times 10^{-9} \text{ m}} = 3.37 \times 10^{-19} \text{ Js}$$

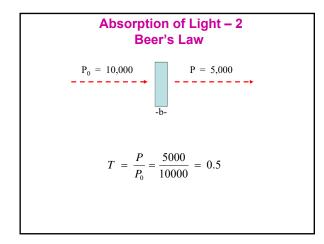


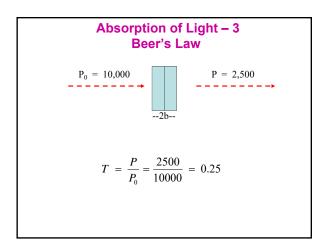


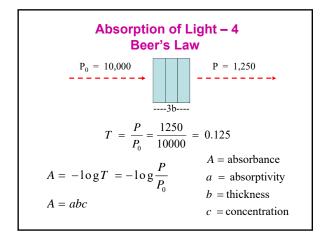


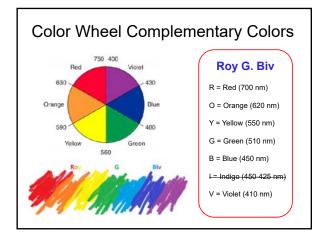


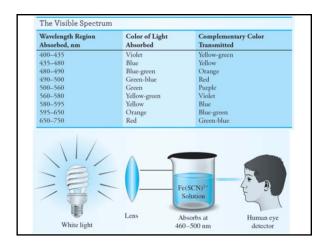


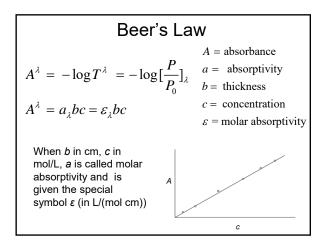




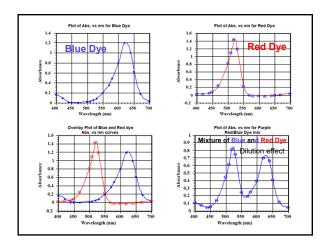


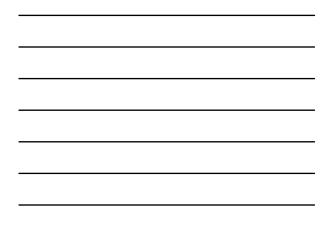











Beer's Law for Mixture-Additive

At any given wavelength of EMR absorption: $A^{\lambda} = \varepsilon^{\lambda} bc$, for a mixture with *n* components, the total A^{λ}_{Total} :

$$A_{Total}^{\lambda} = A_{1}^{\lambda} + A_{2}^{\lambda} + \dots A_{3}^{\lambda} = \sum_{i=1}^{n} A_{i}^{\lambda} = \sum_{i=1}^{n} \varepsilon_{i}^{\lambda} bc_{i}$$

Example: Mixture of Co(II), Cr(III), Ni(II), Cu(II)

Example:

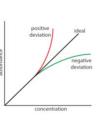
The concentrations of Fe³⁺ and Cu²⁺ in a mixture are determined following their reaction with hexacyanoruthenate (II), Ru(CN)₆⁴⁺, which forms a purple-blue complex with Fe³⁺ ($\lambda_{max} = 550$ nm) and a pale-green complex with Cu²⁺ ($\lambda_{max} = 396$ nm). The molar absorptivities (M⁻¹ cm⁻¹) for the metal complexes at the two wavelengths are summarized in the following table.

$$\begin{array}{c} \varepsilon_{550} & \varepsilon_{396} \\ \hline Fe^{3+} & 9970 & 84 \\ Cu^{2+} & 34 & 856 \end{array}$$

When a sample that contains $Fe^{3\ast}$ and $Cu^{2\ast}$ is analyzed in a cell with a pathlength of 1.00 cm, the absorbance at 550 nm is 0.183 and the absorbance at 396 nm is 0.109. What are the molar concentrations of $Fe^{3\ast}$ and $Cu^{2\ast}$ in the sample?

Solution:

 $\begin{array}{l} A_{550}=0.183=9970C_{\rm Fe}+34C_{\rm Cu}\\ A_{396}=0.109=84C_{\rm Fe}+856C_{\rm Cu}\\ \text{To determine }C_{\rm Fe}\text{ and }C_{\rm Cu}\text{ we solve the first equation for }C_{\rm Cu}\\ C_{\rm Cu}=\frac{0.183-9970C_{\rm Fe}}{34}\\ \text{and substitute the result into the second equation.}\\ 0.109=84C_{\rm Fe}+856\times\frac{0.183-9970C_{\rm Fe}}{34} \end{array}$


$$= 4.607 - (2.51 \times 10^5) C_{\rm Fe}$$

Solving for $C_{\rm Fe}$ gives the concentration of Fe³⁺ as 1.8×10^{-5} M. Substituting this concentration back into the equation for the mixture's absorbance at 396 nm gives the concentration of Cu²⁺ as 1.3×10^{-4} M.

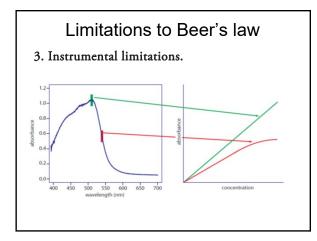
Limitations to Beer's law

1. Concentration Limit: \leq 0.10 M.

(a) At higher c the individual particles of analyte no longer are independent of each other-changing the ε value. (b) The ε value depends on the solution's refractive index that varies with the c.

Limitations to Beer's law

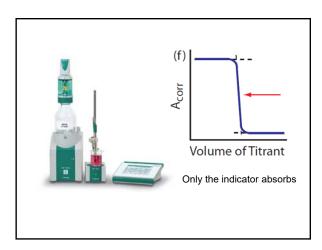
2. Chemical limitations when chemical reactions occur.


Example: different c of a weak acid dissociation in water (acid-base indicators)

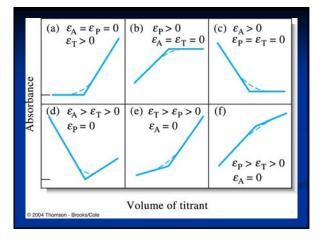
HIn (Color 1, in acid) = $H^+ + In^-$ (Color 2)

Increase total [HIn]_{total}, [HIn] and [In⁻] increase non-linearly.

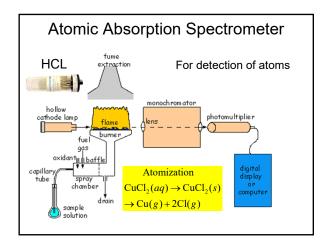
$c_{\rm Hin}, {\rm M}$	[HIn]	[In ⁻]	A430	A570
1.00×10^{-5}	0.88×10^{-5}	1.12×10^{-5}	0.236	0.073
$.00 \times 10^{-5}$	2.22×10^{-5}	1.78×10^{-5}	0.381	0.175
0.00×10^{-5}	5.27×10^{-5}	2.73×10^{-5}	0.596	0.401
2.0×10^{-5}	8.52×10^{-5}	3.48×10^{-5}	0.771	0.640
6.0×10^{-5}	11.9×10^{-5}	4.11×10^{-5}	0.922	0.887
	$\frac{0.600}{0} \lambda = 400 \text{ nm}$			



- Beer's Law Should be used Only for a Single Wavelength Incident Light.
- It is the basis of quantitative Analysis of Absorption Spectroscopy.


Photometric Titrations

- A photometric titration curve is a plot of absorbance as a function of the volume of titrant.
- The spectrometer detects the color change of an indicator allowing the endpoint to be accurately determined.
- For example: titration of an acid and base using phenolphthalein clear → pink


$$A + T \xleftarrow{Indicator} P$$

