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Abstract Searching for relevant 3D models based on

hand-drawn sketches is both intuitive and important

for many applications, such as sketch-based 3D model-

ing and recognition, human computer interaction, 3D
animation, game design, and etc. In this paper, our

target is to significantly improve the current sketch-

based 3D retrieval performance in terms of both accu-
racy and efficiency. We propose a new sketch-based 3D

model retrieval framework by utilizing adaptive view

clustering and semantic information. It first utilizes a
proposed viewpoint entropy-based 3D information com-

plexity measurement to guide adaptive view clustering

of a 3D model to shortlist a set of representative sam-

ple views for 2D-3D comparison. To bridge the gap be-
tween the query sketches and the target models, we

then incorporate a novel semantic sketch-based search

approach to further improve the retrieval performance.
Experimental results on several latest benchmarks have

evidently demonstrated our significant improvement in

retrieval performance.
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1 Introduction

Retrieving 3D models using human-drawn sketch(es) as

input is an intuitive and easy way for users to search for
relevant 3D models. Sketch-based 3D model retrieval

attracts a lot of attention due to its promising ap-

plication potentials in sketch-based 3D modeling and

recognition, human computer interaction, 3D anima-
tion, game design, etc.

Recently, quite a few sketch-based 3D model re-

trieval algorithms [36] [6] [21] have been proposed. How-
ever, most of the available algorithms compare the 2D

sketch query with a fixed number of predefined sample

views of each 3D model, independent to the complexity

of the model. For example, Yoon et al. [36] compared
a sketch with 14 sample views for each model. How-

ever, these sampling strategies cannot guarantee that

the extracted sample views are appropriate and rep-
resentative enough to depict any 3D model since they

do not consider the complexities of different models.

In fact, there is no need to sample and compare 13 or
even more views for a simple model, such as a book or a

wheel, while more views should be sampled for a com-

plicated model. That is, we need an adaptive sampling

strategy.

Motivated by the above finding, we propose to sam-

ple different number of representative views for a 3D

model to compare with a 2D sketch according to the

3D information complexity of the 3D model [18] (Sec-
tion 3), which is a novel 3D complexity metric proposed

by us based on the viewpoint entropy distribution of

a set of uniformly sampled views of a 3D model. The
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metric is further utilized to assign the number of clus-

ter centers (representative views) during the Fuzzy C-
Means (FCM) [4] clustering of the sampled views based

on their viewpoint entropy values. After that, an effi-

cient shape context matching [3] algorithm is used for
the parallel 2D-3D matching between the 2D sketch

and the representative views of all the 3D models. An

overview of our 2D-3D comparison algorithm is shown
in Fig. 1 (a). We have found that on the one hand our

adaptive view clustering approach improves the effec-

tiveness of sample views for a 3D model, and hence the

retrieval accuracy, on the other hand it also significantly
reduces the computational complexity of retrieval pro-

cess due to less sample views to compare, thus making

it more applicable for large-scale 3D model retrieval ap-
plications.

We found that it is still a very challenging task
for existing algorithms to achieve outstanding perfor-

mance, in terms of both effectiveness and efficiency,

especially when applied on a large-scale sketch-based

retrieval scenario. This is because there exists a big se-
mantic gap between user sketches and 3D models in the

database: iconic representations of a sketch and accu-

rate representation of a 3D model for the same object.
That is, human sketches always have arbitrary styles,

iconic representations in 2D space, high-level abstrac-

tion, and drastic simplification, which bring a lot of dif-
ficulties in sketch description and representation. The

3D model of an object is generally an accurate represen-

tation of its geometry information. Such big semantic

gap makes the search based on a direct 2D-3D compar-
ison suffer low accuracy and high computational cost

if we sample views densely. However, all the existing

methods fail to bridge the semantic gap without con-
sidering the semantic information of either the sketch

queries or the target 3D models.

Many professional or generic 3D model databases,

such as Engineering Shape Benchmark (ESB) [11], Bonn

University Architecture Databases Benchmark [35], Prince-

ton Shape Benchmark (PSB) [30], Konstanz 3D Model
Benchmark CCCC [33] and Shape Retrieval Contest

(SHREC) datasets [1], as well as other datasets men-

tioned in [19] are already classified. In fact, generally,
most, though not all, available 3D model databases have

class information, which can be utilized to improve the

related practical retrieval performance. In other words,
it is common to encounter such practical retrieval sce-

nario or application where the database already has

contained class information. One such example is the

latest largest shape repository ShapeNet [29]. There-
fore, by leveraging the class information, we should be

able to achieve a lot better retrieval. This practical re-

trieval scenario serves as one of our goals, as well.

Considering the above findings and motivation, in

this paper, we further propose a novel semantic sketch-
based 3D model search approach [15] (Section 4) to

bridge the semantic gap. Our approach tries to un-

derstand the semantic meaning users are expressing
through their sketches before searching the correspond-

ing 3D models. By building an intelligent sketch recog-

nizer, our approach can first predict the potential se-
mantics of the user sketch. Then by searching the 3D

models in the predicted semantic categories (same as

the “classes” in a 3D model dataset; we use them in-

terchangeably in the paper), the best matchings can be
found. We design the approach of semantic sketch-based

retrieval as shown in Fig. 1 (b). The experimental re-

sults demonstrate that the semantic approach achieves
significant improvements in both search accuracy and

efficiency.

Our paper is an extended version based on our prior
work in [15] and [18]. The main contributions intro-

duced in this paper are summarized below:

– We devise a new sketch-based 3D model retrieval

framework which integrates two components. One

component is an adaptive view clustering method
to deal with appropriate and meaningful 3D view

sampling based on the viewpoint entropy measure-

ment. The other component is a semantic sketch-
based retrieval approach to bridge the gap between

the iconic representations of query sketches and the

accurate representations of 3D models.

– We quantitatively study and formulate the 3D com-
plexity analysis of a 3D model problem. Based on

this, we propose a reasonable and effective 3D in-

formation complexity metric by measuring the in-
formation theory-related viewpoint entropy. It has

been successfully applied into the 2D-3D compar-

ison algorithm to adaptively decide the number of
representative views for each 3D model. In addition,

our work provides a feasible direction for the 3D

complexity research and also validates a practicable

path for view clustering-based 3D retrieval.
– We propose a novel semantic sketch-based 3D model

search algorithm to bridge the semantic gap be-

tween user sketches and 3D models. It also opens
broad research possibility for semantic sketch-based

3D model retrieval and annotation. In addition, we

develop an intelligent sketch recognizer through su-
pervised learning to appropriately capture the se-

mantic meanings of users’ sketches.

– We perform a set of comparative experiments on

four latest sketch-based 3D model retrieval bench-
marks and demonstrate the outperforming perfor-

mance of our framework and its promising applica-

tion potential for sketch-based 3D model retrieval.
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(a) Our 2D-3D comparison method utilizing adaptive view clustering

(b) Our semantic sketch-based retrieval approach

Fig. 1 Our sketch-based 3D model retrieval framework which utilizes adaptive view clustering and semantic information. In
(b), D1 is computed based on the method presented in (a).

The organization of the paper is as follows. We re-

view related work in Section 2. The view clustering-
based 2D-3D comparison method and the semantic re-

trieval approach are respectively presented in Sections 3

and 4. Section 5 performs comparative experiments on
four benchmarks while Section 6 draws the conclusions

and lists several future work.

2 Related work

2.1 Sketch-based 3D model retrieval

According to different view sampling strategies, sketch-

based 3D model retrieval techniques can be categorized

into two groups: (1) matching sketches with the pre-
defined sample views rendered from certain fixed view-

points; (2) matching sketches with the clustered views

generated by view clustering.

2.1.1 Using predefined views

As mentioned before, most existing sketch-based 3D

model retrieval algorithms compare sketches with views
resulting from a set of predefined sample orientations.

Recently, Yoon et al. [36] developed a sketch-based re-

trieval algorithm based on the diffusion tensor fields

feature representation and matched a sketch with 14
suggestive contours feature views of a model. Eitz et

al. [6] [21] adopted a Bag-of-Features (BoF) framework

and extracted Histogram of Gradient (HOG) local fea-
tures for the subdivided patches of both sketches and

102 sample views of each model. In [7], Eitz et al. fur-

ther proposed a feature named Gabor local line-based
feature (GALIF) to deal with sketch-based 3D retrieval.

Li and Johan [13] [21] proposed a sketch-based 3D model

retrieval algorithm named SBR-2D-3D by first approx-

imately aligning a 2D sketch with a 3D model, in terms
of shortlisting a set of candidate views to correspond

with the 2D sketch, based on a 3D model feature named

“View Context” [13] before 2D-3D matching. Their 2D-
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3D matching algorithm is based on relative shape con-

text matching [3].
This strategy has a shortcoming of ignoring the rep-

resentativeness regarding the selected views and this

also motivates us to develop a sketch-based retrieval
algorithm by adaptively clustering the sample views.

2.1.2 Using clustered views

Compared with the approaches based on predefined

views, much less research work has been done for the
strategy based on view clustering. Mokhtarian and Ab-

basi [22] proposed a view clustering method by match-

ing the rendered views and discarding the similar views

whose matching costs fall in a predefined threshold.
Ansary et al. [2] proposed an image-based 3D model re-

trieval algorithm by clustering 320 sample views into a

set of characteristic views based on the Bayesian prob-
abilistic approach. They also developed a method to

optimize the number of characteristic views based on

the X-means clustering method. Zernike moments are
adopted to represent the views or 2D image queries.

Unfortunately, only one demo result for sketch queries

was given and no overall performance was evaluated.

2.2 3D complexity

Geometrical shape complexity approaches have been

reviewed by Rossignac [27] from five perspectives: al-

gebraic, topological, morphological, combinational, and
representational. Recently, a new tendency is to mea-

sure the visual complexity of a 3D model. This also

has its foundation in computer vision and 3D human
perception: a 3D object can be viewed as a collection

of 2D views. It is also consistent with the human per-

ception theory to utilize information theory to measure
the shape complexity of 3D models. Saleem et al. [28]

measured the visual complexity of a 3D model based on

the feature distance analysis of its sample views. Page

et al. [25] defined a 2D/3D shape complexity based on
the entropy of curvatures.

Utilizing information theory related measurement

to characterize the information that a sample view of
a 3D model contains has been recognized as an effec-

tive way, thus useful for 3D complexity measurement

as well. Vázquez et al. [32] proposed viewpoint entropy
to depict the amount of information a view contains

and based on this, they developed a method to auto-

matically find a set of best views with top viewpoint

entropy values. Our proposed 3D information complex-
ity measurement is just based on viewpoint entropy.

Compared with the 3D shape complexity metrics men-

tioned above, it is more efficient to compute and direct

to understand, and also has its solid root in information

theory.

2.3 Semantic 3D model retrieval

Without considering the semantic information of either
the sketch queries or the target 3D models, all the

sketch-based 3D model retrieval methods mentioned

before fail to bridge the semantic gap between the sketches
and 3D models. Our proposed semantic sketch-based

3D model retrieval approach makes the first attempt

to use semantic classification information to reduce the

semantic gap, as well as to adequately utilize the better-
performing global feature matching to improve the re-

trieval efficiency.

According to our knowledge, in the field of 3D model
retrieval, semantic 3D model retrieval techniques have

been utilized only for the Query-by-Model scenario where

there is no semantic gap between the queries and tar-
gets. However, in our semantic sketch-based retrieval

approach, as an example of Query-by-Sketch scenario,

it is utilized to bridge the semantic gap between the

input sketches and output 3D models.

For example, Ohbuchi et al. [24] proposed a dimen-

sion reduction approach based on semi-supervised learn-

ing approach and they tried to incorporate the semantic
class information into Query-by-Model retrieval appli-

cations. Recently, Gong et al. [9] proposed a seman-

tic 3D signature based on semantic attributes, such as
symmetry, circularity, and rectilinearity. Hou et al. [10]

proposed a 3D model retrieval algorithm for 3D model

queries based on semantic labeling. First, they per-
formed SVM-based clustering on the target 3D model

database and then classified the query into a labeled

class. Finally, they ranked all the models in the rele-

vant class by employing a feature vector selection ap-
proach. Nie et al. [23] proposed an image search algo-

rithm based on a probabilistic network to model the

relatedness between images by considering three lay-
ers of relationships: semantic-level, cross-modality level

and visual-level.

In summary, semantic information has been used
in 3D model retrieval but purely for the performance

improvement in a retrieval scenario where there is no

semantic gap between the query and targets and thus it

is optional to consider semantic information. However,
it can be considered as a necessity in order to bridge the

existing big gap between the 2D sketches and 3D models

in the scenario of sketch-based 3D model retrieval.
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3 2D-3D comparison method using adaptive

view clustering

Different models have different complexities, thus there
is no need to keep the same number of representative

views for each model to compare with a sketch. In this

section, we propose a 3D information complexity met-
ric based on the viewpoint entropy distribution of a set

of sample views of a 3D model. After that, we apply

the 3D information complexity metric into our 2D-3D

comparison method to decide the number of represen-
tative views (cluster centers) to represent a 3D model.

Finally, based on the viewpoint entropy values of the

sample views, a Fuzzy C-Means (FCM) algorithm is
employed to select the assigned number of representa-

tive views for each model.

3.1 Viewpoint entropy distribution-based view

clustering

3.1.1 Viewpoint entropy distribution

We subdivide a regular icosahedron (denoted as L0)

n times based on the Loop subdivision algorithm and
name the resulting shape as Ln. For each model, we

sample a set of viewpoints by setting the cameras on

the vertices of Ln. All the 3D models are first scaled

into a unit sphere and orthogonal projection is applied
during 3D rendering. We adopt the viewpoint entropy

computation method in [31]. For a 3D model with p

faces, the viewpoint entropy e of a view is defined as
follows,

e = −
p∑

j=0

Aj

A
log2

Aj

A
(1)

where, Aj is the visible projection area of the jth (j=1,
2, · · ·, p) face of a 3D model and A0 is the background

area. A is the total area of the window where the model

is rendered: A=A0+
∑p

j=1 Aj .

Fig. 2 shows the viewpoint entropy distributions

of three models using L3 for view sampling and map-

ping their entropy values as colors on the surface of the
spheres. We can see that models with similar complex-

ities have similar entropy distribution patterns, while

entropy distribution patterns of models with different
complexities are also distinctive. For example, as ex-

pected, the Lucy (a model which is close to the hu-

man class in Fig. 2 (a)) and armadillo models have very

similar entropy distribution patterns, which only differ
slightly from the pattern of an ant. Similarly, the en-

tropy distribution patterns of the bird and fish models

are also very close. However, the distribution pattern of

the horse model is quite different from all the five mod-

els mentioned above. These also match our expectation.
The fact behind this is that classes (i.e. Lucy and ar-

madillo, bird and fish) sharing similar 3D complexity

have similar viewpoint entropy distribution patterns,
while classes (i.e. horse versus bird/ant/fish/human)

with different complexities also differ in their entropy

distribution patterns. Motivated by this finding, we pro-
pose to measure the 3D complexity of a 3D model based

on its viewpoint entropy distribution.

3.1.2 Viewpoint entropy-based 3D information
complexity

To assign the same number of representative views to

the models belonging to the same class, we perform
viewpoint entropy distribution analysis on a class-level

and propose an entropy-based metric to measure the

3D information complexity of a model.

(1) Class distribution analysis based on view-

point entropy. This is to uncover the properties of

entropy distribution based on class-level experiments

on a dataset. As an example, we select the target 3D
model dataset of Yoon et al.’s [36] [21] sketch-based

retrieval benchmark. It comprises 13 selected classes

(260 models, 20 each). One sample from each class is
shown in Fig. 3 (a). For each model, we adopt L2 (162

views) for the viewpoint sampling and then compute

the viewpoint entropy at each viewpoint. After that, we
compute the mean and the standard deviation entropy

values m (measures the average amount of information

that a view of the model contains) and s (measures the

information difference in different views of the model)
among all the 162 views of the model. Finally, we aver-

age all of them over the 20 models for each class. Fig. 3

(b) shows the entropy distributions (in terms of m and
s) of different classes and the analysis of our clustering

results. As shown in the figure, viewpoint entropy rea-

sonably reflects the 3D complexity similarities among
different classes and matches the viewpoint distribution

patterns shown in Fig. 2 as well. For example, “bird”,

“plane” and “fish” all have “wings” and are also vi-

sually similar. “Human”, “ant” and “chair” share the
characteristic of elongate shapes. “Hand” and “teddy”

have the following same properties: the areas of certain

(usually the front, top and side) views are apparently
smaller than other views; most views of this class have

bigger projection areas than those of other classes, thus

both their mean and standard deviation entropy values
are larger. This type has at least one relatively flat face,

thus we denote this class as “Flat” type.

(2) Entropy-based 3D information complex-

ity measures. Based on the above finding and anal-
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(a) Lucy (b) armadillo (c) ant (d) bird (e) fish (f) horse

(g) Lucy (h) armadillo (i) ant (j) bird (k) fish (l) horse

Fig. 2 Viewpoint entropy distribution examples: the first row shows six models; the second row demonstrates the viewpoint
entropy distributions of the corresponding models with respect to their displayed viewpoints. Viewpoint entropy is coded using
HSV color model and smooth shading. Red: small entropy; green: mid-size entropy; blue: large entropy.
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Fig. 3 Viewpoint entropy distributions and numbers of representative views of different classes in the WMB 3D benchmark:
(a) A model example per class; (b) Entropy distributions w.r.t classes and our annotation; (c) 3D information complexity C

values and view numbers Nc.

ysis, to define a metric to measure the 3D informa-
tion complexity C for a class by incorporating both the

average value m and the deviation value s, we have

the following three basic geometric measurements: an-
gle Can = s

m
, area Car = s ∗m and magnitude (D2),

C =
√

ŝ2 + m̂2 (2)

For the magnitude metric, ŝ and m̂ are the normal-

ized s and m by their respective maximums over all the

classes, which gives that ŝ ∈ [0, 1] and m̂ ∈ [0, 1]. Thus,
the magnitude metric C ∈[0,

√
2], which is to measure

the size of the entropy-based 3D information complex-

ity feature vector < ŝ, m̂ >. For the angle and area

metrics, normalization or not will have no impact on
the ranking results. Different metrics may have different

performance when applied on related applications, such

as shape compression, classification, recognition and re-

trieval. According to our experiments, for 3D model re-
trieval, the magnitude metric, which equally combines

both values to measure the size information of the fea-

ture vector (m, s), has the best performance in terms
of retrieval accuracy and we also adopt it in our 2D-

3D comparison algorithm. We also have found that it

has better class differentiation ability than other met-
rics such as standard deviation s only. Fig. 3 (c) sorts

and lists the 3D information complexity values of the

13 classes according to the D2 distance metric (Eq. 2).

3.1.3 Viewpoint entropy-based adaptive views
clustering

Utilizing the 3D information complexity value C (Eq. 2)

of a model, we adaptively assign its number of repre-

sentative feature views (outline views presented in Sec-



Sketch-based 3D model retrieval utilizing adaptive view clustering and semantic information 7

tion 3.2) and perform view clustering to obtain the rep-

resentative views.
(1) Sample views generation. Similar as Sec-

tion 3.1.2, we still adopt L2 (162 viewpoints) for the

feature views sampling. But considering the symme-
try property of outline feature views rendered from two

opposite viewpoints, we select half of them (within a

hemisphere, 81 views) to generate the sample views.
(2) Assign the number of representative views.

We set the number of representative views Nc to be pro-

portional to its 3D information complexity C.

Nc = α · C ·N0 (3)

where, N0 is the total number of sample views in the

sample view space and α is a constant, α ∈ [0, 1
√

2
]. Sta-

tistically, the average number of representative views

Na over all the classes in a dataset will be close to α·N0√

2
.

In our algorithm, N0=81 and in default we set α = 1
2
.

The corresponding numbers of representative views Nc

for the 13 classes are listed in Fig. 3 (c). In fact, to
meet the speed and accuracy requirements of different

applications, we can easily adjust the number of repre-

sentative views by simply assigning different values to
α.

We need to mention that rather than measuring the

3D geometrical complexity of a 3D model (i.e., the com-
plexity in the structures and components of a 3D model

like a table or a chair), our definition of 3D information

complexity is based on the viewpoint entropy distribu-

tion of a 3D model, which incorporates the mean and
variation in the entropy information of a set of sample

views of a model. It can be found from the figure that

the table class has much bigger entropy variation than
the chair class, though the table and chair classes share

similar mean entropy information in their views.

(3) Representative view clustering using Fuzzy
C-Means [4] clustering. For each sampled viewpoint,

we use the viewpoint entropy value e of the rendered

view together with its 3D coordinate (x, y, z) as its

feature E = (x, y, z, e). The main reason for this design
is that for a 3D model the viewpoint entropy values of

its neighboring viewpoints are close to each other as

well. We want to select only one viewpoint as a repre-
sentative view to represent the views that are close to

each other. Therefore, for all the sampled viewpoints of

a 3D model, we consider both their entropy values and
locations during the view clustering. Then, based on a

Fuzzy C-Means clustering algorithm, we cluster all the

N0 feature vectors into Nc clusters, each having a mem-

bership function measuring the possibilities of the N0

feature vectors belonging to the cluster. After that, we

label each viewpoint to the cluster with the maximum

membership function value. Finally, for each cluster, we

regard the viewpoint that is closest to the center of the

cluster, in terms of D2 distance, as the representative
view of the cluster.

3.2 View clustering-based 2D-3D comparison method

3.2.1 Feature views generation

Considering the factors of robustness w.r.t different types
of sketch queries, effectiveness and efficiency perfor-

mance, which also have been demonstrated by our com-

parative experimental results, we extract outline fea-
ture views for both 2D sketches and 3D models in our

algorithm. For 3D, we first render silhouette views and

then extract the outlines. For 2D, we also first generate
its silhouette view mainly through a series of morpho-

logical operations: binarization, Canny edge detection,

morphological closing, dilation to fill the gaps between

sketch curves and region filling.

3.2.2 Feature extraction

Shape context matching [3] is utilized to compute the

distance between two outline feature views (one for
sketch and one for model) during the retrieval stage.

To encompass the differences in the camera up-vectors

during the process of outline feature views generation,

we extract the rotation-invariant relative shape context
features for each feature view, as follows.

First, we uniformly sample 100 feature points for

an outline in the feature view based on cubic B-Spline
interpolation and uniform sampling. Then, we extract

the relative shape context feature [3] for each point.

Finally, Jonker’s LAP algorithm [12] is used to match
the feature points of two outline feature views and the

minimum matching cost is their distance.

3.2.3 Online 2D-3D comparison

Given a query sketch and a 3D database, based on
the representative views and their precomputed rela-

tive shape context features for each model, we develop

the following online 2D-3D comparison algorithm.
(1) Sketch feature extraction. We extract the

outline feature view for the 2D sketch and compute its

relative shape context features in parallel.
(2) Sketch-model distance vector computa-

tion. For each model, we perform shape context match-

ing between the sketch and each representative view

and regard the minimum matching cost as the sketch-
model distance.

For the query sketch, if we parallelly compute all the

sketch-model distances, sort them in an ascending order
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and list the corresponding models accordingly, then we

name this sketch-based retrieval algorithm based on our
adaptive view clustering method SBR-VC.

4 Semantic sketch-based 3D retrieval approach

In this section, we further present the semantic retrieval

approach in our sketch-based 3D model retrieval frame-

work presented in Fig. 1. Considering the existing big

semantic gap between the 2D sketches and 3D mod-
els, we further propose a novel semantic sketch-based

3D model search approach to bridge the semantic gap

by first recognizing the potential semantic meanings
of the user sketch and then performing 2D-3D match-

ing for the 3D models within the predicted categories.

In general, most, though not all, available 3D model
databases have class information. Therefore, by using

class information, it is feasible to further improve the

retrieval performance [14]. We design our semantic ap-

proach mainly for the retrieval scenario whereby the
class information of the target 3D dataset is already

available, though the idea of our algorithm is general

and applicable to unclassified datasets as well since we
can perform 3D classification first, i.e., based on the 3D

classification techniques reviewed in [14].

As shown in Fig. 1 (b), our proposed semantic sketch-

based retrieval approach consists of two stages: sketch
recognition training stage and sketch-based retrieval

stage. In the sketch recognition training stage, a large

sketch training dataset is selected first, which contains
sketches from a variety of categories. Then, sketch fea-

tures are explored and extracted to well describe input

sketches’ attributes. An intelligent sketch classifier is
built up to recognize a user sketch into potential sketch

categories. In the sketch-based retrieval stage, a query

sketch is first fed into the developed sketch classifier

and the possibilities of the input sketch belonging to
all the categories are predicted. The higher the possi-

bility is, the larger chance the user sketch describes the

same object. Therefore, the 3D models in the top candi-
date categories are much closer to the input sketch. So,

a general sketch-based 3D model retrieval algorithm,

like the SBR-VC method presented in Section 3, is
employed to rank the models in the top L candidate

categories. The models in the remaining categories are

ranked based on their corresponding categories’ predic-

tion values. By this joint usage of sketch recognition
and retrieval techniques, the proposed approach can

successfully bridge the semantic gap between sketches

and 3D models.

4.1 Stage 1: Sketch recognition training

(1) Sketch feature extraction. Eitz et al. [5] ex-

tracted local features from a sketch based on the ideas

of Scale-Invariant Feature Transform (SIFT) and His-
togram of Gradient (HOG) features and embedded them

into a Bag-of-Words framework as the feature represen-

tation. This feature representation has two limitations:
1) it only captures the local information of sketches

and totally ignores the global attributes; 2) it cannot

handle the rotation of sketches. In this section, a hy-
brid feature is developed by further integrating a set of

rotation-invariant global features for a sketch. The hy-

brid feature vector is generated by combining the 500-

dimensional Bag-of-Words local feature vector in [5]
and a 119-dimensional global feature vector devised by

us. First, each sketch is resized into a 300×300 image,

then the thickness of the sketch lines is shrunk to a
single pixel. Then, a global feature vector is extracted

from the sketch as shown in Fig. 4. It is composed

of 9 distance histograms: 5 radial distance histograms
of the sketch pixels with respect to 5 selected refer-

ence points/lines, 2 radial distance histograms of the

first intersection points and 2 radial angle histograms

of the sketch pixels with respect to the two centers
C and FPC. All the histograms are divided into 11

bins and the mean and standard deviation values of

each histogram are also included, thus generating a 117-
dimensional (13×9) global feature vector. In addition,

the distance between C and FPC, and the sum of the

distances between sketch pixels and FPC are also con-
sidered. Our experimental results show that a moder-

ate improvement (around 3%∼5%) in sketch recogni-

tion has been achieved after incorporating these global

features.
(2) Sketch classifier training. Similar as [5], Sup-

port Vector Machine (SVM) is chosen to build a sketch

recognition model. The same parameter settings in [5]
are utilized, such as local feature definitions, “soft” kernel-

codebook coding choice, vocabulary size, and 3-fold cross-

validation selection except that we may have different
RBF kernel parameters.

4.2 Stage 2: Sketch-based retrieval

Given a query sketch q and a target 3D dataset M =
{mi}, a distance vector D needs to be generated to

measure the dissimilarities between q and all the models

in M , detailed as follows.

(3) Sketch classification. A query sketch is fed
into the developed sketch classifier. The possibilities of

the input sketch belonging to all the categories are pre-

dicted and the top L candidate categories are found.
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Fig. 4 Illustration of our 5 reference points or lines for the
global features: C, FP1, FP2, FPL and FPC, where C is
the centroid of a sketch, FP1 and FP2 are the two farthest
points with respect to the centroidC, FPL is the line between
the two farthest points; and FPC is the center of the FPL
line. P is an example of first intersection point.

(4) 2D-3D matching. A 2D-3D comparison algo-

rithm is applied on all the models in the top L candidate

categories and the distances between the models and
the input sketch, named D1, are calculated. The pro-

posed semantic sketch-based retrieval algorithm that

combines the SVM-based sketch recognition (Steps (1)∼(3))
and our view clustering-based 2D-3D comparison algo-

rithm SBR-VC (Section 3) is named as SBR SVM-

VC.

(5) Distance vector generation. Besides D1 for

the top L candidate categories, we need to assign dis-

tances between the input sketch and the models in the
remaining categories. As a whole, these distances form

the second part of D, which is named as D2. We first

sort all the categories according to their SVM proba-
bility estimates generated in Step (3) and then assign

D2 distance of each model as the ranking order (larger

than 1 since L≥1) of its respective category. To make
the models in the top L candidate categories appear

first in the rank list, we normalize the values in D1 into

[0,1] and then concatenate D1 and D2 sequentially to

form one vector D.

When L=1, the retrieval performance of our seman-

tic approach (Section 4) is independent of the 2D-3D
matching algorithm used in Step (4) since it will only

has impact on the retrieval performance of the top L

candidate categories. If L=1, it does not matter which
2D-3D matching algorithm we will use because all the

3D models in the top L (1) candidate category are

within the same class. Different 2D-3D matching al-

gorithms will only change the order of the 3D models
within that class. We also find that even if the relevant

class of the 2D sketch query q is not within the top

L candidate categories, usually the relevant class will

still appear on the top of the rank list of all classes,

which has been verified by the robust performance of
our semantic approach in the following section, as well.

(6) Ranking and output. All the distances in D

are sorted and the best matching models are retrieved
accordingly.

5 Experimental results and discussion

In this section, we test our adaptive view clustering-
based 2D-3D comparison algorithm “SBR-VC” and its

semantic version “SBR SVM-VC” on four latest (small-

scale and large-scale) sketch-based 3D model retrieval
benchmarks and compare with the state-of-the-art per-

formance achieved on those benchmarks. We name the

number of feature points (Section 3.2.2) to represent a

sketch NUM, such as 50 or 100. We add the parame-
ter settings into the algorithm name, such that SBR-

VC NUM 50 means the NUM is set to 50, and so on so

forth.

Sections 5.2, 5.3 and 5.4 aim at demonstrating the

advantages of our view clustering approach, while Sec-

tion 5.5 is mainly to show the superior performance of
our semantic approach.

5.1 Benchmarks and evaluation metrics

(1) Yoon et al.’s [36] [21] benchmark (SHREC12STB).
We have introduced its target dataset in Section 3.1.2

and Fig. 3 (a). The query set contains 250 hand-drawn

sketches for the 13 classes, each containing 17∼21 sketches.
It was used in the Eurographics 2012 Shape Retrieval

Contest (SHREC’12) track on Sketch-Based 3D Shape

Retrieval.

(2) Eitz et al.’s [7] Princeton Shape Bench-
mark based Benchmark (PSBB). Eitz et al. [7]

built a large scale sketch-based 3D retrieval benchmark

based on the Princeton Shape Benchmark (PSB) [30],
which comprises train and test datasets, each with 907

models. They collected one sketch for each model based

on the Amazon Mechanical Turk application to imitate

novel users. That is, it contains 1814 sketches divided
into 182 classes. However, PSB has quite different num-

bers of models for different classes, which is a bias for

retrieval performance evaluation.

(3) SHREC’13 Sketch Track Benchmark [16]

(SHREC13STB). Recently, a SHREC’13 Sketch Track

Benchmark, for the Shape Retrieval Contest (SHREC)

2013 Track on the topic of large scale sketch-based re-
trieval, was developed based on the shared categories of

the sketch recognition dataset built by Eitz et al. [5] and

PSB. Eitz et al. [5] built a comprehensive benchmark for
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sketch recognition by utilizing the Amazon Mechanical

Turk application as well. It comprises 20,000 sketches,
uniformly divided into 250 classes. The SHREC’13 Sketch

Track Benchmark contains 7200 hand-drawn sketches,

that is 90 of the total 250 classes, and 1258 relevant
3D models selected from the PSB benchmark to form

the target 3D dataset. To evaluate retrieval algorithms

based on a learning approach, the “Training” and “Test-
ing” datasets are also built by randomly selecting 50

sketches per class for training and the rest 30 sketches

for testing, while the complete target model dataset is

remained as a whole for both training and testing pur-
pose.

(4) SHREC’14 Sketch Track Benchmark [20]

[19] (SHREC14STB). It is the currently largest and
latest large-scale unified retrieval benchmark which can

be used for both generic and sketch-based 3D model re-

trieval. It was used in the Eurographics 2014 Shape Re-
trieval Contest (SHREC’14) track on Extended Large-

Scale Sketch-Based 3D Shape Retrieval. It is comprised

of 171 classes of 13680 sketches and 8987 models. To

accommodate the evaluation for learning-based algo-
rithms, 50 sketches for each class have been selected as

the “Training” query dataset, while the remaining 30

sketches are assigned as the “Testing” query dataset.
While, all the 8,987 3D models are remained as the

target 3D dataset.

Evaluation metrics. To comprehensively evaluate
the retrieval performance, we select the following seven

commonly used performance metrics: Precision-Recall

(PR) diagram, Nearest Neighbor (NN), First Tier (FT),

Second Tier (ST), E-Measure (E), Discounted Cumula-
tive Gain (DCG) [30] and Average Precision (AP). NN

/ FT / ST / E measures the performance of top one / T

/ 2T / 32 ranking results, where T is the total number of
relevant models in the 3D model set. While, PR, DCG

and AP measure the overall performance from differ-

ent aspects. To measure the sketch recognition perfor-
mance, eight popular metrics are utilized including True

Positive rate (TP), False Positive rate (FP), Precision

(P), Recall (R), F-Measure (F), Matthews Correlation

Coefficient (MCC), area under the Receiver Operating
Characteristic Curve (ROC), and area under Precision-

Recall Curve (PRC) [26]. It is necessary to mention that

for all the above metrics, except FP, a higher value in-
dicates better performance. In the following tables, we

also highlight the best results.

5.2 Yoon et al.’s benchmark (SHREC12STB)

To evaluate our 2D-3D comparison algorithm, we test

the SBR-VC on the 250 sketches of Yoon et al.’s [36] [21]

benchmark. Its average performance is compared with

the top two state-of-the-art algorithms reported in the

SHREC’12: Sketch-Based 3D Shape Retrieval Track [21]:
Li and Johan’s SBR-2D-3D algorithm [21] [13] and Eitz

et al.’s BOF-SBR approach [21] [6]. Fig. 5 and Table 2

show their Precision-Recall diagram and other compar-
ison results.
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Fig. 5 Precision-Recall diagram performance comparisons
on Yoon et al.’s [36] [21] benchmark between our method
and other state-of-the-art algorithms.

As can be seen, our retrieval performance is appar-

ently better than BOF-SBR. It also achieves similar

performance as SBR-2D-3D algorithm. However, our
precomputation for candidate views selection is simpler

and more efficient in terms of both time and memory

space. Table 1 compares SBR-VC and SBR-2D-3D in
terms of the precomputation time and memory cost to

load the precomputed features: SBR-2D-3D needs 4.6

times more precomputational time and 1.6 times more
memory than SBR-VC. Therefore, SBR-VC has supe-

rior scalability than SBR-2D-3D, thus it can be easily

scaled to a large scale sketch-based 3D model retrieval

application.

Table 1 Precomputation time and feature loading memory
space comparison of SBR-VC and SBR-2D-3D on the Yoon
et al.’s [36] [21] benchmark using a modern computer (CPU:
Intel Core 2 Duo E7500@2.93 GHz; Memory: 16 GB; OS:
Windows 7 (64-bit)).

Method SBR-VC NUM 100 SBR-2D-3D NUM 100
Time (s) 762.96 4235.54
Memory (M) 211.95 550.72
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Table 2 Other performance metrics comparison between our method SBR-VC and the top two participating approaches in
SHREC’12 Track [21] on the Yoon et al.’s [36] [21] benchmark.

Method NN FT ST E DCG AP
SBR-VC NUM 100 0.664 0.427 0.587 0.413 0.730 0.558
SBR-2D-3D NUM 100 0.688 0.415 0.581 0.411 0.731 0.556
BOF-SBR 0.532 0.339 0.497 0.338 0.662 0.450

5.3 Eitz et al.’s PSBB benchmark (PSBB)

To compare with the latest Gabor local line-based fea-
ture (GALIF) proposed by Eitz et al.’s [7], we per-

formed the same experiment as [7] on the PSBB bench-

mark [7]. Due to the big size of the target model dataset,
we also tested the case of α = 1

6
(Na=9) besides the de-

fault setting of α = 1
2
(Na=29). In addition, we also ran

the SBR-2D-3D algorithm on the dataset. Similarly, we

tested setting the number of candidate views, denoted
by nCV , to 16 or 4 to observe their performance differ-

ence. Fig. 6 and Table 3 compare their Precision-Recall

and other performance metrics, respectively.

As can bee seen from the figure and table, SBR-VC

shows a comparable performance as the state-of-the-art
approaches GALIF and SBR-2D-3D even on this biased

benchmark, which also demonstrates the robustness of

our approach. PSBB has one sketch for each model of
PSB. PSB is the most famous and frequently used 3D

shape benchmark and it also covers most commonly

seen objects. However, PSB has quite different num-

bers of models for different classes, which is a bias for
retrieval performance evaluation. For example, in the

test dataset the “plane” class has 99 models while the

“ant” class only has 5 models. What’s more, in PSBB,
the sketch dataset and the target model dataset share

the same distribution in terms of number of objects in

each class (one sketch for one model), thus the bias will
be coupled. However, even on this biased benchmark,

we have achieved similar performance as the GALIF

in [7], where PSBB has been proposed. This shows our

algorithm is robust with respect to the diversity of ob-
ject classes.

It is also interesting to note that SBR-VC has a
slightly better performance when choosing α = 1

6
than

that of default setting (α = 1
2
); while SBR-2D-3D achieves

a better accuracy when keeping more candidate views.
This is mainly because of their different schemes of view

selection: SBR-2D-3D (linearly) selects a set of candi-

date views from 81 sample views according to their sim-

ilarities with the query sketch while SBR-VC (nonlin-
early) clusters 81 sample views into a set of representa-

tive views, each of which represents a cluster of sample

views.

5.4 SHREC’14 Sketch Track Benchmark
(SHREC14STB)

In [20] [19], an extensive comparative evaluation of six

methods (including our SBR-VC) contributed by four
participating groups has been performed on the SHREC

14STB benchmark. Readers can refer to them for com-

plete details. For inclusiveness, we present the most im-

portant and relevant comparison results here.

Fig. 7 compares their PR performance, while Ta-
ble 5 compares the other six reciprocally weighted per-

formance metrics [20] on the “Testing” dataset. We

choose the reciprocally weighted performance metrics
due to their better accuracy and robustness since they

are designed to reduce the bias in the different number

of models for each class by multiplying each query’s

performance values by the reciprocal of the number of
relevant model in the target 3D model dataset.

As can be seen from the figure and tables, the two

machine learning-based semantic approaches, that is

SCMR-OPHOG and CDMR, have the best performance.
While, the overall performance of the top methods from

other non-learning based approaches are very close. Within

the non-learning based category, our SBR-VC ranks

#4.

Their time efficiency has been compared in Table 4.
BF-fGALIF has the best efficiency, followed by BOF-

JESC and SBR-VC (α = 1
2
).

5.5 SHREC’13 Sketch Track Benchmark

(SHREC13STB)

5.5.1 Without semantic approach: performance of

SBR-VC

We have tested our SBR-VC algorithm on the “Train-

ing”, “Testing”, and “Complete” datasets and com-

pared it with other participating approaches in the SHREC’13
Sketch Track [16], which include Li et al.’s SBR-2D-

3D, Saavedra’s FDC, and Aono and Tashiro’s EFSD.

For SBR-VC, to accustom to the large-scale retrieval

for efficiency consideration, we keep less representative
views by setting α = 1

6
(Na=9). For SBR-2D-3D, we set

NUM to 50 because when NUM=100, it needs a large

amount of memory (e.g., an ASCII text file of 2.8 GB is
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Fig. 6 Precision-Recall diagram performance comparisons on the testing dataset of the PSBB [7] benchmark between our
method and other state-of-the-art algorithms.

Table 3 Other performance metrics for the performance comparison on the testing dataset of the PSBB [7] benchmark. “-”
means the performance data are not available.

Method NN FT ST E DCG AP
SBR-VC NUM 100 (α=1/2) 0.192 0.117 0.174 0.100 0.389 0.130
SBR-VC NUM 100 (α=1/6) 0.198 0.118 0.180 0.104 0.391 0.131
SBR-2D-3D NUM 100 (nCV =16) 0.228 0.137 0.201 0.116 0.408 0.147

SBR-2D-3D NUM 100 (nCV =4) 0.213 0.120 0.177 0.102 0.390 0.128
GALIF - - - - - 0.143

needed to save the shape context features) to load the
relative shape context features and the retrieval speed

will be largely decreased.

Fig. 8 and Table 6 compare their performance in

terms of Precision-Recall diagram performance. It can

be observed that both SBR-VC and SBR-2D-3D achieve
much better accuracy than FDC and EFSD. SBR-VC

NUM 100 keeps more feature points but less representa-

tive views because of the change in Nc. Compared with
SBR-2D-3D NUM 50, they are comparable in retrieval

efficiency, but SBR-VC NUM 100 has much better re-

trieval accuracy. For example, considering the retrieval

on the complete benchmark, SBR-VC NUM 100 out-
performs SBR-2D-3D NUM 50 by 21.1%, 22.8%, 19.2%,

14.9% and 6.1% in terms of NN, FT, ST, E, and DCG

respectively.

5.5.2 With semantic approach: performance of
SBR SVM-VC

Now, we further test our semantic approach on the

SHREC’13 Sketch Track Benchmark. We train the SVM-

based classifier on the training dataset based on our

hybrid features (containing both local and global fea-
tures) and obtain the best parameters values: Gaussian

kernel parameter γ=0.1 and penalty parameter Cp=20.

1) Sketch recognition. The developed sketch recog-

nizer (Section 4.1) in our semantic retrieval approach

is tested on both the SHREC’13 Sketch Track Bench-
mark dataset and Eitz et al.’s complete sketch recogni-

tion benchmark [5]. Its recognition performance is com-

pared with the newest sketch recognition algorithm (lo-

cal feature based approach) proposed in [5], as shown in
Table 7. As can be seen, our approach achieves better

results in all the metrics on both benchmark datasets.

It validates that our sketch recognizer is more robust to
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Fig. 7 Precision-Recall diagram performance comparisons [19] on the “Testing” dataset of the SHREC14STB benchmark
for the twelve runs of six participating sketch-based 3D model retrieval methods from the four participating groups, including
our SBR-VC method.

Table 4 Timing information comparison [19] of the six participating sketch-based 3D model retrieval algorithms, including
our SBR-VC method: T is the average response time (in seconds) per query based on the “Testing” dataset. “R” denotes the
ranking order of all the twelve runs, while “Rp” denotes the ranking order of all the runs that do not utilize any machine
learning techniques, that is, the runs of the pure shape descriptors themselves.

Group (with computer configuration) Method Language T R Rp

Furuya (CPU: Intel(R) Core i7 3930K @3.20 GHz, GPU:
NVIDIA GeForce GTX 670 (on a single thread); Memory: 64
GB; OS: Ubuntu 12.04)

BF-fGALIF C++ 1.82 1 1
CDMR C++,

CUDA
126.81 7 -

Li (CPU: Intel(R) Xeon(R) CPU X5675 @3.07 GHz (2
processors, 12 cores); Memory: 20 GB; OS: Windows 7 64-bit)

SBR-VC (α=1) C/C++ 27.49 6 5
SBR-VC (α =
1

2
)

C/C++ 15.16 3 3

Tatsuma (CPU: Intel(R) Xeon(R) CPU E5-2630 @2.30GHz (2
processors, 12 cores); Memory: 64 GB; OS: Debian Linux 7.3)

OPHOG C++,
Python

23.85 4 4

SCMR-OPHOG C++,
Python

25.67 5 -

Zou (CPU: Intel(R) Xeon(R) W3550@3.07GHz (the programs
ran on a single thread); Memory: 24 GB; OS: Windows 7 64-bit)

BOF-JESC Matlab 6.10 2 2

sketch rotation and can well describe user sketches by

incorporating global attributes of sketches. For our al-
gorithm, the time taken to recognize the 2700 sketches

is 269.95 seconds, thus averagely 0.1 second is needed

to classify a sketch.

2) Semantic retrieval. The proposed SBR SVM-

VC (Section 4) method is tested on the SHREC’13
Sketch Track Benchmark and mainly compared with

our SBR-VC algorithm which does not utilize the se-

mantic approach. As can be found in the competition
track report [16], SBR-VC achieved the best perfor-

mance on the SHREC’13 Sketch Track Benchmark, while

SBR-2D-3D closely followed SBR-VC. For completeness

and reference, we also list the performance of other par-
ticipating approaches in the competition, such as SBR-

2D-3D, FDC, and EFSD. We need to mention that the

purpose of listing the performance of other approaches

that do not utilize the available class information, is

only for a contrast and to demonstrate the improvement
that our semantic retrieval approach can achieve. It is

not used for a direct evaluation, or even comparison. In

addition, to compare with other latest established ap-
proaches, we also compare with the latest deep learning-

based approach [34], which has performed the same ex-

periment on this SHREC’13 Sketch Track Benchmark.

In our approach, a variety of length values (L) for

the candidate category list is tested. Figs. 9∼10 and
Table 8 show the comparison results. As can be seen,

compared to SBR-VC, after employing a semantic re-

trieval approach, the retrieval performance is signifi-

cantly improved. What’s more, the generality of our
semantic approach has been verified as well: it can be

used with other retrieval techniques, e.g. SBR SVM-

2D-3D NUM 50 in the figures and table. It also can
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Table 5 Reciprocally weighted performance metrics comparison on the “Testing” dataset of SHREC14STB benchmark for
the twelve runs of six sketch-based 3D model retrieval methods from the four SHREC’14 Sketch Track participating groups.
“R” denotes the ranking order of all the twelve runs, while “Rp” denotes the ranking order of all the runs that do not utilize
any machine learning techniques, that is, the runs of the pure shape descriptors themselves.

Contributor Method NN FT ST E DCG AP R Rp

Testing dataset 1.0e-05∗

Furuya

BF-fGALIF 0.802 0.520 0.735 0.289 3.408 0.596 4 2
CDMR (σSM=0.1, α=0.6) 0.299 0.237 0.406 0.222 2.861 0.281 11 -
CDMR (σSM=0.1, α=0.3) 0.679 0.467 0.719 0.308 3.323 0.553 6 -
CDMR (σSM=0.05, α=0.6) 0.576 0.467 0.782 0.318 3.305 0.583 5 -
CDMR (σSM=0.05, α=0.3) 0.789 0.526 0.773 0.330 3.430 0.626 2 -

Li
SBR-VC (α=1) 0.449 0.264 0.425 0.264 3.051 0.291 9 5

SBR-VC (α = 1
2
) 0.414 0.265 0.405 0.259 3.088 0.311 8 4

Tatsuma
OPHOG 0.917 0.509 0.777 0.396 3.539 0.615 3 1
SCMR-OPHOG 0.993 0.743 1.035 0.541 3.676 0.886 1 -

Zou

BOF-JESC (Words800 VQ) 0.462 0.271 0.467 0.236 3.149 0.370 7 3
BOF-JESC (Words1000 VQ) 0.403 0.208 0.356 0.194 3.020 0.286 10 6
BOF-JESC (FV PCA32 Words128) 0.455 0.225 0.336 0.170 2.910 0.254 12 7

Table 6 Other performance metrics for the performance comparison on the SHREC’13 Sketch Track Benchmark [16].

Method NN FT ST E DCG AP
Training dataset
SBR-VC-NUM-100 0.160 0.097 0.149 0.085 0.349 0.113
SBR-VC-NUM-50 0.131 0.082 0.130 0.076 0.333 0.098
SBR-2D-3D-NUM-50 0.133 0.080 0.126 0.075 0.330 0.097
FDC 0.051 0.039 0.069 0.041 0.279 0.051
EFSD 0.024 0.019 0.038 0.020 0.241 0.032
Testing dataset
SBR-VC-NUM-100 0.164 0.097 0.149 0.085 0.348 0.114
SBR-VC-NUM-50 0.132 0.082 0.131 0.075 0.331 0.098
SBR-2D-3D-NUM-50 0.132 0.077 0.124 0.074 0.327 0.095
FDC 0.053 0.038 0.068 0.041 0.279 0.051
EFSD 0.023 0.019 0.036 0.019 0.240 0.031
Complete benchmark
SBR-VC-NUM-100 0.161 0.097 0.149 0.085 0.349 0.113
SBR-VC-NUM-50 0.131 0.082 0.130 0.076 0.332 0.098
SBR-2D-3D-NUM-50 0.133 0.079 0.125 0.074 0.329 0.096
FDC 0.052 0.039 0.069 0.041 0.279 0.051
EFSD 0.023 0.019 0.037 0.019 0.241 0.032

Table 7 Sketch recognition performance comparison: Average classification performance comparison between our SVM-based
approach proposed in Section 4.1 and the local feature based approach proposed in [5] in terms of eight metrics.

Method TP FP P R F MCC ROC PRC
SHREC’13 Sketch Track Benchmark
Our approach 0.613 0.004 0.623 0.613 0.614 0.612 0.982 0.664

Eitz et al. [5] 0.594 0.005 0.597 0.594 0.593 0.590 0.974 0.637
Eitz et al.’s [5] Sketch Benchmark
Our approach 0.545 0.002 0.549 0.545 0.544 0.544 0.772 0.326

Eitz et al. [5] 0.520 0.002 0.523 0.520 0.519 0.518 0.759 0.298

be found that our SVM-based semantic approach also

outperforms by a large margin the deep learning-based
approach CNN-Siamese [34]. We need to point out that

deep learning has been regarded as one of the most

promising techniques in developing better sketch-based
3D model retrieval algorithms. In a word, all the above

facts have demonstrated the apparent advantages and

better robustness of our semantic approach framework.

In addition, during online retrieval, the paralleliza-

tions in the shape context feature computation for a
query sketch and the 2D-3D matching between the query

sketch and all the 3D models, significantly (9x for our

CPUs with 12 cores) accelerates the retrieval speed and
make our algorithm real-time.
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5.6 Discussions

5.6.1 Classification

To know the overall information and guide our future

research, in Table 9 we classify all the eighteen SBR

methods evaluated in this section with respect to the

techniques employed according to the classification stan-
dards described in [17]: local/global 2D features, Bag-

of-Words/Bag-of-Features (BoW/BoF) framework or di-

rect feature matching (DFM), fixed/clustered views,
and with/without view selection. In the end of Ta-

ble 9, we also list their statistical information to have

an overall picture of current status in sketch-based 3D
model retrieval research as well as to solicit potentials

for further advancements. We conclude that semantic

approaches and machine learning techniques, especially

deep learning methods, which have been validated in
recent related work, like [37] [8] and [38], are among

the most promising techniques that can help to fur-

ther improve SBR performance to meet the practical
requirements of vast related applications.

5.6.2 On semantic approach

Comments on our semantic approach w.r.t the

experiment on the SHREC’13 Sketch Track Bench-

mark. As can be seen from Figs. 9∼10, we have the

following findings or conclusions. The significant im-
provement in the retrieval performance further vali-

dates that our approach can bridge the semantic gap

between the diverse query sketches and 3D models ef-
fectively. What’s more, the average retrieval time for

each query is also substantially decreased. In fact, the

time for recognizing a sketch is only about 0.1 second,
which adds little online computational load. Thus, our

sketch recognizer can help to find a much smaller num-

ber of 3D models for direct 2D-3D comparison, which

not only significantly improves the retrieval accuracy,
but also manifestly reduces the computational time.

5.6.3 On view clustering-based 2D-3D comparison
method

View selection contribution. To find out the con-

tribution of our view selection step, we have an ana-
logical analysis based on SBR-2D-3D’s algorithm com-

ponent contribution analysis (Section 6.5 of [13]) and

the following two facts. First, both our approach and

SBR-2D-3D adopt relative shape context matching for
the matching part and the difference is mainly in the

candidate views selection, therefore the difference in the

retrieval performance of the two approaches is now only

dependent on the goodness of the views selected. Sec-

ond, in Sections 5.2∼5.5, we have demonstrated that
our view selection-based retrieval algorithm SBR-VC

has a comparable performance as SBR-2D-3D.

Based on the above two facts and analysis, we can
draw a conclusion that the algorithm component con-

tribution analysis results of SBR-2D-3D are also appli-

cable to our approach. That is, both the 3D information
complexity metric-based view clustering approach and

the relative shape context matching on the outline fea-

ture views, have important contributions to our good
performance.

Comparison with other view clustering ap-

proaches. An-sary et al. [2] proposed the Bayesian
view clustering algorithm for Query-by-Model retrieval.

The main idea of their approach is based on the fact

that “not all the views of a 3D model have equal im-

portance: there are views that contain more information
than others”. Compared with Ansary et al.’s approach,

our algorithm has the following differences or advan-

tages.

Firstly, rather than using region-based shape de-

scriptor Zer-nike moments like Ansary et al. [2], we em-

ploy an information-related metric viewpoint entropy
to measure the information of a view contains and fur-

ther base on it to measure the 3D information complex-

ity of a 3D model. Compared with the physics-based
Zernike moments, the information theory-based view-

point entropy measurement contains more semantic in-

formation, and is thus more reasonable and effective

in measuring the 3D information complexity of a 3D
model.

Secondly, our framework has more freedom in as-

signing the number of representative views. We can eas-
ily adjust the number of representative views by sim-

ply changing the constant parameter α in Eq. 3, e.g.,

we have changed it to 1
6
for large scale sketch-based

3D model retrieval application in Section 5.5. The gen-

erality property is very important for different kinds

of applications where we have various considerations,
such as the availability of resources, time and accuracy

requirements.

Thirdly, Ansary et al.’s approach favors views with
more information and thus prefers selecting views with

bigger projection areas. On the other hand, by incor-

porating the position information of the viewpoint into

the view features E = (x, y, z, e), we cluster the views
over the full viewing sphere. Thus, it has an advantage

to adapt to sketches with different variations.

Last but not least, the algorithm developed in Ansary
et al. [2] is for the Query-by-Model scenario, which is

reasonable and feasible. However, there is no guarantee

that this mechanism is effective for sketch-based 3D re-
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trieval while we have already proved the effectiveness

and advantages of our method.

6 Conclusions and future work

A new sketch-based 3D retrieval framework integrating

adaptive view clustering and semantic search has been

proposed in the paper. Evident advantages and signifi-
cantly better performance have been demonstrated via

extensive experiments on both small-scale and large-

scale retrieval benchmarks. Below, we conclude our work
with respect to the two main components of the frame-

work, respectively.

2D-3D comparison using viewpoint entropy-

based view clustering. We have presented a 2D-3D

comparison algorithm by first adaptively clustering the
sampled views of a 3D model into a set of representative

feature views and then employing parallel shape context

matching to compare the sketch with the representative

feature views of all the models. A 3D information com-
plexity metric is first proposed based on the viewpoint

entropy distribution of a set of sample views, and based

on it the number of representative feature views can be
adaptively assigned during our view clustering process.

Experiments on both small-scale and large-scale bench-

marks have demonstrated the effectiveness and superior
performance of the correspondent SBR-VC retrieval al-

gorithm.

Semantic sketch-based 3D model retrieval.

A semantic sketch-based 3D model retrieval algorithm

is further proposed in this paper by first performing

sketch recognition to find a set of candidate categories
for the sketch and then applying direct 2D-3D compar-

ison on the models within the candidate classes. It is an

important improvement to encompass the semantic gap
between the sketches and models. The experimental re-

sults demonstrate the significant improvements in both

retrieval accuracy and computationally efficiency. The
developed sketch recognition algorithm also further im-

proves sketch recognition by integrating global sketch

features.

Future work. As the future work for the view

clustering-based 2D-3D comparison algorithm, we plan
to test the performance of the relating SBR-VC algo-

rithm by assigning different number of representative

views to the models even within one class based on

their complexity values. We also plan to apply our 3D
information complexity metric into other related ap-

plications. In addition, a soft acceptance of the first

category only is also worthy of further study.
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(a) Training dataset
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(b) Testing dataset
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(c) Complete dataset

Fig. 8 Precision-Recall diagram performance comparisons
on different datasets of the SHREC’13 Sketch Track Bench-
mark [16] between our method and other state-of-the-art al-
gorithms.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
re

ci
si

on

 

 

SBR_SVM−VC_NUM_100 (L=1)
SBR_SVM−VC_NUM_100 (L=5)
SBR_SVM−VC_NUM_100 (L=10)
SBR_SVM−VC_NUM_100 (L=15)
SBR_SVM−VC_NUM_100 (L=20)
SBR_SVM−VC_NUM_100 (L=30)
SBR−VC_NUM_100
FDC
EFSD

(b) SBR SVM-VC NUM 100

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
re

ci
si

on

 

 

SBR_SVM−2D−3D_NUM_50 (L=1)
SBR_SVM−2D−3D_NUM_50 (L=5)
SBR_SVM−2D−3D_NUM_50 (L=10)
SBR_SVM−2D−3D_NUM_50 (L=15)
SBR_SVM−2D−3D_NUM_50 (L=20)
SBR_SVM−2D−3D_NUM_50 (L=30)
SBR−2D−3D_NUM_50
FDC
EFSD

(c) SBR SVM-2D-3D NUM 50

Fig. 9 Precision-Recall diagram performance comparison
between our method SBR SVM-VC (different L values),
together with SBR SVM-2D-3D, and the participating ap-
proaches in the SHREC’13 Sketch Track Contest on the
“Testing” dataset.
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Fig. 10 Other performance metrics comparison between our semantic algorithms SBR SVM-VC (different L values: L=1,
5, 10, 15, 20, 30), together with SBR SVM-2D-3D, and the participating approaches in the SHREC’13 Sketch Track Contest
on the “Testing” dataset. Please note different NUM values for the SBR-VC method in (a) (NUM=50) and (b) (NUM=100)
and NUM=50 for the SBR-2D-3D method in (c).

Table 8 Other performance metrics comparison between our semantic algorithm SBR SVM-VC, together with SBR SVM-
2D-3D, and the participating approaches in the SHREC’13 Sketch Track on the “Testing” dataset. t is the average response
time (s) per query based on a modern computer (CPU: Intel(R) Xeon(R) CPU X5675 @3.07 GHz (2 processors, 12 cores);
Memory: 20 GB; OS: Windows 7 (64-bit)).

Method NN FT ST E DCG AP t (s)
SBR-VC NUM 50
SBR SVM-VC NUM 50 (L=1) 0.613 0.652 0.741 0.362 0.763 0.673 0.16
SBR SVM-VC NUM 50 (L=5) 0.317 0.277 0.464 0.265 0.547 0.346 0.43
SBR SVM-VC NUM 50 (L=10) 0.241 0.197 0.325 0.187 0.480 0.253 1.02
SBR SVM-VC NUM 50 (L=15) 0.216 0.165 0.270 0.155 0.447 0.213 1.44
SBR SVM-VC NUM 50 (L=20) 0.197 0.146 0.238 0.137 0.425 0.188 2.22
SBR SVM-VC NUM 50 (L=30) 0.180 0.126 0.198 0.115 0.397 0.157 2.88
SBR-VC NUM 50 0.132 0.082 0.131 0.075 0.331 0.098 7.37
SBR-VC NUM 100
SBR SVM-VC NUM 100 (L=1) 0.613 0.652 0.741 0.362 0.763 0.673 0.34

SBR SVM-VC NUM 100 (L=5) 0.348 0.288 0.476 0.267 0.566 0.363 1.63
SBR SVM-VC NUM 100 (L=10) 0.274 0.210 0.345 0.192 0.493 0.268 2.21
SBR SVM-VC NUM 100 (L=15) 0.247 0.178 0.289 0.161 0.461 0.227 3.22
SBR SVM-VC NUM 100 (L=20) 0.233 0.161 0.255 0.143 0.439 0.203 4.92
SBR SVM-VC NUM 100 (L=30) 0.213 0.139 0.216 0.122 0.411 0.2026 7.23
SBR-VC NUM 100 0.164 0.097 0.149 0.085 0.348 0.114 22.33
SBR-2D-3D NUM 50
SBR SVM-2D-3D NUM 50 (L=1) 0.613 0.652 0.741 0.362 0.763 0.673 0.15
SBR SVM-2D-3D NUM 50 (L=5) 0.335 0.274 0.460 0.265 0.553 0.349 0.52
SBR SVM-2D-3D NUM 50 (L=10) 0.254 0.192 0.324 0.186 0.480 0.251 1.00
SBR SVM-2D-3D NUM 50 (L=15) 0.220 0.160 0.266 0.152 0.444 0.208 1.42
SBR SVM-2D-3D NUM 50 (L=20) 0.206 0.142 0.233 0.133 0.421 0.182 1.82
SBR SVM-2D-3D NUM 50 (L=30) 0.180 0.119 0.193 0.113 0.392 0.152 2.68
SBR-2D-3D NUM 50 0.132 0.077 0.124 0.074 0.327 0.095 4.70
FDC 0.053 0.038 0.068 0.041 0.279 0.051 0.02
EFSD 0.023 0.019 0.036 0.019 0.240 0.031 20.24
CNN-Siamese [34] 0.405 0.403 0.548 0.287 0.607 0.469 0.002
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Table 9 Classification of the eighteen evaluated methods in our experiments on the four benchmarks: SHREC12STB, PSBB,
SHREC13STB and SHREC14STB. G: global, L: local, FIX: Predefined views, VC/VS: view clustering/selection, DFM: direct
feature matching, BoW: Bag-of-Words, BoF: Bag-of-Features, SVC: super-vector coding, MR: manifold ranking, CDMR: Cross-
Domain Manifold Ranking, SCMR: Similarity Constrained Manifold Ranking, DL: Deep Learning, ML: Machine Learning-
based, NonL: Non-learning based, SEM: Semantic approach, NonSEM: Non-semantic approach.

Index Evaluated Feature type View Sampling Feature coding/ Learning scheme Semantic
method matching information

SHREC12STB
1 SBR-VC G VC DFM X X

2 BOF-SBR L FIX BoF X X

3 HKO-KASD L FIX DFM X X

4 Orig DG1SIFT L FIX BoW X X

5 HOG-DTF G FIX DFM X X

6 HOG-SC G FIX DFM X X

PSBB
7 GALIF L FIX BoF X X

8 SBR-2D-3D L VS DFM X X

SHREC14STB
9 BF-fGALIF L FIX BoW X X

10 CDMR L FIX BoW MR (CDMR) X

11 OPHOG L FIX DFM X X

12 SCMR-OPHOG L FIX DFM MR (SCMR) X

13 BOF-JESC L FIX BoF X X

SHREC13STB
14 FDC G FIX DFM X X

15 EFSD G FIX DFM X X

16 CNN-Siamese L FIX DL DL V

17 SBR SVM 2D 3D L VS DFM SVM V

18 SBR SVM VC L VC DFM SVM V

Statistics of the Classification (#)
All Eighteen G: 5 FIX: 14 DFM: 11 ML: 5 SEM: 3
Evaluated L: 13 VC/VS: 4 BoF/BoW: 6 NonL: 13 NonSEM: 15
Methods DL: 1


