KinectSBR: A Kinect-Assisted 3D Sketch-Based 3D Model Retrieval System Bo Li, Yijuan Lu, Azeem Ghumman, Bradley Strylowski, Mario Gutierrez, Safiyah Sadiq, Scott Forster, Natacha Feola, Travis Bugerin Texas State University

Overview

Research topic: Sketch-based 3D model retrieval An *intuitive* visual search scheme

- Promising in: game design, 3D animation and human computer interaction, etc
- Motivation: Big semantic gap exists between traditional human-drawn 2D sketches and **3D** models
- 2D sketch: an iconic representation of an object
- * 3D model: accurate representation of the geometry information
- Constraining a sketch to two dimensions limits the 3D information that can communicate:
- Creates a huge semantic gap between 2D sketch and 3D model
- > Makes 2D sketch-based 3D model retrieval very challenging

Proposal: 3D sketch-based 3D model retrieval

- 3D sketch
- > Encodes 3D information, depth and features of more facets of the object Includes the salient 3D feature lines of its counterpart of 3D models
- Make an initial study on 3D sketching
- Propose a novel 3D sketch-based 3D model retrieval system

Research results

- Promising retrieval performance has been achieved in experiments based on
- 300 collected 3D sketches (Kinect300)
- > A recent large scale sketch-based 3D shape retrieval benchmark (SHREC13STB)

Contributions

- A novel 3D sketching virtual drawing "board" (software) is proposed and implemented
- \geq Allows users to freely draw 3D sketches in the air (a real 3D space)
- Based on it the first human 3D sketch dataset is collected

A 3D sketch-based 3D model retrieval system is introduced for the first time to solve the matching problem between 3D sketches and models

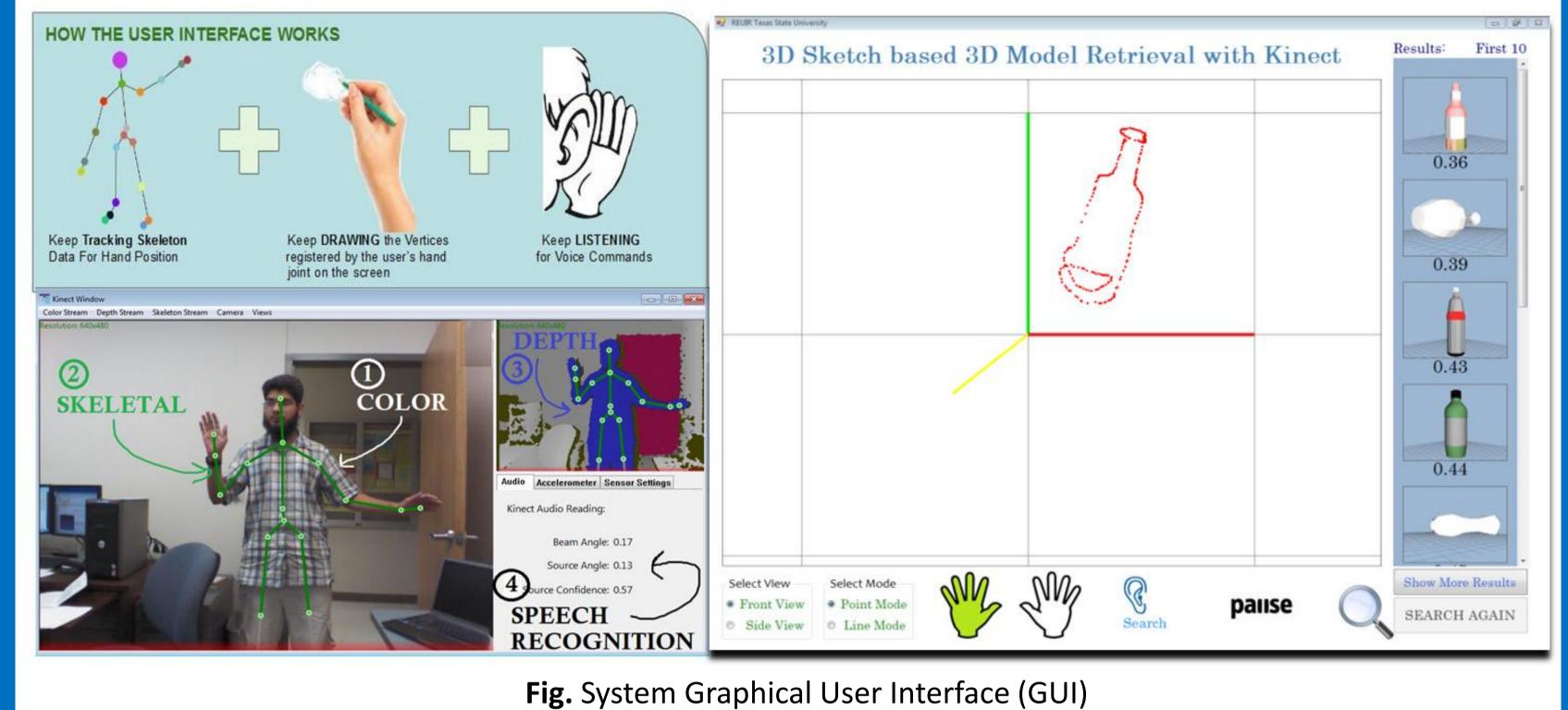
3D Sketching

Considerations:

Target: a smart, user friendly, and inexpensive 3D sketching virtual drawing "board"

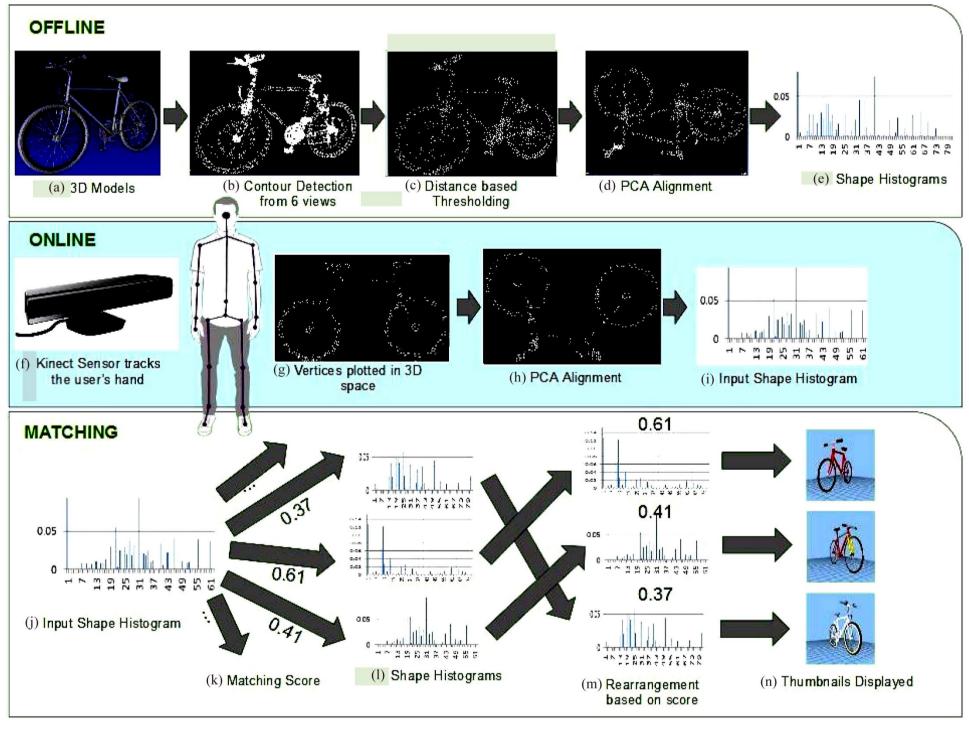
Using Microsoft Kinect

- > A popular and low cost motion sensing input device
- > Offers a built-in color VGA video camera, depth sensor, and multi-array microphone


Supporting a voice-activated Kinect-based 3D sketching Graphical User Interface (GUI) > Facilitates sketching and retrieval

Functionalities:

Not only tracks the movement of a user's hand, but also supports voice commands > e.g. start, left/ right (hand), pause, resume, front/side view, search, and reset


A Kalman filter is applied to combat the noise due to shaking of hand

3D Sketching (Cont.)

Retrieval System

An efficient 3D sketch-based 3D model retrieval system Contains both online and offline processes Consists of three major components: data processing, feature extraction, and matching

- (1) Data processing: generate 3D outlines of 3D models via PCA-based 3D alignment
- Contour generation
- Distance thresholding
- (2) Feature extraction: important for effective and efficient sketch-model matching and retrieval Using the 3D shape histogram [1]
 - > A representative feature for 3D models and sketches considering its descriptiveness, high efficiency, and simplicity
- (3) 3D sketch-3D model matching
- Sort the Euclidean distance between the histogram of the 3D sketch and those of all the 3D outlines of the 3D models
- List the 3D models accordingly in real-time on the right side of the GUI Browse the next 10 results by saying the voice command "Show more results"

Fig. System framework

 Kinect300 : Based of dataset 300 s Colle avera 	n na ske ect
 3D sketch-l Evaluat Tier (ST Precision Query s Target o 1,258 ta 	io), on- set
 Performant Efficien hand-dr Accurac 	cy rav
-	N
- ().
-	
3D Sketch base	IS be
Select View Select Mode • Prom View • Primt Mode + date View • Line Mode	W.
	(
 Sketch- Still mu More de explora 	ch es
 [1] M. Ankers similarity sea 207–226, 199 [2] B. Li, Y. Lu, shape retrieva 	rc 99.
Ac	

OCI-1062439.

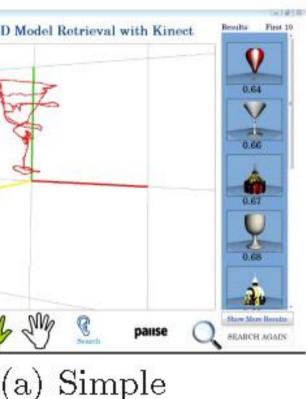
Experiments

D sketch dataset collection

the drawing "board", we have collected a 3D sketch amed Kinect300:

etches in 30 object categories, each with 10 sketches ted from 17 users (4 females and 13 males) with an e age of 21 years

ased 3D model retrieval


on metrics: Nearest Neighbor (NN), First Tier (FT), Second E-Measure (E), Discounted Cumulative Gain (DCG) and -Recall (PR)

t: a hand-drawn 3D sketch from Kinect300

itaset: SHREC13STB benchmark [2] (target dataset only): get 3D models of 90 classes

y: only **1.22 sec** to perform a 3D model retrieval given a wn 3D sketch

Table. Other performance metrics
 STDCG. \mathbf{FT} E 0.254

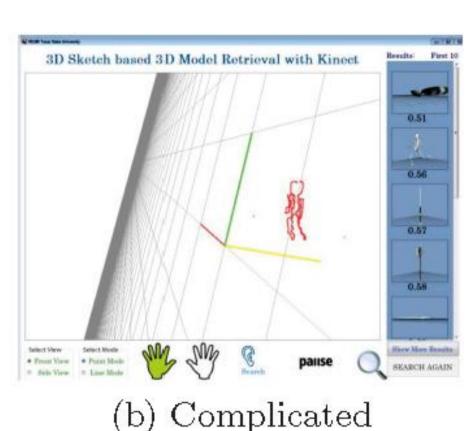


Fig. Two retrieval examples

odel retrieval is a challenging task room left for further improvement in this task scriptive shape descriptors are deserved for further

References

G. Kastenm["]uller, and et al. 3D shape histograms for ch and classification in spatial databases. In SSD, pages

and et al. SHREC'13 track: Large scale sketch-based 3D In 3DOR, pages 89–96, 2013.

knowledgement

This work is supported by Army Research Office grant W911NF-12-1-0057, NSF CRI-1305302, NSF CNS-1358939 and NSF