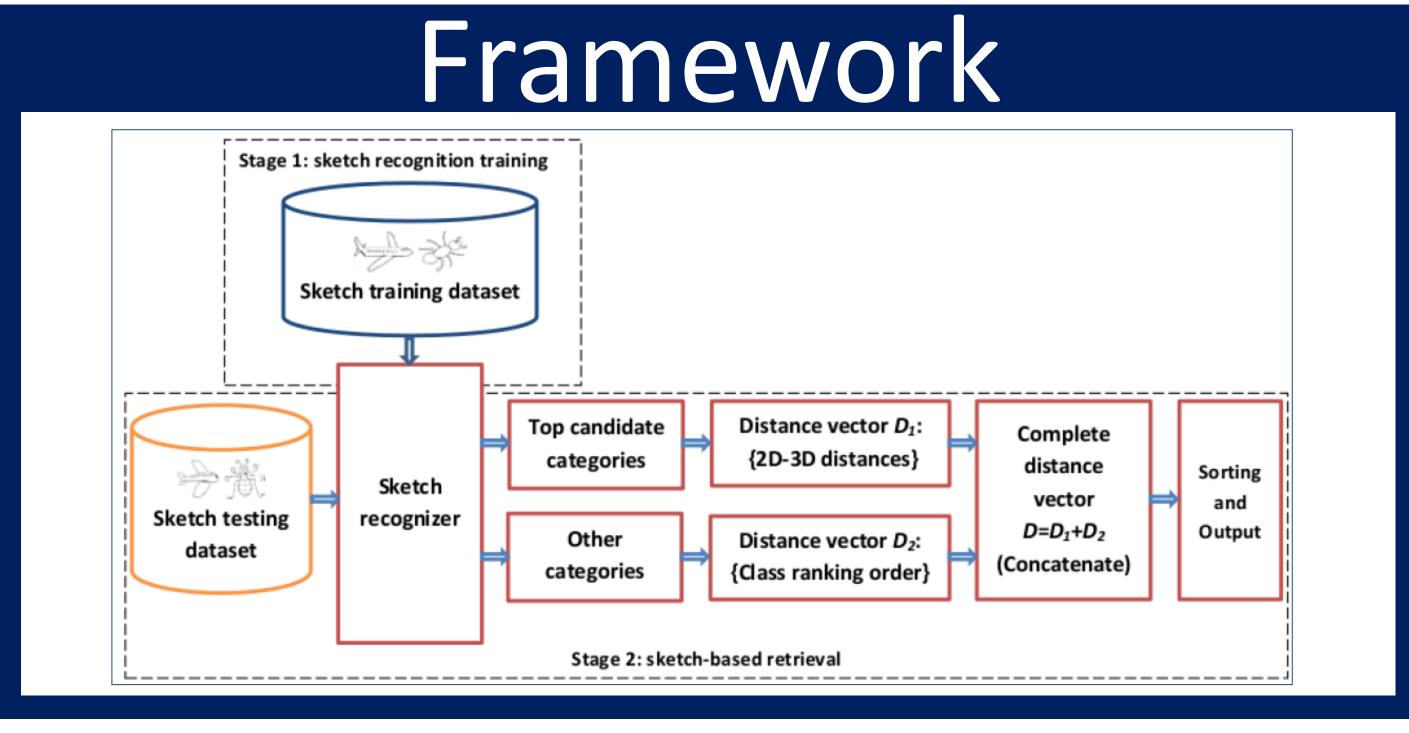


Overview

- **Research Topic:** Query-by-Sketch is an intuitive scheme; promising in game design, 3D animation and human computer interaction, etc
- **Problem:** Big semantic gap exists between human-drawn sketches and 3D models * 2D human-drawn sketch: an iconic representation of an object; several simplified and exaggerated curves; arbitrary styles; high-level abstraction; drastic simplification * 3D model of an object: accurate representation of the geometry information
- **Consequence:** Such big semantic gap makes the search based on a direct 2D-3D comparison suffer low accuracy and high computational cost
- **Motivation:** Bridge the semantic gap
- **Our Semantic Sketch-Based 3D Model Retrieval Approach:** First recognizing the potential semantic meanings of the user sketch and then performing 2D-3D matching for the 3D models within the predicted categories
- **Overview of Our Results:** Significant improvements in both search accuracy and efficiency



Algorithm

Stage 1: Sketch Recognition Training

- (1) Sketch feature extraction. Hybrid features: Eitz et al.'s [2] 500-dimensional local feature vector + our proposed 119-dimensional *global* feature vector, which comprises 9 distance histograms:
- ✓ 5 radial distance histograms of the sketch pixels with respect to 5 selected reference points/lines
- ✓ 2 radial distance histograms of the first *intersection points*
- ✓ 2 radial angle histograms of the sketch pixels with respect to the two *centers* **C** and **FPC**

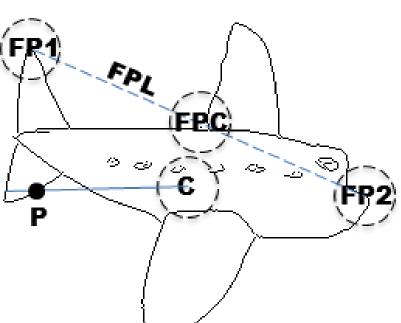


Fig. Illustration of our 5 reference points or lines for the global features: C, FP1, FP2, FPL and FPC, where **C** is the centroid of a sketch, **FP1** and **FP2** are the two farthest points with respect to the centroid **C**, **FPL** is the line between the two farthest points; and **FPC** is the center of the **FPL** line. **P** is an example of first intersection point.

Semantic Sketch-Based 3D Model Retrieval Bo Li, Yijuan Lu, Ribel Fares Department of Computer Science, Texas State University, Texas, USA

Algorithm (Cont.)

- kernel (gamma=0.1 and C=20)
- Stage 2: Sketch-Based Retrieval
- (3) Sketch classification. Predict all the possibilities of the input sketch belonging to all the categories
- input sketch, named D_1 , are calculated
- (6) Ranking and output. All the distances in D are sorted and the relevant models are listed accordingly

Experiments

SHREC'13 Sketch Track Benchmark: A large scale sketch-based shape retrieval benchmark * 7200 hand-drawn sketches: uniformly distributed on 90 classes 1258 relevant 3D models: selected from the PSB benchmark, as the target 3D dataset

Sketch Recognition Results

Table 1. Average classification performance comparison in terms of eight metrics. The first two rows are for the SHREC'13 Sketch Track Benchmark; the last two rows (*) are for the Eitz et al.'s [2] complete sketch benchmark.

	ТР	FP	Р	R	F	MCC	ROC	PRC
Our	0.613	0.004	0.623	0.613	0.614	0.612	0.982	0.664
LSR	0.594	0.005	0.597	0.594	0.593	0.590	0.974	0.637
Our*	0.545	0.002	0.549	0.545	0.544	0.544	0.772	0.326
LSR*	0.520	0.002	0.523	0.520	0.519	0.518	0.759	0.298

Timing: averagely 0.1 second is needed to classify a sketch

Sketch-Based Retrieval Results

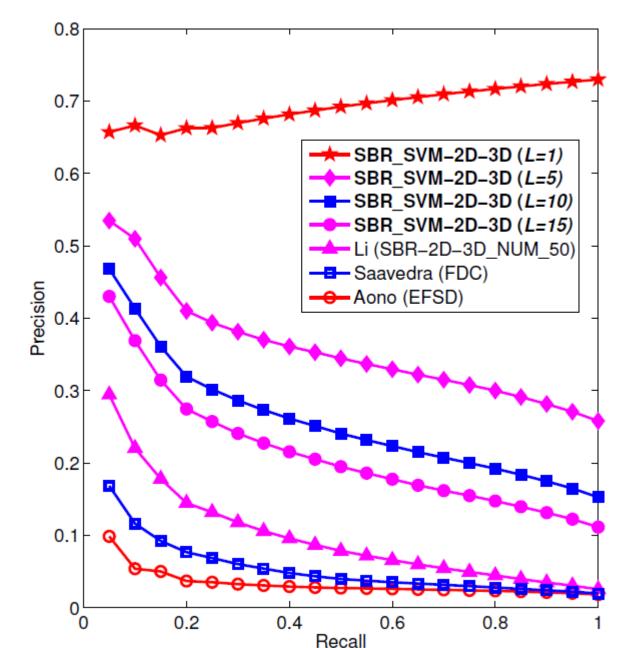


Fig. Precision-Recall diagram performance comparison between our SBR SVM-2D-3D (different L values) method and the participating approaches in the SHREC'13 Sketch Track Contest on the "Testing" dataset.

* (2) Sketch classifier training. Support Vector Machine: adopt same parameter settings as [2] including local feature definitions, "soft" kernel-codebook coding choice, vocabulary size, and 3-fold cross-validation selection except for RBF

(4) 2D-3D matching. The state-of-the-art sketch-based retrieval approach SBR-2D-3D [4] is applied on all the models in the top *L* candidate categories, which makes our approach SBR SVM-2D-3D. The distances between the models and the

4 (5) Distance vector generation. Assign distances between the input sketch and the models in the left categories as the second part of D, named D_2 : set to be the ranking orders of their respective categories. Concatenate D_1 and D_2 into D

* "Training" and "Testing" datasets: randomly selecting 50 sketches per class for training and the rest 30 sketches for testing; while the complete target model dataset is remained as a whole for both training and testing purpose

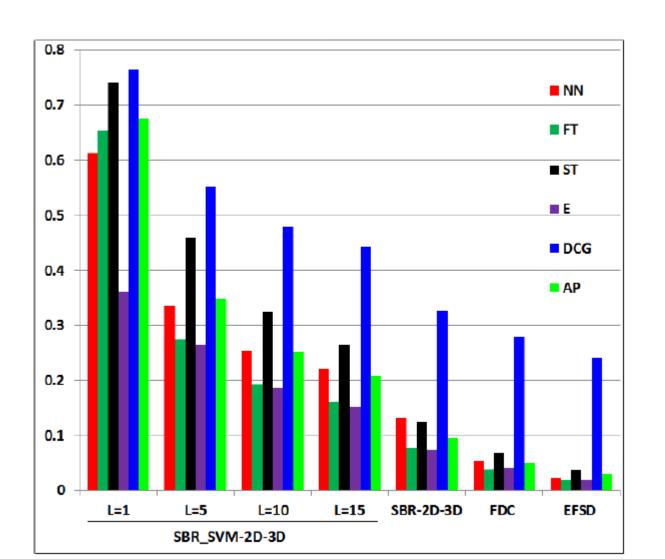
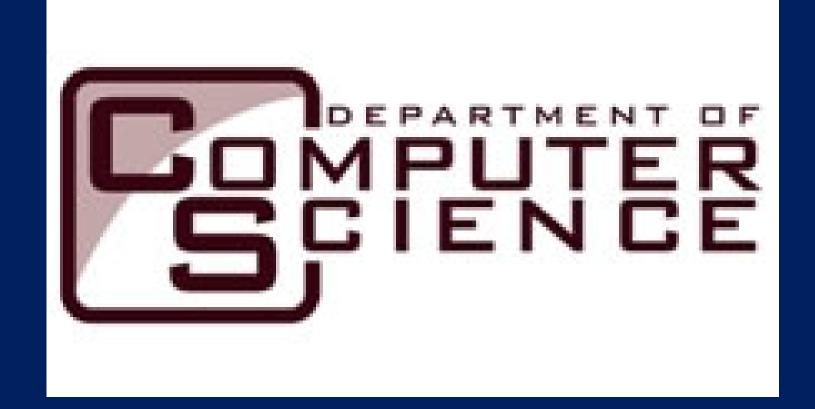


Fig. Other performance metrics comparison between our semantic algorithm SBR SVM-2D-3D (different L values) and the participating approaches in the SHREC'13 Sketch Track Contest on the "Testing" dataset.

Experiments (Cont.)

Table 2 . Timing in based on a mode
Method $-$
<i>t</i> (s) 1.4
 (1) Our sema performances sketch-based
 (2) In this explored best choice in datasets, the performances
 (3) Sketch-ba broad applica response time
 Our semantic improvement models. It achieves computat Future work: serecognition metaset is not
 [1] <u>http://www.it</u> [2] M. Eitz, J. Hay <i>Graph.</i>, 31(4):44, [3] B. Li, T. Schreck Retrieval. 3DOR 2 [4] B. Li and H. Jo alignment. <i>Multir</i>

This work is supported by Army Research Office grant W911NF-12-1-0057, NSF CRI 1058724, and Texas State University Research Enhancement Program (REP), to Dr. Yijuan Lu.



nformation comparison: **t** is the average response time per query ern computer.

SBR_SVM-2D-3D				SBR-2D-3D	FDC	FFSD	
=1	<i>L</i> =5	<i>L</i> =10	<i>L</i> =15	SDR-2D-3D	rbe	LISD	
43	4.88	9.32	13.26	43.93	0.02	20.24	-

antic retrieval approach *significantly* improves the retrieval s (100%~700% better accuracy) than other state-of-the-art retrieval algorithms

periment, keeping only the top *first* candidate category is the n terms of both accuracy and efficiency. However, for other situation may be *varied* due to different sketch recognition

ased 3D model retrieval based on semantic information will have ation *potentials* on the applications which require *real-time*

Conclusions

sketch-based 3D model retrieval algorithm is an important t to encompass the semantic gap between the sketches and

es the *significant* improvements in both retrieval accuracy and tionally efficiency

study the integration of unsupervised or semi-supervised sketch nodule when the label information of the target 3D model available

References

tl.nist.gov/iad/vug/sharp/contest/2013/SBR/, 2013.

/s, and M. Alexa. How do humans sketch objects? ACM Trans. 2012.

ck, A. Godil, and et al. SHREC'12 Track: Sketch-Based 3D Shape 2012: 109-118

phan. Sketch-based 3D model retrieval by incorporating 2D-3D media Tools and Applications. 65 (3): 363-385, 2012.

Acknowledgement