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Efficient 3D Reflection Symmetry Detection: a View-Based Approach

Bo Li&*, Henry Johah Yuxiang Y&, Yijuan Lu2

a Department of Computer Science, Texas Sate University, San Marcos, USA
b Visual Computing, Fraunhofer IDM@NTU, Singapore

Abstract

Symmetries exist in many 3D models whilieiently finding their symmetry planes is important and us&fumany related
applications. This paper presents a simple dfidientview-basedeflection symmetry detection method based on the viewpoint
entropy features of a set of sample views of a 3D model. Befypmemetry detection, we align the 3D model based on the Contis
Principal Component Analysis (CPCA) method. To avoid thghhtomputational load resulting from a directly combingtor
matching among the sample views, we develop a fast symmiketng pletection method by first generating a candidate syrgmet
plane based on a matching pair of sample views and then wegifyhether the number of remaining matching pairs is within
a minimum number.Experimental results and two related applications dematesbetter accuracy fficiency, robustness and
versatility of our algorithm than state-of-the-art approaches.

Keywords:
symmetry detectiorreflection symmetryview-based approachkiewpoint entropy, matching

1. Introduction »s and sensitivity to minor symmetryfiiérences), @cient, robust
2 (e.g. to the number of vertices and parameter settings ssich a

Symmetry is an important clue for geometry perception: It3'osview sampling) and versatile in finding symmetry planes of di-

not only in many man-made models, but also widely exists IN orse models.

the nature{1]. _Symmetry has been used_in many applic_atiogs In the rest of the paper, we first review the related work
such as: 3D alignment [2], shape matching [3], remeshing [fg']in Section 2. In Section 3, we present the viewpoint entropy

3DHmodeI Segmet!"ta“on [5] a;nddre';ne;(al [6]|' ith iill distribution-based symmetry detection algorithm. Sectiale-
OWever, existing symmetry detection algontnms SUl@av. gqijphes diverse experimental evaluation and comparissuitse
much room for improvement in terms of both simplicity an

s Of the detection algorithm. In Section 5, we show two interes

efficiency in detectig symmetry planes, as well as the degre3eing applications of our symmetry detection idea in 3D model

of freedto_m ;%fmd dar:lproglgjtgte symrtneftg plan_etg for a rOL’ghg!yalignment and best view selection. Section 6 concludesdhe p

tsr))//n;rgtiélt?on mn;%o%sn;@clxrlr?gtrr;%zw% d, f’hi)é';r'n(:%;y:;g? % per anc_;l lists severgl future_ res_earch directions. Thisma@a

tional dficiency will be tremendously influencéy the number « extension of our prior publication [9].

of vertices of a modeThough sampling and simplification can

be used to reduce the number of vertices, they also deciease 2. Related Work

shape accuracy and cause deviations in geometry. Therefore

symmetry detection algorithm often directly uses origimail- = Ymmetry Types. Though there are fierent types of symme-

els as its input, as can be found in many existing relatedrpapé Y: reflection symmetry is the most important and commonly
Motivated by the symmetric patterns existing in the view:-Studie. Chaouch and Verroust-Blondet [2] introduced four

point entropy [7] distribution of a symmetric model, we prg® types of reflgcnon symmetngs, Wh'(,:h are cyclic (severahnm.

pose a novel andficient view-basedsymmetry detection al- * planes passing through a f|xed a>§|s), .dlhedral (severa}bmlrr

gorithm (see Fig. 1which finds symmetry plane(s) by match? planeg passing through a fixed axis vylth one perpen'dlcular to

ing the viewpoint entropy features of a set of sample views of the axis), rotational symmetry (looks similar after ravatie.qg.,

3D model aligned beforehangingContinuous Principal Com-* different platonic solids, like tetrahedron, octahedron,dbes
ponent Analysis (CPCA) [8]. Basechaxperimental results, * dron and dodecahedron) and unique symmetry (only one mirror

we find that our symmetry detection algorithmnimre accu- plane, for instance, many natural and most man-made opjects

rate (in terms of both the positions of detected symmetryesa * Most symmetric objects are mirror rather than rotationahsy
ss metric [10].

*Corresponding author at: 601 University Drive, DepartmehtCom- Symmet ; PR _
puter Science, Texas State University, San Marcos, Tex&8678E-mail: o ry Detection. Symmetry detection is to search the (par

B_L58@txstate.edu, li.bo.ntu0@gmail.com; Tek001 512 245 6580; Fax: = tial or full) symmetry pla_lnes O_f a 3D_ object. The |ate_5t revie
+001 512 245 8750. ss ON symmetry detection is available in [11]. We classify eutr
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Figure 1:An overview of our view-based symmetry detection algorithm: anmgla of an ant model, its viewpoint entropy distribution, anel detected symmetry
plane by matching the viewpoints.

s Symmetry detection techniques irttee following four groups 1 features, they mapped them into another feature space by-sph
ss according to the features employed. w1 ical harmonics transform and then searched for the globat sy

s Symmetry detection based on pairing point features. This > metry in the new feature spacku et al. [21] developed an al-

« type of approach first samples points on the surface of a:@@orithm to detect partial intrinsic reflectional symmetskd

« model and then extracts their features. After that, it finoisifp ©« On an intrinsic reflectional symmetry axis transform. Afteat,

« pairs by matching the points. Based on the point pairs, symmea multi-scale partial intrinsic symmetry detection alg¢fom was

« try evidences are accumulated to decide the symmetry plangroposed in[22]. There are also techniques to detect samee ot

« Two typical algorithms are [12] and [13]. To decide the symme Specific symmetries, such as curved symmetry [23] and symme-
s try plane, Mitra et al. [12] adopted a stochastic clustedng o= tries of non-rigid models [24] [25], as well as symmetry hier

s region-growing approach, while Calliere et al. [13] folleg = archy of a man-made 3D model [26]. Kim et al. [27] detected
« the same framework of pairing and clustering, but utiliz&d 3. global intrinsic symmetries of a 3D model based oGhis

« Hough transform to extract significant symmetries. In feue, 1 Transformations [28], a stereographic projection apgtoac

« initial idea of this approach can be traced back to the symmet geometry. Recently, Wang et al. [29] proposed Spectral &lob
« distance defined in [14]. Podolak et al. [15] proposed a ptana Intrinsic Symmetry Invariant Functions (GISIFs), whicle ao-

« reflective symmetry transform and based on the transforgn thebust to local topological changes compared to the GISIFs ob-
- defined two 3D features named center of symmetry and ppmtained from geodesic distances. Their generality and filexib

7 cipal symmetry axes, which are useful for related appliceti 16 ity outperform the two classical GISIFs: Heat Kernel Sigmat
 such as 3D model alignmergegmentation, and viewpoint se= (HKS) [30] and Wave Kernel Signature (WKS) [31].

s lection us  All above and existing symmetry detection techniques can
s Symmetry detection based on pairing line features. pe c_ategor_ized into geometry-based appr_oach. However, dis
. Bokeloh et al. [16] targeted on the so-called rigid symnestri tinctively different from them, we adopt a view-based approach
«» by matching feature lines. Rigid symmetries are the reacctt® @ccumulate the geometrical information of many vertices

» ring components with dierences only in rigid transformationg? 9ether into a view in order to morefieiently detect the reflec-

« (translation, rotation and mirror). They first extractedttere > fion sSymmetry of a 3D model, which also serves as the novelty
« lines of a 3D model, then performed feature line matching, an @nd main contribution of our method.

e finally validated the symmetry based on the feature cormespo

« dence information by adopting a region growing approach;?a ry Applications. As an |mportaqt shape feature, sym-
o well. 16 metry is useful for many related applications. For example,

Symmetry detection based on 2D image features. Sawada 127 they include symmetry plane detection for 3D MRI image [32],
85 3

. . 126 Shape matching [3] [15], 3D model alignment [33] [6], shape
s and Pizlo [10] [17] performed symmetry detection basedion . ! . . ; _
o single 2D imageof a volumetric shape First, a polyhedron processing and analysis [34] including remeshing [4], sym

« is recovered from the single 2D imagaded on a set of con-" metrization [12], viewpoint selection [15], and subspalsape
o . - 121 analysis [35], 3D segmentation [15] [5] [29], and curve skeh
s Straints including 3D shape symmetry, minimum surface,area :
. ) . 13, extraction [36] [37].
« maximum 3D compactness and maximum planarity of con-
a1 tours. Then, they directly compared the two halvethefpoly-
« hedronto decide its symmetry degredrom a psychologicals: 3. Symmetry Detection Algorithm
s perspective, Zou and Lee [18] [19] proposed one method to o
« detect the skewed rotational and mirror symmetry respelgtive: 3.1. 3D Model Normalization Based on CPCA
»s from a CAD line drawing based on a topological analysis of the  Properly normalizing a 3D model before symmetry detec-
% edge connections. 13 tion can help us to minimize the searching space for symmetry
o Other symmetry detection approaches. Martinet et al. [20] 1»» planesto be some 2D planes that have certain common specific
« proposed a 3D feature named generalized moments for symmproperties, i.e., passing the same 3D poiftte process of 3D

s try detection. Rather than directly computing original nemts :: normalization includes three steps: 3D alignment (origwrta
2



10 Normalization), translation (position normalizationpdascal-

w1 ing (Size normalization).

12 3D model alignment is to transform a model into a canonical
13 coordinate frame, where the representation of the modedies i

14 pendent of its scale, orientation, and position. Two comgnon
1s used 3D model alignment methods are Principal Component
1 Analysis (PCA) [38] and its descendant Continuous Priricipa
1w Component Analysis (CPCA) [8] which considers the area of
s each face. They utilize the statistical information of e&rto-

19 ordinates and extract three orthogonal components wigfesar

150 extent to depict the principal axes of a 3D model. CPCA is gen-

=1 erally regarded as a more stable PCA-based method. In addi- \»
152 tion, Johan et al. [39] proposed a 3D alignment algorithnetas
153 0N Minimum Projection Area (MPAnotivated by the fact that v

Figure 2: Face color coding example.

152 Many objects have normalized poses with minimum projection
15 areas. That is, for many objects, one of their canonical siew
155 has a minimum projection area compared to the other anpitrar
157 Views of the objects. Therefore, they align a 3D mdaebuc-
153 Cessively selecting two perpendicular axes with minimuoy pr
150 jection areas while the third axis is the cross product of the
10 first two axes. It is shown in [39] that MPA can align most
12 3D models in terms of axes accuracy (the axes are parallel to
.« the ideal canonical coordinate frame: front-back, legtitj or ~ Figure 3: Viewpoint entropy distribution examples® tow shows the models

. . L . after alignment with CPCA;™® row demonstrates their respective viewpoint
12 top-bottom view). It is also robust to model variations, i entropy distribution.Blue: large entropygreen mid-size entropyred small
1« @nd initial posesHowever, compared with the PCA-based ap-entropy.
1s proaches, MPA takes a longer time to align 3D models while
16 fOr this research we want to detect symmetnyt.fas ) ) ) o )
w  After a comparisor{see Section 4.3 for more detaits)) the The viewpoint entropy [40] of a view witm visible faces is
. influences of dierent 3D model alignment algorithms on the defined as follows.
160 efficiency, accuracy and robustness of our view-based symme- 1 m
o try detection approach, we choose CPCA to align a model be- E=-——— Z
n fore performing symmetry detection. After the alignmenthwi logz(m+ 1) j=0
12 CPCA, we translate the model such that the center of its bound
2 ing sphere locates at the origin and scale the model such:thathere,A; is the visible projection area of th¢ (j=1, 2, -- -,
17 its bounding sphere has a radius of 1. After this normatizgtis M) face of a 3D model andy, is the background areaS
s the symmetry plane(s) will pass the origin, which helps us4ds the total area of the window where the model is rendered:
e significantly reduce the searching space. 1w S=Ao+X[L; Aj. Projection area is computed by counting the
190 total number of pixels inside a projected face.
20 Figure 3 shows the viewpoint entropy distributions of sal/er
2o models by usind-4 (2,562 sample viewpointdor view sam-
202 pling and mapping their entropy values as colors on the sarfa
w  Vazquez et al. [7] proposed an information theory-relatedf the spheres based on the HSV color model. We can see there
10 Measurement named viewpoint entropy to depict the amaurig a perfect correspondence between the symmetry of a model
1 Of information a view contains. It is formulated based on theand that of its viewpoint entropy distribution sphetieeir sym-
12 Shannon entropy and incorporates both the projection &rea enetry planes are the samé&herefore, the symmetry of a 3D
s each visible face and the number of visible faces into the dgfimodel can be decided by finding the symmetry in the entropy
1 Nition. However, the original definition was developed ltbse 2 distribution, thus avoiding the high computational costlioéct
15 perspective projection, thus we use its extended versifinatk ..o matching among its geometaiproperties. What's more, since
185 IN [40] for orthogonal projection. 210 Viewpoint entropy is computed based on the projection ofieac
wv  For each model, we sample a set of viewpoints based onithface, it is highly sensitive to small fierences in the model. In
1s LOOp subdivision [41] on a regular icosahedron, denoteldyas.» addition, each viewpoint simultaneously captures the gntigs
19 We subdividelg n times and denote the resulting meshLas 21s of many vertices and faces of a model as a whole, which also
10 Then, we set the cameras on its vertices, make them look &elps to significantly reduce the computational cost. We als
11 the origin (also the center of the model) and apply orthofjosafind that it is already accurate enough based on a coarse view
192 projection for rendering. For a 3D model, tofférentiate its ..« sampling, such as using;, as demonstrated in Section 4.2
103 different faces, we assignfliirent color to each face during- Motivated by these findings, we propose to detect the synymetr
104 rendering. One example is shown in Fig. 2. 218 0Of @ 3D model based on its viewpoint entropy distribution.

3

Aj

A.
_]|092§

. ®

w7 3.2. View Sampling and Viewpoint Entropy Distribution Gen-
178 eration



20 3.3. Symmetry Detection Based on lterative Feature Pairing 20 We need to mention the followings for the algorithm. The
2n Views corresponding tahe viewpointsthat are located othe

20 Even only usinglL; (42 viewpoints) for view sampling, if..; symmetry plane do not need to match each other. While, ac-

=z based on a naive matching approach by first directly selgctincording to the Loop rule [41], at most“Z vertices ofL, are

22 half of the total viewpoints and then matching them with thecoplanar in a plane w.r.t a great circle. That is to say, attmos

23 remaining half, it will result inP(42, 21)=2.75<10%! combina- s 22 viewpoints could be in the real symmetry plare ideal

24 tions. Thus, we develop a much mori@ent symmetry de-»s algorithm is to perfectly match w.r.t the symmetry plane all

25 tection method based on the following idea: iterativelyesef s, the viewpoint pairs that are not in the symmetry plane. How-

22s Matching pair of viewpoints to generate a symmetry plane apndver, we have found that usually there are numerical acgurac

27 then verify all the rest matching pairs to see whether they arproblems related to 3D model rendering (e.g. aliasing)wvie

2s Symmetricas wellw.r.t the symmetry plane or at least in the point entropy computation (usually the entropy values af tw

29 Symmetry plane. Thmethodis listed in Algorithm 1. 21 Symmetric viewpoints are not completely the same), as veell a

22 possible (either big or minor) flerences in mesh triangulation.

23 Therefore, we propose to partially solve this issue by iatax

2 SOMe of the conditions though it sometimes causes certiam fa

25 POsitive detectionsif the total number ratches) of matched

26 Viewpoints w.r.t a candidate symmetry plane is at l&asp™?,

27 then it is confirmed as a symmetry plaidgs a threshold which

218 €aN control the strictness of symmetry definition. For exiamp

29 USING @ small threshold we detect more strictly defined sym-

20 Mmetries while using a bigger threshold, we allow some minor

2s1 differences and detect rough symmetry propertiesand T,

22 are the normals of #hplanesw.r.t two correspondence points

=2 (Py andPy; P; andP;). The conditionf|CT|| > e AND |[DT| # 0

s« meansTy and T is neither parallel nor perpendicular to each

25 other. In another word, the line betwedh andP; is not per-

26 pendicular to the candidate symmetry plane siicandT; are

27 not parallel (otherwisg|CT|| = 0); andP; andP; are also not

26 iN the symmetry plane (otherwis®T| = 0). Py is the mid-

20 point of the line segment connecting poilsand P;. It is

20 USed to further assert the vertical symmetry properti;cind

21 Pj about the candidate symmetry plane by finding out whether

22 the midpoint is in the plane, that j§; - Py = 0. The compu-

2 tational complexity of the algorithm i©(N*), which is much

Algorithm 1: Symmetry detection by iterative pairing
Input : N: number of viewpoints
Pog[N]: positions ofN viewpoints
E[N]: entropy values of\ viewpoints;
n: icosahedron subdivision level,
6=0.015: entropy dterence threshojd
e=1e-5: small diterence in double values
Output: Symmetry planes’ equations, if applicable
begin
// loop symmetric viewpoint pairs (U, V)
foru— 0toN-2do
Py «— Podu];
forve—u+1toN-1do
if |E[u] — E[V]| > 6 * min{E[u], E[V]} then
| continue;
Py «— Pog[V], Ty «— normalize(P, — P,);
matches «— 2;
// verify other matching pairs
fori < O0toN-2do
if i == uORi == vthen

/

| continue; : ) )
P, — Pos[il: 24 faster ';han thezcombmatorlal ma_tchl_ng approach: e.gethsr
folr i+ lito N - 1do 265 only N .-(N—l) /4=741,321 comb|nat|ons based & (N=42), _
if | == UOR ] == vOR ] == i then 2 Which is 3.7k10?° faster than the naive method. In experi-
| continue; 27 ments, we selectto be 1.
if 1E[i] - E[j]l > ¢ = min{E[i], E[j]}
then s 4. Experiments and Discussions
| continue;

Pj — Pos(j], P — “3%;

T, = normalize(P; — Pj);
CT =Ty xT,, DT =TTy,
if ICT|| > e AND |DT| # Othen

/ output the symmetry plane
if matches > N — 2™2 then
Output and visualize the symmetry plane:

Tl[O] * X+ Tl[l] * Y+ T1[2] x2=0

0 4.1. Evaluation w.r.t to Dataset-Level Performance

a0 We have tested our algorithm on the NIST benchmark [42]
-n and selected models from the AIM@SHAPE Shape Reposi-
a2 tory [43] to compare with state-of-the-art approaches the

-1z Mean shift [12] and 3D Hough transform [13] based methods

i fL|T010 ngnlu f’g then 222 Which are among the few papers that Qeal with glo_bal_symmetry

L contirrque; 275 Qetectlon and at the same time provide a quantitative evalua
matches—matchest 2- 76 tion based on a common ;et of 3D models. 3D Hqugh trans-
break: ' a7 form [13] can only deal with global symmetry, while Mean

28 Shift [12] can deal with partial and approximate symmetry as
s Well. Experiments show that our approach can stably detect the
200 Symmetry planes of diverse symmetric models and it also can
a1 detecta symmetry plane for a rough symmetric model with a
252 bigger threshold.

23 Figure 4 demonstrates several examples while Table 1 com-
284 pares their timing information. We need to mention that due

4



265 10 the diference in the specifications of the CPUs used in themum (w.r.t the bounding box diagonal) distance errors Heve

266 €Xperiments, we do not directly compare the absolute rgnninoped in Metro [44] which is based on surface sampling and

27 time, but rather we focus on the change of the running timle wit point-to-surface distance computation. Table 2 compdres t

288 respect to the increase in the number of vertices of the 3D madnean and max errors difie fourmodels in Table 1 (see Fig. 4

20 €1S. As can be seen, our method shows better computatientdr the errors of other models) with the Mean shift [12] and

200 Efficiency property in terms of scalability to the number of vers 3D Hough transform [13] based methods. The errors are com-

2o tices. This is mainly because the computational time doéssnguted based on the original mesh and its reflected 3D model

202 increase linearly with the increase in the number of vestio v w.r.t the detected symmetry plane. As can be seen, our agiproa

203 @ 3D model since we just render the 3D model first and deteachieves much (46 timesw.r.t 3D Hough transform and 144

204 itS Symmetry only based on the rendered views. However,sfotimes w.r.t Mean shijtbetter overall accuradigee the mean er-

205 the other two geometry-based approaches Mean shift and.3irs), in spite that a few points mayot bethe most accurate but

206 Hough, their computational time is highlyfacted by the num-z: they still maintain a moderate accura@gdicated by the max

207 ber of vertices of the modeThis is because the computationat errors)

28 cCOMplexity of Mean Shift (in the best case) and 3D Houghwis In addition, it is also very convenient to detecffdient de-

200 O(NIogN), whereN is the number of pairs when only one it grees of symmetries via control of the entropffelience thresh-

w0 €ration is needed [13]. Since both of them are geometryebaseold 5. As shown in Fig. 4, there is a minor asymmaednthe the

s @approach, the value df as well as their complexity is highly:s tail partof the cow, while other parts are symmetric. If we want

w2 dependent on the number of vertices that a 3D model has.:f¢o obtain strict symmetry, a smaller threshél¢e.g. by reduc-

a3 OUr case, though the computational complexity of the viemipa:s ing it by half: 0.0075) will give the result that it is asymrmiet

2. Matching step (Section 3.3)@&N*), the number of viewpoints=s We also find that our approach can simultaneously detect mul-

s N (N=42 in our experiments) is a constant number. Therefasgtiple symmetry planefor certain types of meshgsuch as the

xs this matching step has a constant running cost, that ispibtiss:: Eight, Skyscraper, Bottle, Cup, Desk Lamp, and Sworf# 3]

a7 dependent on the number of vertices. s and [42],as shown in Fig. 5But we need to mention due to

a3 the limitation of CPCAand the sensitivity property to minor

s changes of the viewpoint entropy featutkere are a few fail

s Cases or certain cases where the proposed method can only par

as tially determine a set of reflection plane&xamples of such

a7 models arenon-uniformcubes butterflies, tori, and pearss

xs demonstrated in Fig. 6(a) because of non-uniform triangula-

a9 tion, the cube model cannot be perfectly aligned with CPCA,

ao resulting in the unsuccessful symmetry plane detectionw-Ho

a1 ever, we have found that for most symmetric models (e.g. Mug,

a2 NonWheelChair, and WheelChair classes) that cannot be per-

a3 fectly aligned with CPCA [8], our approach can still suceess

s fully detect their symmetry planes (e.g. the detectionsrate

us Algorithm 1 for those types of models mentioned above are as

,ﬂ’ as follow: Mug: 7/8, NonWheelChair: 189, and WheelChair:

a7 6/7). Three examples can be found in Fig. 7; (b) the symmetry

ws plane of the butterfly cannot be detected if based on the Wefau

as threshold§=0.015, and only after increasing it till 0.0166 we

w0 can detect the plane; (c) only the red symmetry plane of the

Figure 4: Example symmetry detection results with nfemx error mea- % 1Orus is detected based on the default threshold value ewhil

sures [44]. =2 both the red and green planes will be detected if we increase
ss3 the thresholds to 0.02 and all the three symmetry planes can
=4 be detected if we further increase it till 0.0215; (d) a fgdssi-

Table 1: Timing information (in seconds) comparison of our metand other **° tive (blue_)_symmetry plane of the pear model will appear lu_nde

two state-of-the-art approachddgean shift{12] and3D Hough[13] are based 3¢ the condition of the default threshold, however the errdr lve

on a Pentium M 1.7 GHz CPU according to [13]; while our methaasisig an =52 corrected with a little smaller threshold of 0.0133. An atdlap

(a) 0.00620.0062 (b) 0.00730.014 (c) 0.00960.0210

(d) 0.00L30.00%

(e) 0.03/0.0027

(f) 0.0005/0.0041

Intel(R) Xeon(R) X5675 @ 3.07GHz @R

s Strategy of threshold selection is among our next work plan.

Models Cube Beetle Homer Mannequin | ., Fipally, we evaluate the overall performance of our view-
#Vertices 602 988 5103 6743 | . point entropy distribution-based symmetry detection atgm
Mean shit | 1.8 6.0 165.0 ., based on the NIST benchmark [42]In total, we havede-
3D Houdh 2.2 3.0 33.0 . tected 62 symmetry planes for all the 800 models (somfe
Our method| 0.7 0.8 11 . themare asymmetric). To know the general performance of

s OUr algorithm, we manually observe the symmetry property of

ws T0 measure the accuracy tife detected symmetry planess each of the firs20Q300400 models and label its symmetry
ws We adopt the mean (normalized by the surface area) and maptane(s)degree(s) to form the ground truth. Then, we exam-

5



Table 2:Mearymax errorg44] comparison of our methods and otlteo state-of-the-art approachd=or the Cube model, since there are three detected symmetry
planes, we use their normal directiongy(2) to differentiate them.

Methods Cube Beetle Homer Mannequin
mean max mean max | mean max | mean  max

Mean shift [12] | N.A. N.A. N.A. N.A. 0.059 0.018 | 0.111  0.037

3D Hough [13] | N.A. N.A. N.A. N.A. 0.007 0.001 | 0.046  0.009
0.0005 &) 0.0008 &)

Our method 0.0057 {,2) 0.0082§, 2) 0.0062 0.0062 0.0013 0.003% | 0.00% 0.0210

(a) eight (b) skyscraper (c) bottle (a) non-uniform(CPCA)  (b) fail (if §<0.0166)

(d) cup (e) desk lamp (f) sword (c) partially (if 6<0.0215) (d) one false positive (i§>0.0133)

Figure 5:Multiple detected symmetry planes examples. Figure 6:Failed or partially failed examples.

% ine each detectesymmetry plame to see whether it is a Trues Rate (FAR, TP+FP) Detection Rate (DR,rpiry), Speci-

s Positive (TP) or False Positive (FP). Similarly, we set theeT = ficity (SP, =3 ), Accuracy (AC,TE:IN), Positive Prediction

0 Negative (TN) value of a model to be 1 if it is asymmetrie (PP, TP+FP) Negative Prediction (NPFN+TN) False Nega-

=o and our algorithm also does not detect any symmetry plangive Rate (FNR or Miss Ratqi’N_T) and False Positive Rate

o While, if a symmetry plane of a symmetric model is not dg; (FPR, FP+TN) where the total number of symmetry planes

a tected, we increase its False Negative (FN) by 1. &al., in the 200300400 Ground Truth models T&191/27§388

as gives the evaluation resultd77/277/386 detectél symmetry ., and the total number of our detections (including both

s« planes) on thdirst 209300/400 models (havingl9Y278388 ., trues and falses) HTP+FP+TN+FN=2463825540 As can

o5 Symmetry planes in total), which are uniformly divided intg be seen, besides the better accuracy in the detected sym-

376 10/15/20 ClasseS.Here, for later anaIySiS we SUCCESSiVEly ||§I metry p|anes as mentioned before, our detection perfor-

a7 the names of the 20 classé&ird, Fish, NonFlyinglnsect, Flyin-... mance (e.g.,for the first 200300400 models, Detection

= glnsect, Biped, Quadruped, ApartmentHouse, Skyscraper, 3 Rate DR-81.50%/82.76//79.13%, and Tracker Detection Rate

a gleHouse Bottle, Cup, Glasses, HandGun, SubmachineGUNTRDR=73.824/77.70%75.26%) is also goodnough What's

s Musicallnstrument, Mug, FloorLamp, DeskLamp, Sword, agdmore, the minor dference among the detection performance

s Cellphone s of our algorithm on the 200, 300 and 400 models shows that
w0 the overall performance of our algorithm is stable and rolius

_ _ . terms of model type diversity and number of models evaluated
Table 3: Overall symmetry detection performance of our algorithm based

the first 200800400 models of the NIST benchmark. w2 In a word, as demonstrated by all the above evaluation re-
#models| TP FP TN FEN w03 SUltS, better accuracy andfeiency than state-of-the-art ap-
200 141 36 37 32 w4 proaches have been achieved by our simple fietgve sym-
300 216 61 60 45 w5 metry detection method. It also has good stability in deglin
400 292 94 77 77 s With various model types.

« Based on the TP, FP, TN and FN values, we compute ‘tha-2- Evaluation wr.t to Robustness

a3 following nine detection evaluation metrics [45], as lst® s Robustnessto View Sampling. First, we also tesbur algorithm
s Table 4: Tracker Detection Rate (TRDQ%), False Alarm .« with different levels of subdivided icosahedrtor the view
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Table 4:Overall symmetry detection accuracy of our algorithm basetherfirst 200300/400 models of the NIST benchmark.

#models | TRDR FAR DR SP AC PP NP FNR FPR
200 73.820 20.3%0 815006 950.680 72.36% 79.686 53.6206 18506 49.32%
300 77700 22026 827600 49.5% 722% 7798 57.18 17.280 50.41%
400 75.26% 24.35% 79.13% 45.03% 68.33% 75.65% 50.00% 20.87%97%}

a0 Sampling e.g.,Lo, L3, andL,4. Table 5 compares thmeearimax . version of a symmetric model by adding a certain amount of

a1 errors and running time fathe fourmodels listed in Table 1. noise. Due to certain factors such as creation, storages-tra

.2 As can be seen, increasing the view sampling often cannotsirmission, and modification, 3D models can be noisy. A symme-

«13 crease the accuracy while the running time will be signifilyanss try detection algorithm should be robust, thus still apgdhie in

aa INCreasing Thus, we choose to sample the views based pn the case of small amounts of noise. We test the robustness of

«1s Which gives betteoverallperformance in both the accuracy and our symmetry detection algorithm against noise by randomly

16 efficiency. «2 adding a small amount of displacement to the vertices of a 3D
w3 model.

«r» Robustness to Number of Vertices. We alsotest the robustness,,  Figure 8 demonstrates the detected symmetry planes of three

«s Of our algorithmw.r.t the change of the (especially large) num;: example models. Table 7 shows a comparative evaluation on

s ber of vertices (resolution) that a 3D model contains. We fitsthe detection results w.r.t the mearax errors and the mini-

o subdivide a triangular mesh into its finer version based n s¢ mum entropy dierence threshold value, denoted by @ifor

« eral iterations of midpoint subdivision by utilizing theoloof ,,; a successful detection of the symmetry plane(s) of a mode. T

22 MeshLab [46] and then use the resulting meshesttertest ., results show that our algorithm has a good robustness fyoper

«z and comparisonWe have test the Elephant Mannequirand .5, against a small amount of noise: by choosinfjedent levels

2+ Cubemodels, and found that our algorithm can statd ac- ., of entropy diference threshold values we will have difer-

«s curatelydetect their symmetry plasgindependent of the nums, ent tolerant levels of noise to detect symmetry planes. That

s ber of vertices. Table 6 compares theiearimax errors and,; is, a symmetry detection will be possible if we choose a big-

«r timings. We can see that the increasedomputational time,, ger threshold if there exists a bigger amount of noise. Tis i

«s is often significantly slower (especially for models with an e contributed to our utilization of the accurate viewpointrepy

«s tremely large number of vertices; e.g. for Mannequin (487,5 feature with a threshold for the feature paring processesin

«o Vertices) and Cube (196,610 vertices) they are about 8 and, Zfeneral viewpoint entropy is stable under small changelsen t

« times slower, respectively) than the increaséhiea number of ., vertices’ coordinates of a 3D model.

«» Vertices since rendering the sampling véets compute their

«s viewpoint entropy dominates the running gm w0 4.3. Evaluation w.r.t Different 3D Alignment Algorithms

o . ‘ w0 Considering the apparent advantages of the Minimum Pro-
Table 6: Meaymax errors and timing comparison of our algorithm w.r.t tk}gl jection Area (MPA)-based 3D alignment algorithm in finding
robustness to elierent number of vertices. For the Cube modihce there . . . .
2 the ideal canonical coordinate frame of a model, besidesfCPC

are three detected symmetry planes, we use their normal dinsci/y/z) to o i
differentiate them. 13 We also evaluate the performance of a variation of our atlgori

Models #Vertices | mean max time | . by only replacing the CPCA algorithm module with MPA.
29,285| 0.0003 0.0027 3.0 | 4« However, we found that the results are not as stable as those
Elephant 116,920| 0.008 0.0027 12.3 | 4« of the original CPCA-based version in terms of the percemtag
467,252| 0.008 0.0027 48.4 | . of either true or false positives based on the same thregbiold
17,450| 0.009 0.0210 2.6 | s Choosing the threshold is also mordéidiult and sensitive when
Mannequin 29,194 | 0.00 0.0210 3.8 | s employing MPA since bigger threshold usually results in enor
467,587| 0.004 0.0210 48.2 | o false positives.
0.0050(x) 0.0077(x) 1 Aninitial analysis based on the experimental results i®hs f
6,146 | 0.002 (y) 0.0137(y) 15 | = lows. Due to the viewpoint sampling precision in MPA, espe-
0.0061(z2) 0.0093(2 w73 cially for the search of the second principle axis of a 3D nhode
0.0002(x) 0.0003(x) «« Which is based on a step of 1 degree, the axes found by MPA is
Cube 24,578 | 0.0002(y) 0.0004(y) 3.0 | s not precise enough for this viewpoint entropy-based symmet
0.0001(2 0.0001(2) w6 detection purpose, though for the 3D model retrieval applic
0.0003(x) 0.0005(x) « tion, as mentioned in the paper, the accuracy is enough. How-
196,610 0.0003(y) 0.0004(y) 5.8 | ws ever, since our algorithm directly uses the cameras’ looati
0.0001(20 0.0002(2) a9 10 compute the symmetry plane(s) by just utilizing their-cor

w0 respondence relationships, it requires that the 3D modas$ is
s @accurately as possible aligned w.r.t the three standarsl iaxe

4 Robustness to Noise. Finally, we want to test the versatility as. order to reduce the search space and the number of viewpoints
s Well as sensitivity of our algorithm when processing a medifiss to achieve betterficiency.

7



Table 5: Meanfmax errorsand timing comparison of our algorithm withftérent view samplingFor the Cube model, since there are three detected symmetry
planes, we use their normal directiongy(2) to differentiate them.
View Cube Besetle Homer Mannequin

sampling mean max time. mean max timel mean max timel mean max time
0.0005 ) 0.0008 &)
L1 0.0057 ) 0.0082 ) 0.7 | 0.0062 0.0062 0.8 | 0.0013 0.003% 1.0| 0.00% 0.0210 11
0.0057 ¢) 0.0082 ¢)
) 0.0005 &) 0.0008 &) 3.4 | 0.0062 0.0062 3.6 0.0013 0.0036 3.8 0.0096 0.0210 3.1
L3 0.0057 ) 0.0082¢) 22.6 | 0.0062 0.0062 16.9 0.0013 0.0036 19.% 0.0096 0.0210 27.3
Ly 0.0057¢ 0.0082¢ 2481.7| 0.0062 0.0062 1048.00.0013 0.0036 1600.50.0096 0.0210 3465.1

Table 7:Comparison of the me#amax errors and the minimum entropyffedrence threshold values niirf our algorithm for successful symmetry detections of the
variations of three example models after we adtedént levels of noise.

Noise Beetle Homer Mannequin

level (%) | mean max mid | mean max mid | mean max migd
0.0 0.006 0.006 0.003 0.001 0.004 0.002 0.010 0.021 0.017
0.1 0.010 0.010 0.003 0.004 0.006 0.002 0.010 0.022 0.011
0.5 0.019 0.022 0.008 0.005 0.011 0.003 0.012 0.022 0.009
1.0 0.010 0.022 0.013 0.008 0.019 0.007 0.012 0.026 0.012

«  What's more, to align a 3D model, MPA usually takes aroundsymmetry detection as well: “using a bigger threshold, we al
s 30 seconds if based on 40 Particle Swarm Optimization (P&0pw some minor dierences and detect rough symmetry prop-
w6 iterations while CPCA needs less than 1 second, which demsrerties”.

w7 Strates another advantage of CPCA over MPA. In addition,swe In fact, global approximate symmetry detection is one of the
12 @IS0 have found that if based on CPCA, using bounding sphergvo research topics (another one is, partial and approgimat
180 for the 3D normalization can achieve more accurate resdfs t.. symmetry detection) in Mean shift [12]. While, global sym-
a0 the case of using bounding box. This should be due to fhenetry detection is the only topic for 3D Hough transform [13]
s fact that we also sample the viewpoints on the same boundyhich also compares with Mean shift [12] in its experimertse
w2 iINg sphere. However, if based on MPA, either using boundiggion, in terms of the performance of global symmetry detecti

w03 Sphere or bounding box has only trivial influence on the symaccuracy and féciency, and based on the same model set as
w4 Metry detection performance. The reason is that the acgutaours. All the available (for us) models selected from the atod
w5 Of the found axes has much more direct and decisive influencset have been tested and compared in Fig. 4 and Tabi2s 1
a5 ON the symmetry detection performance. In conclusion,gusin We also referred to some of the evaluation results of 3D Hough
w7 CPCA is more stable, accurate arfla@ent than MPA, but wess transform [13] as well for a quantitative comparison.

w8 believe an improved MPA algorithm should be more promisiag Although we have noticed that there are other related global
w0 N thoroughly solving existing errors in CPCA and achieviag symmetry detection papers, such as [47] and [48], mainly due
s0 €ven better results, which is among our future work. s 10 the fact that their codexecutable is not available, we have
s. NOt performed a comparison with them. But, according to the
sss above facts, we believe it is enough and even better to campar
sss With the two more recent works: Mean shift [12] and 3D Hough

« Firstly, though in Section 4.1 we have performed an overiransform [13].
s0s all symmetry detection evaluation of our algorithm on thstfir
soe 2000300/400 models of the NIST benchmark, we could not per-

. . - . s 5. Applications
«s form a comparative evaluation, similar to the one we did Base PP

ss ON the four models in Section 4.1, in terms of the accuracy of Finally, we also explore two interesting applications of ou

«r the detected symmetry planes. The maifidiilty is that: tothe symmetry detection algorithm: 3D model alignment and best

s best of our knowledge, few prior symmetry detection papers, ;
. ) sa view selection.

s00 €valuated their symmetry detection performance on a bench-

s10 mark dataset, which is also not available till now. In actditi 1 3D Moddl Ali

su their code is not publicly available to facilitate such carg ** =1. 3D Mo Ignment

s12 tive evaluation. s2  As we know, the main shortcoming of PCA-based approach

s3  Secondly, we mainly concentrated on global symmetry eeis that the directions of the largest extent found based en th

si tection performance when we compared our algorithm withpurely numerical PCA analysis are not necessarily partilel

sis Mean shift [12] and 3D Hough transform [13], though as men-the axes of the ideal canonical coordinate frame of a 3D model

sis tioned in Section 3.3 our approach can perform approximat@his is because during the alignment process it lacks séecnant
8
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(b) 0.1% (c) 0.5% (d) 1.0%

(a) Mug (CPCA) (b) Mug (symmetry plane)
|

|
|
|
b |

(e) original (f) 0.1%

(i) original () 0.1% (K) 0.5% () 1.0%

|
|
: Figure 8: Examples indicating our algorithm’s robustness to noise: sytmyme
(c) NonWheelChair (CPCA)  (d) NonWheelChair (symmetry plane)  detection results of our algorithm in dealing with model siitins with diferent
levels of noise. The first column: original 3D models withoudiad any noise;
The second to the fourth columns: detection results of the madeen we
add noise by randomly moving each vertex with a small displacerestor
whose norm is bounded by 0.1%, 0.5%, and 1% of the diametecbfraadel’'s
bounding box, respectively.

sss alignment algorithm. As mentioned in Section 2, there are
ss7 four reflection symmetry types: cyclic, dihedral, rotaggn
sss and unique. In fact, some of our previous experiments ajread
sso demonstrate the main alignment results of several modatdwh
(€) WheelChair (CPCA) (f) WheelChair (symmetry plane) 57 fall into three of the gbqve four types. For instan(_:e, Fig. 5
sn shows the twgihree principal planes (thus axes) of six models
Figure 7: Examples to demonstrate that our algorithm can sefidey detect 52 that have a cyclic reflection symmetry (see (c) bottle, (d),cu
the symmetry planes for most symmetric models that are not pgridighed ss and (e) desk lamp), or dihedral reflection symmetry (see (a)
with CPCA:first columnshows the CPCA alignment resulsgecond column ., eight, (b) skyscraper, and (f) sword). Fig. 4 and Fig. 7 demon
demonstrates the detected symmetry planes. o5 strate the first principle plangses of several example models
st With a unique symmetry based on our idea. It is a trivial task
s77 t0 continue to find other principle axes. For completenass, f
s example, in Fig. 9, we demonstrate the complete alignment re
gé%LIH'[S of three models that have a rotational symmetry, or do
A not have any reflection symmetry (zero symmetry), or have an
approximate symmetry. In a word, the alignment algorithm is
promising to be used in dealing with diverse types of models
with different degrees of symmetries.

|
|
|

sis @nalysis in a 3D model’'s symmetry [2] [15], or its stabiligd]
sio after the alignment.

0  Based on the detected symmetry planes and the basic id
ss1 PCA, it is straightforward to apply our algorithm to 3D alig
s2 ment: the first principal axis gives the maximum symmetry dé
s gree (that is, it has the smallest total matching cost in seffh
ss Of viewpoint entropy for the symmetric viewpoint pairs w.r”
sss the axis) and the second principal axis is both perpendicula )

« 0 the first axis and also has the maximum symmetry degtee-2- Best View Selection

ss» among all the possible locations within the perpendiculang. s Here, we provide another option to define and search for the
sss Finally, we assign the orientations of each axis. This align best view of a 3D model based on our algorithm. Our definition
sso ment algorithm is promising to achieve similar results as#hss: of symmetry is related to viewpoint entropy which indicates

s iN [15] which is based on a planar-reflective symmetry trans-amount of information that a view contains. In an analogy@o 3

se2 form, while outperforms either PCA or CPCA for certain mogs model alignment, we use the total viewpoint entropy maighin
se2 €ls with symmetry plane(s). However, our algorithm hasdvett, cost, that is an indicator of asymmetry, to indicate the gesd

se efficiency than [15], thus will be more promising for related of a candidate best view corresponding to a viewpoint: tge bi

s+ real-time applications including 3D model retrieval. s ger the summed matching cost is, the better (more asymmetry)
s NOw we present some experimental results of the abevéhe viewpointis, since itindicates that there is less reldumhin-
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so« formation in the view. When we compute the viewpoint mat¢

(a) Icosahedron (b) rotational symmetry

(c) Tree (DO0606) (d) zero symmetry

(e) Musicallnstrument (D00292) () approximate symmetry

Figure 9: Alignment results of Icosahderon and two other example modéts

e10 tropy distribution.We have ompared withthe two latest sym-

s Metry detection approachbased on a common set of selected
s2 models and demonstratéuk better performance of our method
e13 IN terms of accuracy andieciency. A detailed aluation of our

s« approach on a dataset of 400 models and the promising results
s Of two related applications also validate its good robusdioke-

«16 tection rate, and flexibility.

sz To further improve and explore the algorithm, we list selera
«s promising directions here as our next work. Firsthgditional

«s PCA-based approaches cannot guarantee that the direofions
&0 the largest extent are parallel to the axes of the ideal ¢ganon
« cal coordinate fram o 3D modek. One promising approach

«2 10 achieve further improvement in terms of alignment accu-
3 racy is an improved versiomnf the Minimum Projection Area

«s (MPA) [39] alignment method.We can improve its accuracy
s t0 Meet our precision requirement by applying the PSO-based
«s Method used in the first principle axis search in the seanch fo
«7 the second principle axis as wellWe arealso interested in

«s combining it with CPCA for the 3D alignment process: first
w9 performing CPCA for an initial alignment and then corregtin
0 POSsible tilt viewgposeshy utilizing a similar idea as MPA. It

sa1 IS promising to help to achieve even better symmetry detecti
«2 performance, especially for decreasing the percentagelséF

«s Negative (FN)ince more symmetry planes can be successfully
«a detected, thus avoiding the fail case like Fig. 6 (a) becafise
e the limitation of CPCA.

ws  Secondly, to further improve thefeiency of our algorithm,

«s7 We could consider Hough transform for symmetry evidence vot
e iNg. For example, each pair of matched viewpoints castse vot
e fOr their bisecting plane, while the peaks of the voting rilist

0 bution correspond to prominent symmetry planes. We need to
s Mention that directly applying Hough voting may not work be-
ez Cause rather like geometric values, symmetric viewpoiats d
not perfectly match each other based on their viewpoinbggtr

from the NIST dataset. Icosahedron has 15 symmetry planes tfise model e Values, which has been explained in Section 3.3.
DO0606.df has no symmetry plane, while Musicallnstrument type model  Finally, an automatic and adaptive strategy to select an ap-

D00292.df has a roughly symmetry plane.

s propriate threshold for respective models or classes is another
e interesting research direction and deserves our furthgloex
g_ration.

ss iING cost of a candidate view, we only consider visible view-

s Points as seen from the candidate view, for instance, witB .., Acknowledgments

so7 degrees. Algorithm 1 targets finding the minimum viewpoint
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Algorithm 2: Best view selection based on maximum view-
point entropy matching cost.

Input : N: number of viewpoints
Pog[N]: positions ofN viewpoints
E[N]: entropy values oN viewpoints;
n: icosahedron subdivision level,
6=0.2: entropy dierence threshojd
e=1e-5: small diterence in double values
Output: Symmetry planes’ equations, if applicable
begin
// initialize maximum viewpoint entropy
matching cost
max_cost «— 0.0;
// loop viewpoint pairs (U, V)
foru—O0toN-1do
Py «— Pod[Uu];
forve—0toN-1do
if u==vthen
| continue;
Py, «— Pog[V], T1 «— normalize(P, — P,);
// initialize the viewpoint entropy
matching cost for the current
view
cur_cost «— O;
// matching other viewpoint pairs
fori < OtoN-2do
if i == uORIi == vthen
| continue;
Pi «— Pod[i];
for j<~i+1toN-1do
if j==uORj==VvOR j==ithen
| continue;
Pj — Pogj], P «— 235
T2 = normalize(P; — P;j);
CT =T1XT2, DT ZTJ_'TQ;
if IDT| < Othen
| continue;
if |ICT|| > e AND |DT| # O then
| continue;
if IT1- Pyl > € then
| continue;
cur_cost=cur _cost+|E[i] — E[|];
break;

if cur_cost > max_cost then
max_cost = cur_cost;
| T — T]_,

// output the best view
| TO]l*x+T[1]+«y+T[2]*z=0




