

Overview

- **Research topic:** Sketch-Based 3D model retrieval (SBR)
- Retrieve 3D models from a dataset given a user's hand-drawn sketch.
- * Applications: sketch-based rapid prototyping, mobile 3D search, 3D printing, and 3D animation etc.
- **Semantic gap**: Big semantic gap exists between traditional human-drawn 2D sketches and 3D models. Rough sketch representation and accurate 3D model coordinates. SBR is one of the most challenging research topics in the field of 3D model retrieval.
- **Semantic information:** Describes high-level representation of both sketches and 3D models. Provides a bridge to reduce the semantic gap between them.
- A novel **semantic tree-based SBR algorithm** is proposed to **bridge** the semantic gap.
- **Research results:** Experiments demonstrate the effectiveness and promising potentials of our approach.
- **Contributions**
 - **(1)** A **3D semantic tree** is created based on WordNet [1].
 - > It contains 407 3D models across 10 categories and at different nodes in the tree. • (2) A novel semantic tree-based 3D model retrieval algorithm is proposed. This approach
 - > Effectively captures semantic information of 2D sketches.
 - > Accurately measures similarities between semantics of 2D sketches and 3D models. \succ Greatly enhances the retrieval performance.
 - **(3)** Comprehensive comparative experiments have been conducted to compare with other stateof-the-art methods.
 - \succ Experiments demonstrate the effectiveness and potential of the proposed approach. (4) Our work will
 - > Explicitly guide the research on sketch-based 3D model retrieval.
 - Provide a direction for sketch-based related applications.

Fig. 1. Framework of our semantic tree-based SBR algorithm.

1) Input:

- ✤ A User-drawn 2D sketch. A given 3D model database.
- 2) 2D Sketch Segmentation and Annotation: Segments a sketch q into a set of consistent semantic components $\{C_i\}$, and then recognizes each component's category label q_i . One example is demonstrated in Fig. 2:

A Semantic Tree-Based Approach for **Sketch-Based 3D Model Retrieval** Bo Li^{1,2}, Yijuan Lu², Jian Shen²

¹University of Southern Mississippi, ²Texas State University

Algorithm (Cont.)

- 3) Semantic Tree Construction: Build a semantic tree based on the semantic ontology in WordNet, which is * A lexical database of concepts/synsets, represented by a set of synonyms. Each word has one or more senses (meanings), each having its synset. * Words are related through three relationships: Hypernyms/hyponyms (IS_A relation), Holonyms (MEMBER_OF relation), and Meronyms (**PART_OF** relation).
- 4) Word Sense Disambiguation: Decide which sense to take for a label name, * Either for a labeled semantic component of the 2D sketch query or the name of a 3D model category. * By counting the number of overlapping words between the gloss of the component's label and the glosses of other components' labels [5].
- 5) Sketch-Model Semantic Similarity Computation: Compute the component-wise relatedness between each sketch component's category name and a semantic class in the semantic tree.
- 6) 3D Model Ranking: Sort query and class similarities and rank the models in respective classes based on their shape similarities.

Dataset collection

- ***** 2D sketch dataset:
 - > Randomly selected sketches from the 300 sketches dataset collected in [2] as queries. One query sketch for each class is shown in Fig. 3.

***** 3D model dataset:

- We collected 407 models in total for the same 10 classes.
- One example 3D model for each class is shown in Fig. 4.

Fig. 3. Example 2D sketch queries.

Evaluation metrics [3]:

Cumulated Gain (DCG), and Average Precision (AP).

Performance:

- Three different relatedness fusion methods: Product, Sum and Average. Product approach performs the best.

Fig. 5. Comparison of Precision-Recall plots of our approaches and SBR [4].

Experiments

Fig. 4. Example 3D models.

Precision-Recall (PR) diagram, Nearest Neighbor (NN), First Tier (FT), Second Tier (ST), E-Measures (E), Discounted

> Our approaches dramatically improve retrieval performance compared with traditional content-based SBR methods.

Table 1. Comparison of six performance metrics of our
 approaches and SBR [4]. TSBR: our semantic Tree-based SBR algorithm.

Benchmark	NN	\mathbf{FT}	\mathbf{ST}	\mathbf{E}	DCG	\mathbf{AP}
TSBR-Product TSBR-Sum	0.70 0.60	0.70 0.60	0.79 0.76	0.51 0.45	0.84 0.79	0.75 0.67
TSBR-Average TSBR-AWSD SBR	$0.60 \\ 0.20 \\ 0.20$	$0.60 \\ 0.32 \\ 0.07$	$0.69 \\ 0.50 \\ 0.14$	$0.45 \\ 0.24 \\ 0.06$	$\begin{array}{c} 0.79 \\ 0.59 \\ 0.46 \end{array}$	$\begin{array}{c} 0.66 \\ 0.37 \\ 0.11 \end{array}$

Fig. 6. Query-class hso semantic similarity matrix for the 10 queries. Each row/column is for a query/class according to the order in Fig. 3/4.

Fig. 7. Ranking classes for the 10 queries. One example for each of the 10 classes of 3D models is displayed according to their ranking order.

[1] G. A. Miller. WordNet: A lexical database for English. *Commun. ACM*, 38(11):39–41, 1995.

[2] Z. Huang, H. Fu, and R. W. H. Lau. Data-driven segmentation and labeling of freehand sketches. ACM Trans. Graph., 33(6):175:1–175:10, 2014.

[3] B. Li and H. Johan. 3D model retrieval using hybrid features and class information. Multimedia Tools Appl., 2(3):821–846, 2013.

[4] B. Li, Y. Lu, A. Godil, T. Schreck, M. Aono, H. Johan, J. M. Saavedra, and S. Tashiro. SHREC'13 track: Large scale sketch-based 3D shape retrieval. In 3DOR, pages 89–96, 2013.

[5] S. Banerjee and T. Pedersen. An adapted Lesk algorithm for word sense disambiguation using WordNet. In CICLing, pages 136–145, 2002.

[6] G. Hirst and D. St-Onge. Lexical chains as representations of context for the detection and correction of malapropisms. In *WordNet: An Electronic Lexical* Database, pages 305–332, 1998.

This work is supported by Army Research Office grant W911NF-12-1-0057, NSF CRI-1305302, NSF CNS-1358939 and NSF OCI-1062439.

Experiments (Cont.)

Query-class *hso* semantic similarity matrix *** Non-trivial** differences in *hso* relatedness values->good differentiability.

31	8	0	12	4	5	10	0	12	0
15	26	0	4	3	4	0	6	3	0
14	5	0	0	0	0	0	2	0	0
29	25	0	33	0	0	12	14	31	0
0	0	0	0	40	40	0	0	0	0
0	0	0	0	40	72	0	0	0	0
8	11	0	2	0	0	6	8	0	0
3	15	0	0	4	5	0	20	0	0
6	6	0	8	0	0	4	4	8	0
2	12	0	0	4	5	0	8	0	20

Ranking classes for the 10 queries.

Classes are often logically ranked.

References

Acknowledgement