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ABSTRACT
How to draw 3D sketches in a three-dimensional space and
how to use a hand-drawn 3D sketch to search similar 3D
models are brand new and challenging research topics. In
this paper, we make an initial study on 3D sketching and
propose a novel 3D sketch-based 3D model retrieval system.
Our system allows users to freely draw 3D sketches in the air
as well as to find similar 3D models given human-drawn 3D
sketches. Promising retrieval performance has been achieved
in experiments based on 300 collected 3D sketches and a re-
cent large scale sketch-based 3D shape retrieval benchmark.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval
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1. MOTIVATION
Since prehistoric times, sketching has been a universal

form of communication used by humans to depict the visual
world. Today, sketching has become one of the most natural
ways to provide a visual search query for search, e.g., one
can search images, videos, and 3D models on the Internet
by sketching an object or scene on a touch phone/tablet.
Currently, all existing sketch-based 3D model retrieval

systems rely on 2D sketching technology, which requires
users to draw a sketch on a two-dimensional plane (paper,
touch screen). Constraining a sketch to two dimensions lim-
its the 3D information that the shape can communicate, cre-
ating a huge semantic gap between the iconic representation
of a 2D sketch and the accurate 3D coordinate representa-
tion of a 3D model. This gap makes 2D sketch-based 3D
model retrieval very challenging [3].
Bothered by this gap, an interesting question is raised:

“Can we do 3D sketching such that we can perform 3D
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sketch-based 3D model retrieval?” If it were possible for
users to sketch an object in all three dimensions in a 3D
space (for example, in the air) by utilizing hand gestures,
the 3D sketch should provide a better description of the ob-
ject than a 2D sketch. The 3D sketch not only encodes 3D
information, such as depth and features of more facets of
the object, but also includes the salient 3D feature lines of
its counterpart of 3D models. However, there is a scarcity
of comprehensive research supporting methods that allow
users to sketch 3D objects in a 3D space. In addition, how to
understand (translate) 3D sketches drawn by human hands
and how to match 3D sketches with 3D models become new
research problems.

In this paper, we perform an initial study of 3D sketch-
ing technology and develop a 3D sketching virtual draw-
ing “board”. We investigate 3D sketch and model matching
problems and build a novel 3D sketch-based 3D model re-
trieval system, whose performance is tested on a large scale
sketch-based 3D shape retrieval benchmark dataset and a
collected human 3D sketch dataset.

To our best knowledge, this work is the first attempt to
explore 3D sketching in a 3D space and to develop an innova-
tive retrieval system that enables users to search 3D models
based on hand-drawn 3D sketches. The implications of this
work could be tremendous, as 3D sketching allows for more
direct communication in a user’s drawing, which could not
only enhance 3D model retrieval accuracy, but also provide a
possibility for other human sketch related applications, such
as virtual try-on systems for clothes, glasses and watches.
The main contributions introduced in this paper are high-
lighted as follows:

• A novel 3D sketching virtual drawing “board” (soft-
ware) is proposed and implemented, which allows users
to freely draw 3D sketches in the air (a real 3D space).
Based on this developed 3D sketching virtual drawing
board, the first human 3D sketch dataset is collected.

• A 3D sketch-based 3D model retrieval system is intro-
duced for the first time to solve the matching problem
between 3D sketches and models.

• Our proposed approach shows promising application
potential for 3D sketch understanding or recognition,
large scale 3D model search, and on-line 3D model
shopping, etc.

• Our work will explicitly guide the research in 3D sketch-
ing and provide a path for large scale sketch-based im-
age, video, and object retrieval.



2. BACKGROUND
Sketch-based 3D model retrieval targets on retrieving 3D

models given a hand-drawn query sketch. Recently, sketch-
based 3D model retrieval has attracted much attention since
it can be widely used in sketch-based rapid prototyping,
recognition, mobile 3D search, 3D printing, 3D animation
production and etc. Many related algorithms have been pro-
posed [3] which use a 2D hand-drawn sketch as a query. A se-
ries of Shape Retrieval Contest (SHREC) tracks on this topic
have been held in conjunction with the Eurographics Work-
shops on 3D Object Retrieval (3DOR) over the past three
years. Some new benchmark datasets, such as the large scale
SHREC’13 Sketch Track Benchmark (SHREC13STB) [2] which
contains 7,200 2D sketches and 1,258 3D models of 90 classes,
have been built and released to the public. Due to the
semantic gap between the two different representations of
rough sketches and accurate 3D models, sketch-based 3D
model retrieval remains one of most challenging research
topics in the field of 3D model retrieval. In order to bridge
the gap, we propose a 3D sketching solution and develop
a sketch-based 3D model retrieval system that uses human
3D sketches, which is described in detail in the following
sections.

3. OUR APPROACH

3.1 3D Sketching
How to design a smart, user friendly, and inexpensive 3D

sketching virtual drawing“board”, which allows users to eas-
ily create 3D sketches, is one of crucial problems of this
project. We propose to implement this virtual “board” with
the Microsoft Kinect, considering it is a popular and low cost
motion sensing input device and offers a built-in color VGA
video camera, depth sensor, and multi-array microphone.
We utilize the RGB video camera on the Kinect to allow

the user to see exactly what they are drawing in the sur-
rounding 3D space (in the air), and make use of the depth
sensor to capture the depth information communicated in
the 3D sketches. The video and depth sensors have a pixel
resolution of 640x480 and run at 30 frames per second. With
this capability, users are able to engage the tracking function
of Kinect to monitor the 3D locations of their hands in a 3D
space while drawing. To facilitate sketching and retrieval,
we also develop a voice-activated Kinect-based 3D sketch-
ing Graphical User Interface (GUI) (shown in Fig. 1) that
supports the tracking function. The proposed interface can
not only track the movement of a user’s hand, but also sup-
port voice commands (e.g. start, left, right, pause, resume,
search, and reset) allowing a user to pause in the middle of
a drawing or completely restart a sketch as well as to switch
between left and right hands while drawing. Users can also
select front or side view display and point or line mode for
sketch viewing. All the above operations can be performed
in real-time. In experiments, we have observed that the in-
teractive feedback greatly helps the user in drawing a 3D
sketch and improves users’ drawing experience.
Although the Microsoft Kinect is able to detect and track

48 individual points on the user’s body, the captured hand
motion data contains a lot of noise, mostly due to the fact
that when users perform sketching in the air they could
shake and rarely have perfectly steady hands while drawing.
The introduced noise can significantly affect the 3D model
retrieval performance. To combat this, a Kalman filter is

Figure 1: System Graphical User Interface (GUI).

applied, which is an optimal estimator that infers parame-
ters of interest from inaccurate and uncertain observations.
In our experiments, we find the Kalman filter successfully
filters partial noise and predicts smoother sketch curves.

3.2 3D Sketch-Based 3D Model Retrieval Sys-
tem

Based on the above 3D sketching platform, we build an ef-
ficient 3D sketch-based 3D model retrieval system. Figure 2
shows the framework of our retrieval system, which contains
both online and offline processes and consists of three ma-
jor components: data processing, feature extraction, and
matching.

Figure 2: System framework.

(1) Data processing. The major task of the data pro-
cessing component is to generate 3D outlines of 3D models.
First, 3D normalization is performed for each 3D model: 3D
alignment based on Principle Component Analysis (PCA) is
first performed, and then translate the origin to the center
of the model’s bounding sphere, and finally scale the model
such that the radius of the bounding sphere is 1. Second,
the 3D outline for the model is generated by integrating the
3D contour points of its six principle views (front, back, left,
right, top, and bottom views). One sample result is demon-
strated in Fig. 2 (b). Third, an approximately uniform point
sampling is performed by setting a 3D distance threshold be-
tween the 3D points. This step is to improve the robustness



of our algorithm w.r.t the different resolutions of 3D out-
lines and sketches. Fig. 2 (c) shows the final 3D outline of
the bicycle model after performing the sampling. Finally, a
PCA alignment is executed (Fig. 2 (d)) on the 3D outline.
The same normalization process will be applied on an online
hand-drawn 3D sketch.
(2) Feature extraction. Descriptive visual features need

to be extracted from both 3D models and 3D sketches in
order to perform effective and efficient sketch-model match-
ing and retrieval. Extensive research has been conducted
to generate a number of 3D shape descriptors in character-
izing complete and perfect 3D models. However, many of
them require a 3D mesh model as input and only a few of
them are applicable to represent a 3D sketch which is essen-
tially a sparse point cloud (a very abstract and inaccurate
representation of a 3D object). Therefore, a large research
space remains unexplored in terms of comparing an inaccu-
rate point cloud of a 3D sketch with an accurate 3D model.
In this paper, we investigate using the 3D shape histogram [1]

as a representative feature for both 3D models and 3D sketches
considering its descriptiveness, high efficiency, and simplicity.
The 3D shape histogram divides the 3D space occupied by a
3D model/sketch into a set of shell, sector or spiderweb bins
and counts the percentage of the vertices falling in each bin
to form a histogram as the 3D shape histogram descriptor.
One visualization example of the process is shown in Fig. 3.
Considering the inherent nature of the representations for a
3D sketch and a 3D outline, as well as the efficiency issue,
for each 3D sketch or outline, its 3D shape histogram [1]
descriptor is extracted based on the spiderweb model (20
shells, 6 sectors, 120 bins in total) (Fig. 2 (e)).

(a) 3D model (b) point mode (c) feature visualization

Figure 3: An example to visualize the 3D shape his-
togram feature (different bins) of the m349 model in
the Princeton Shape Benchmark (PSB) [4] dataset.

(3) 3D sketch-3D model matching. The histogram
of the 3D sketch is compared with the histograms of all
the 3D outlines generated from the 3D models based on
the Euclidean distance (Fig. 2 (k)). Then, the distances
are sorted in ascending order (Fig. 2 (m)), and finally the
thumbnails of the top ten 3D models are listed accordingly
in real-time on the right side of the GUI, as shown in Fig. 2
(n). Users can also browse the next 10 results by saying the
voice command “Show more results”.

4. EXPERIMENTS AND DISCUSSIONS

4.1 Kinect300 Dataset Collection
Based on the developed 3D sketching virtual drawing“board”,

we have collected a 3D sketch dataset named Kinect300
which comprises 300 sketches in 30 object categories (see
Fig. 4), each with 10 sketches. Seventeen users (4 females

Figure 4: Example 3D sketches (one example per
class, shown in one view) of our Kinect300 dataset.

and 13 males) with an average age of 21 years participated in
the 3D sketch data collection, where each user drew sketches
of several categories. Among 17 users, only two of the males
have a background in art.

4.2 Retrieval Experiments
To comprehensively evaluate the performance of our re-

trieval system presented in Section 3.2, we performed the
following three types of experiments based on six commonly
used evaluation metrics [4]: Nearest Neighbor (NN), First
Tier (FT), Second Tier (ST), E-Measure (E), Discounted
Cumulative Gain (DCG) and Precision-Recall (PR).

• outline-model retrieval: query is a 3D outline gen-
erated from a 3D model; targets are 3D models from
the same dataset. This experiment tests the retrieval
performance of searching a similar 3D model given a
perfect 3D outline (not a rough human 3D sketch).
Here, the SHREC13STB benchmark (target dataset
only) is chosen as the target dataset, which contains
1,258 target 3D models of 90 classes.

• sketch-sketch retrieval: query is a 3D sketch; tar-
gets are 3D sketches from the same dataset. This ex-
periment tests the performance of similar 3D model
retrieval given a hand-drawn 3D sketch. Since users
sketch objects differently, the variety of human sketches
even within categories can be extremely high. We
want to test whether sketches within the same cat-
egory drawn by various users can be retrieved given
a single user sketch. Kinect300 is used as the target
dataset in this experiment.

• sketch-model retrieval: query is a hand-drawn 3D
sketch; targets are 3D models of real objects. This
experiment tests the performance of similar 3D model
retrieval given a human 3D sketch. The Kinect300
3D sketch dataset is used as the query set and the
SHREC13STB benchmark (target dataset only) is used
as the target dataset. Please note that only 21 of the
30 classes in Kinect300 have relevant 3D models in the
SHREC13STB target dataset, thus when computing
the retrieval performance we only consider the results
of these 21 classes. The 9 classes that have no rele-
vant 3D models are: alarm clock, basket, candle, door
handle, eyeglasses, fork, key, pen, and scissors.

Thanks to the high efficiency of the 3D shape histogram
and the Kalman Filter, all the above retrieval experiments
are performed in real-time. For example, it takes only 1.22
sec to perform a 3D model retrieval given a hand-drawn 3D



sketch (type 3) on a modern computer (CPU: Intel Xeon
X5675 @3.07 GHz). The experimental results are listed
in Fig. 5 and Table 1. As expected, the performance of
outline-model retrieval is better than the performance of
sketch-sketch retrieval, which outperforms the sketch-model
retrieval. We can observe that the 3D shape histogram has
good descriptive ability in capturing the vertex distribution
pattern of a 3D model and a perfect 3D outline. But it
doesn’t have strong discrimination power in differentiating
all 3D models coming from different categories. Thus, given
a 3D outline, 3D models from irrelevant categories may be
returned. We also find that the 3D shape histogram is sen-
sitive to noise. All the 3D sketches we currently collect are
quite abstract and noisy since most users have little draw-
ing experience. When users are sketching, they often pause
their hands or move their hands back and forth in the air.
The sketch lines they draw are rarely smooth and contin-
uous. The paused areas contain a large amount of dense
points. Although the Kalman filter can help remove outliers
and smooth the tracked sketching 3D points, the noise can
still propagate into the query sketch. This partially explains
why the performance of sketch-sketch retrieval is even worse.
Among these three experiments, the most challenging is

sketch-model retrieval, which attempts to retrieve similar
3D models from the SHREC13STB benchmark given a 3D
sketch in the Kinect300 dataset. The query dataset and tar-
get dataset are different. The query sketch and the target 3D
models are not even one to one correspondent since we don’t
ask users to sketch existing 3D models in the 3D benchmark
dataset. Additionally, our collected Kinect300 dataset is a
diverse dataset, which contains many challenging categories
such as dog, human, face, house.... For these categories,
drawing a simple and compact sketch can be a challenging
task. Therefore, it is not surprising to see that the perfor-
mance of the third experiment is far below the performance
of other two. It also raises a challenging but interesting prob-
lem specific to this type of 3D model retrieval: how to ef-
fectively compare an inaccurate hand-drawn 3D sketch with
an accurate 3D model? However, many simple categories,
including wineglass, sword, airplanes, and balloons, display
good retrieval results that suggest further research could sig-
nificantly improve the retrieval performance. Figure 6 shows
two examples using sketches with different complexity.
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Figure 5: Precision-Recall performance.

There is still much room left for further improvement in
this challenging task of 3D sketch-based 3D model retrieval.
More descriptive shape descriptors are deserved for our fur-
ther exploration for this specific type of retrieval. In addi-
tion, the 3D sketches we currently collect are quite abstract
and noisy. Better denoising and smoothing algorithms will

Table 1: Other performance metrics.

Benchmark NN FT ST E DCG

outline-model 0.391 0.156 0.238 0.121 0.486
sketch-sketch 0.167 0.087 0.139 0.092 0.360
sketch-model 0.029 0.021 0.038 0.021 0.254

be investigated to further remove noisy points (e.g. the dot
in the alarm clock example in Fig. 4) created during 3D
sketching. To further improve the performance of our re-
trieval system, supervised learning could be applied to help
better understand 3D sketch structure before performing
matching and retrieval.

(a) Simple (b) Complicated

Figure 6: Two example retrieval results using
sketches with different complexity.

5. CONCLUSIONS AND FUTURE WORK
3D sketching in 3D space and 3D sketch-based 3D model

retrieval are brand new research topics. Currently, software
does not exist that allows users to include depth information
in their sketches. Very little preliminary work exists in this
field, allowing for exciting and interesting research results.
In this paper, a novel 3D sketching virtual drawing“board”is
proposed and a 3D sketch-based 3D model retrieval system is
developed. Future goals include developing descriptive and
discriminant 3D shape descriptors to represent 3D sketches
and 3D models, collecting a larger number of 3D sketches
from more diverse users, and training our system for better
3D sketch and 3D model matching.
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