Chapter 13

Titrimetric Methods; Precipitation Titrimetry

1

Titration

Titration

- A procedure in which one substance (titrant) is carefully added to another (analyte) until complete reaction has occurred.
 - The quantity of titrant required for complete reaction tells how much analyte is present.
- Volumetric Analysis
 - A technique in which the volume of material needed to react with the analyte is measured

2

Titration Vocabulary

- Titrant
 - The substance added to the analyte in a titration (reagent solution)
- Analyte
 - The substance being analyzed
- Equivalence point
 - The point in a titration at which the quantity of titrant is exactly sufficient for stoichiometric reaction with the analyte.

Features of Titrations

- Simple, inexpensive, very accurate and precise if done correctly.
- An analytical tool involving fundamental chemistry.
- Complete reaction between the analyte and a known concentration of titrant.
- Calculation of the amount of the analyte is straight forward using consumed standard titrant solution.

4

Volumetric Procedures and Calculations

relate the moles of titrant to the moles of analyte

For 1:1 ratio reaction: $H^+ + OH^- = H_2O$

moles titrant = # moles analyte

#moles_{titrant}=(C*V)_{titrant}

#moles_{analyte}=(C*V)_{analyte}

5

Volumetric Procedures and Calculations

relate the moles of titrant to the moles of analyte

For non 1:1 ratio reaction:

```
5\text{HOC}_2\text{O}_2\text{OH} + 2\text{MnO}_4^- + 6\text{H}^+ \longrightarrow 10\text{CO}_2 + 2\text{Mn}^{2+} + 8\text{H}_2\text{O}
```

5 moles 2 moles

 $5Fe^{2+} + MnO_4^- + H^+ \xrightarrow{5e} 5Fe^{3+} + 2Mn^{2+} + H_2O$ 5 moles : 1 mole

Example - Unknown concentration of a strong acid titrated by a strong base.

• The reaction:

- $\mathsf{HCI}(\mathsf{aq}) + \mathsf{NaOH}(\mathsf{aq}) \rightarrow \mathsf{H_2O}(\mathsf{I}) + \mathsf{NaCI}(\mathsf{aq})$
- Let's say that [HCI] is the unknown and the sample volume is 50.00 mL
- Titrant: [NaOH] = 0.5000 M

We find that it takes 25.00 mL of NaOH to completely react with all of the HCI (i.e. neutralize), what is the concentration of [HCI] in the sample?

HCI + NaOH \rightarrow H₂O + NaCI

 $[C_{\rm HCl} \times 50.00] = [0.5000 \times 25.00]$

 $C_{\text{HC}} = [25.00 \text{ mL}^{(0.5000 \text{ mol/L})}]_{\text{NaOH}}^{(50.00 \text{ mL})} = 0.2500 \text{ M}$

7

The Equivalence Point vs End Point

- Finding the equivalence point is the goal of the titration.
- If our unknown contains 0.250 moles of CO₃²⁻, and we are titrating with H⁺, then the equivalence point is reached when 0.500 moles of H⁺ is added.

$$CO_3^{2-} + 2H^+ = CO_2 + H_2O$$

1 mole : 2 mole

0.250 mole : x x = 0.500 mole

8

End point

- The point in a titration at which there is a sudden change in a physical property (e.g., indicator color, pH, conductivity, or absorbance).
- Used as a measure of the equivalence point.
- --Usually occurs after a small excess of titrant had been added.
- --In most cases, the difference in the *End Point* and the *Equivalence Point* is insignificant and can be ignored.
- Indicator
 - A compound having a physical property (usually color) that changes abruptly near the equivalence point of a chemical reaction.

Indicators

- Colored titrant:
 - solution becomes colored at the endpoint

 $5\text{HOC}_{2}\text{O}_{2}\text{OH} + 2\text{MnO}_{4}^{-} + 6\text{H}^{+} \longrightarrow 10\text{CO}_{2} + 2\text{Mn}^{2+} + 8\text{H}_{2}\text{O}$

purple colorless

- Colored analyte: – solution becomes clear at the endpoint
- Indicator compound:
 - A compound that is sensitive (changes color) to the disappearance of the analyte, or appearance of excess titrant.

10

Titration error

 The difference between the observed end point and the true equivalence point in a titration.

Blank titration

 One in which a solution containing all reagents except analyte is titrated. The volume of titrant needed in the blank titration should be subtracted from the volume needed to titrate unknown.

11

Primary Standard

- A reagent that is <u>pure and stable enough</u> to be used directly after weighing. i.e., entire mass is considered to be pure reagent.
- 1. High purity
- 2. Stability toward air (O₂, CO₂, moisture...)
- 3. Absence of hydrate water (in most cases)
- 4. Available at moderate cost
- 5. Soluble
- 6. Large F.W. (why?)
- Question: Can NaOH be used as a primary standard? Why? (Hint: hygroscopic substance/reaction with components in air?)

Primary standards for bases.

- Potassium Hydrogen Phthalate (KHP)
 - -Nonhygroscopic
 - -High MW
 Stable to drying
 Inexpensive

Other possibilities:

- HP⁻ + OH⁻ \rightarrow P²⁻ + H₂O

- Benzoic Acid
- Potassium Hydrogen Iodate KH(IO₃)₂

Primary Standards for acids

- NaHCO₃ major disadvantage low MW 84.00 g/mol
- Others available such as Na₂CO₃.
- KHP \rightarrow NaOH \rightarrow HCI

14

Standardization

- The process whereby the concentration of a reagent is determined by reaction with a known quantity of a second reagent.
- Standard Solution
 - A solution whose composition is known by virtue of the way it was made from a reagent of known purity or by virtue of its reaction with a known quantity of a standard reagent.
- Direct Titration
 - One in which the analyte is treated with titrant, and the volume of titrant required for complete reaction is measured.

Back Titrations

- Back titrations are used when the reaction between an analyte and titrant are slow, or if a suitable indicator is not available.
 - Add excess titrant so that all analyte is reacted and a small amount of excess titrant is present.
 - Titrate the excess titrant with a second titrant back to the equivalence point.

16

Back Titration: Example

 Determine the carbonate content of limestone:

 $CaCO_3(s) + 2H^+ \xrightarrow{heat} Ca^{2+} + CO_2 \uparrow + H_2O$

- Add excess H⁺ and heat to drive off the CO₂ from solution.
 - We end up with a solution containing H⁺ and Ca²⁺.
- Titrate the excess H⁺ with NaOH back to the equivalence point.
 - fast reaction, available indicator.

Titration Requirements

Equilibrium constant must be large

- reaction goes to completion.
- Must be a way to determine when the reaction has reached completion
 - through the use of an indicator.
 - by monitoring the concentration of one component.

19

Types of Titrations

- Acid-base
- most common (Soda ash lab)
- Complex formation
 - (Water hardness lab)
- Precipitation
- Oxidation/reduction

Precipitation Titration

 Titrate 50.00mL of 0.0750M Cl⁻ with 0.0500M Ag⁺.

 $Ag^+ + Cl^- \longrightarrow AgCl_{(s)}$ $K = \frac{1}{K_{sp}} = 5.6x10^9$

 How many mL of Ag⁺ solution must be added to reach the equivalence point?

 $\frac{50.00\text{mL Cl}^{-}\text{soln}}{\text{ImL}} \frac{|0.0750\text{ mmol Cl}^{-}|}{\text{ImL}} \frac{1\text{mmol Ag}^{+}}{|\text{mmol Cl}^{-}|} \frac{1\text{mL Ag}^{+}\text{soln}}{|0.0500\text{mmol Ag}^{+}|} = 75.00\text{mL titrant}$

22

23

- What are the concentrations of Ag⁺ and Cl⁻ at the equivalence point?
 - At the equivalence point there is no excess Cl⁻ or excess Ag⁺.
 - The concentrations of Cl⁻ and Ag⁺ are determined by the equilibrium.

	Ag+	CI-	
l I	0	0	
С	+χ	+χ	$[\Delta \alpha^{+}][C^{1}] = 1.8 \times 10^{-10}$
E	х	х	
			$x^2 = 1.8 \times 10^{-10}$
			$x=1.3x10^{\text{-5}}MCl^{\text{-}}$ and $Ag^{\text{+}}$

What are the concentrations of Ag⁺ and Cl⁻ in solution *after* reaching the equivalence point?
 Suppose 85.00 mL of titrant have been added.

 Excess moles of Ag⁺ added:

 10.00mL titrant 0.0500 mmol Ag⁺ = 0.5000mmol

31

Indicators for Argentometric Titrations (Involving Ag⁺ ions) (Ag⁺ used as titrant or analyte)

- Chemical
 - − Chromate Ion as indicating species → Mohr's method
 - Adsorption Indicators (fluorescein) → Fajan's ("Fay'yahns") method
 - Fe(III) Ion \rightarrow Volhard method
- Sensors –Potentiometric or amperometric – We will look at potentiometric sensors later.

Fluorescent images obtained after the modification of (a) Au(111)/3-MPA/avidin and (b) Au(111)/mixed thiol SAM/avidin with fluorescein biotin species. The exposure times used were 3 and 30 s, respectively. The specimens were excited at 490 nm and monitored at 520 nm.

Miao, W.; Bard, A. J. Anal. Chem. 2003, 75, 5825-5834.

37

Fe(III) Ion: Volhard Method (Ag⁺ as analyte and SCN⁻ as titrant)

 Chemical method for silver analyses with standard <u>thiocyanate</u>, CNS⁻, as titrant, and Fe (III) is the indicator as it forms a red complex ion with CNS⁻, FeCNS ²⁺ (red) [in acidic condition, why?]

> Titration reaction: Ag⁺ + SCN⁻ ⇔ AgSCN(s) [white]

Indication reaction: SCN⁻ + Fe³⁺ ⇔ FeSCN²⁺ (red)

38

Fe(III) Ion: Volhard Method

The method can be adapted to chloride analyses—back titrations.

Ag⁺ (St'd, Excess) + Cl⁻ (Analyte) → AgCl(s) [white] SCN⁻ (titrant) + Ag⁺ (left) ⇔ AgSCN(s) [white] Fe³⁺ + SCN⁻ ⇔ FeSCN²⁺ (red)

Youtube: Chemical Cut https://melscience.com/US-en/articles/chemical-cutexperiment/

Applications of Standard AgNO₃ Solutions

Substance Being Determined	End Point	Remarks
AsO ₄ ¹⁻ , Br ⁻ , 1 ⁻ , CNO ⁻ , SCN ⁻	Volhard	Removal of silver salt not required
CO ¹ ₄ ⁻ , CrO ¹ ₄ ⁻ , CN ⁻ , CI ⁻ , C ₂ O ¹ ₄ ⁻ , PO ¹ ₄ ⁻ , S ²⁻ , NCN ²⁻	Volhard	Removal of silver salt required before back-titration of excess Ag ⁺
BH4	Modified Volhard	Titration of excess Ag^+ following $BH_4^- + 8Ag^+ + 8OH^- \rightarrow 8Ag(s) + H_2BO_3^- + 5H_2O_3^-$
Epoxide	Volhard	Titration of excess Cl ⁻ following hydrohalogenation
к *	Modified Volhard	Precipitation of K* with known excess of B(C ₆ H ₃) ₄ addition of excess Ag* giving AgB(C ₆ H ₃) ₄ (s), and back-titration of the excess
Br*, Cl*	$2Ag^* + CrO_4^* \rightarrow Ag_2CrO_4(s)$ red	In neutral solution
Br ⁻ , Cl ⁻ , l ⁻ , SeO] ⁻	Adsorption indicator	
V(OH),, fatty acids, mercaptans	Electroanalytical	Direct titration with Ag*
Zn ² *	Modified Volhard	Precipitation as ZnHg(SCN) ₄ , filtration, dissolution in acid addition of excess Ag ⁺ , back-titration of excess Ag ⁺
F-	Modified Volhard	Precipitation as PbCIF, filtration, dissolution in acid addition of excess Ag*, back-titration of excess Ag*

40

Chapter 13 Summary

- Determine analyte by volumetric titrations
- Advantages and disadvantages of volumetric titrations
- Primary and secondary standards, standard solution and standardization
- Back-titrations
- Titration errors
- Endpoint vs equivalence point
- Calculations of titrations
- Precipitation titrations (Argentometry with various indicators)