Efficient 3D Reflection Symmetry Detection: a View-Based Approach

Bo Li ${ }^{a, *}$, Henry Johan ${ }^{b}$, Yuxiang Ye ${ }^{a}$, Yijuan Lu ${ }^{a}$
${ }^{a}$ Department of Computer Science, Texas State University, San Marcos, USA
${ }^{b}$ Visual Computing, Fraunhofer IDM@NTU, Singapore

Abstract

Symmetries exist in many 3D models while efficiently finding their symmetry planes is important and useful for many related applications. This paper presents a simple and efficient view-based reflection symmetry detection method based on the viewpoint entropy features of a set of sample views of a 3D model. Before symmetry detection, we align the 3D model based on the Continuous Principal Component Analysis (CPCA) method. To avoid the high computational load resulting from a directly combinatorial matching among the sample views, we develop a fast symmetry plane detection method by first generating a candidate symmetry plane based on a matching pair of sample views and then verifying whether the number of remaining matching pairs is within a minimum number. Experimental results and two related applications demonstrate better accuracy, efficiency, robustness and versatility of our algorithm than state-of-the-art approaches.

Keywords:

symmetry detection, reflection symmetry, view-based approach, viewpoint entropy, matching

1. Introduction

Symmetry is an important clue for geometry perception: it is not only in many man-made models, but also widely exists in the nature [1]. Symmetry has been used in many applications such as: 3D alignment [2], shape matching [3], remeshing [4], ${ }_{6} 3 \mathrm{D}$ model segmentation [5] and retrieval [6].
However, existing symmetry detection algorithms still have much room for improvement in terms of both simplicity and efficiency in detecting symmetry planes, as well as the degree of freedom to find approximate symmetry planes for a roughly symmetric 3D model. In addition, most of the existing symme12 try detection methods are geometry-based, thus their computational efficiency will be tremendously influenced by the number of vertices of a model.Though sampling and simplification can be used to reduce the number of vertices, they also decrease the shape accuracy and cause deviations in geometry. Therefore, a symmetry detection algorithm often directly uses original models as its input, as can be found in many existing related papers.
Motivated by the symmetric patterns existing in the viewpoint entropy [7] distribution of a symmetric model, we propose a novel and efficient view-based symmetry detection algorithm (see Fig. 1) which finds symmetry plane(s) by matching the viewpoint entropy features of a set of sample views of a 3D model aligned beforehand using Continuous Principal Component Analysis (CPCA) [8]. Based on experimental results, 6 we find that our symmetry detection algorithm is more accurate (in terms of both the positions of detected symmetry planes
*Corresponding author at: 601 University Drive, Department of Computer Science, Texas State University, San Marcos, Texas 78666; E-mail: B_L58@txstate.edu, li.bo.ntu0@gmail.com; Tel: +001 512245 6580; Fax: +0015122458750.
${ }_{32}$ In the rest of the paper, we first review the related work ${ }_{33}$ in Section 2. In Section 3, we present the viewpoint entropy ${ }_{34}$ distribution-based symmetry detection algorithm. Section 4 de${ }_{35}$ scribes diverse experimental evaluation and comparison results ${ }_{36}$ of the detection algorithm. In Section 5, we show two interest${ }_{37}$ ing applications of our symmetry detection idea in 3D model ${ }_{38}$ alignment and best view selection. Section 6 concludes the pa${ }_{39}$ per and lists several future research directions. This paper is an ${ }_{40}$ extension of our prior publication [9].

${ }_{41}$ 2. Related Work

${ }_{42}$ Symmetry Types. Though there are different types of symme${ }_{43}$ try, reflection symmetry is the most important and commonly ${ }_{44}$ studied. Chaouch and Verroust-Blondet [2] introduced four ${ }_{45}$ types of reflection symmetries, which are cyclic (several mirror ${ }_{46}$ planes passing through a fixed axis), dihedral (several mirror ${ }_{47}$ planes passing through a fixed axis with one perpendicular to 48 the axis), rotational symmetry (looks similar after rotation, e.g., ${ }_{49}$ different platonic solids, like tetrahedron, octahedron, icosahe${ }_{50}$ dron and dodecahedron) and unique symmetry (only one mirror ${ }_{51}$ plane, for instance, many natural and most man-made objects). ${ }_{52}$ Most symmetric objects are mirror rather than rotational sym${ }_{53}$ metric [10].
${ }_{54}$ Symmetry Detection. Symmetry detection is to search the (par${ }_{55}$ tial or full) symmetry planes of a 3D object. The latest review ${ }_{56}$ on symmetry detection is available in [11]. We classify current

Figure 1: An overview of our view-based symmetry detection algorithm: an example of an ant model, its viewpoint entropy distribution, and the detected symmetry plane by matching the viewpoints.

57 symmetry detection techniques into the following four groups 58 according to the features employed.

${ }_{\text {з3 }}^{3}$ 3. Symmetry Detection Algorithm

134 3.1. 3D Model Normalization Based on CPCA

${ }_{135}$ Properly normalizing a 3D model before symmetry detec${ }_{136}$ tion can help us to minimize the searching space for symmetry
${ }_{137}$ planes to be some 2D planes that have certain common specific ${ }_{138}$ properties, i.e., passing the same 3D point. The process of 3D ${ }_{139}$ normalization includes three steps: 3D alignment (orientation
normalization), translation (position normalization), and scaling (size normalization).
3D model alignment is to transform a model into a canonical coordinate frame, where the representation of the model is independent of its scale, orientation, and position. Two commonly used 3D model alignment methods are Principal Component Analysis (PCA) [38] and its descendant Continuous Principal Component Analysis (CPCA) [8] which considers the area of each face. They utilize the statistical information of vertex coordinates and extract three orthogonal components with largest extent to depict the principal axes of a 3D model. CPCA is generally regarded as a more stable PCA-based method. In addition, Johan et al. [39] proposed a 3D alignment algorithm based on Minimum Projection Area (MPA) motivated by the fact that many objects have normalized poses with minimum projection areas. That is, for many objects, one of their canonical views has a minimum projection area compared to the other arbitrary views of the objects. Therefore, they align a 3D model by successively selecting two perpendicular axes with minimum projection areas while the third axis is the cross product of the first two axes. It is shown in [39] that MPA can align most 3D models in terms of axes accuracy (the axes are parallel to the ideal canonical coordinate frame: front-back, left-right, or top-bottom view). It is also robust to model variations, noise, and initial poses. However, compared with the PCA-based approaches, MPA takes a longer time to align 3D models while for this research we want to detect symmetry fast.

After a comparison (see Section 4.3 for more details) of the influences of different 3D model alignment algorithms on the efficiency, accuracy and robustness of our view-based symmetry detection approach, we choose CPCA to align a model before performing symmetry detection. After the alignment with CPCA, we translate the model such that the center of its bounding sphere locates at the origin and scale the model such that its bounding sphere has a radius of 1 . After this normalization, the symmetry plane(s) will pass the origin, which helps us to significantly reduce the searching space.

3.2. View Sampling and Viewpoint Entropy Distribution Generation

Vázquez et al. [7] proposed an information theory-related measurement named viewpoint entropy to depict the amount of information a view contains. It is formulated based on the Shannon entropy and incorporates both the projection area of each visible face and the number of visible faces into the definition. However, the original definition was developed based on perspective projection, thus we use its extended version defined in [40] for orthogonal projection.

For each model, we sample a set of viewpoints based on the Loop subdivision [41] on a regular icosahedron, denoted as L_{0}. We subdivide $L_{0} n$ times and denote the resulting mesh as L_{n}. Then, we set the cameras on its vertices, make them look at the origin (also the center of the model) and apply orthogonal projection for rendering. For a 3D model, to differentiate its different faces, we assign different color to each face during rendering. One example is shown in Fig. 2.

Figure 2: Face color coding example.

Figure 3: Viewpoint entropy distribution examples: $1^{\text {st }}$ row shows the models after alignment with CPCA; $2^{\text {nd }}$ row demonstrates their respective viewpoint entropy distribution. Blue: large entropy; green: mid-size entropy; red: small entropy.

The viewpoint entropy [40] of a view with m visible faces is defined as follows.

$$
\begin{equation*}
E=-\frac{1}{\log _{2}(m+1)} \sum_{j=0}^{m} \frac{A_{j}}{S} \log _{2} \frac{A_{j}}{S} \tag{1}
\end{equation*}
$$

195 where, A_{j} is the visible projection area of the $j^{\text {th }}(j=1,2, \cdots$, ${ }_{196} m$) face of a 3D model and A_{0} is the background area. S ${ }_{197}$ is the total area of the window where the model is rendered: ${ }_{198} S=A_{0}+\sum_{j=1}^{m} A_{j}$. Projection area is computed by counting the 199 total number of pixels inside a projected face.

Figure 3 shows the viewpoint entropy distributions of several 201 models by using L_{4} (2,562 sample viewpoints) for view sam202 pling and mapping their entropy values as colors on the surface ${ }_{203}$ of the spheres based on the HSV color model. We can see there 204 is a perfect correspondence between the symmetry of a model 205 and that of its viewpoint entropy distribution sphere: their sym206 metry planes are the same. Therefore, the symmetry of a 3D 207 model can be decided by finding the symmetry in the entropy 208 distribution, thus avoiding the high computational cost of direct 209 matching among its geometrical properties. What's more, since ${ }_{210}$ viewpoint entropy is computed based on the projection of each
${ }_{211}$ face, it is highly sensitive to small differences in the model. In 212 addition, each viewpoint simultaneously captures the properties 213 of many vertices and faces of a model as a whole, which also ${ }_{214}$ helps to significantly reduce the computational cost. We also 215 find that it is already accurate enough based on a coarse view ${ }_{216}$ sampling, such as using L_{1}, as demonstrated in Section 4.2. ${ }_{217}$ Motivated by these findings, we propose to detect the symmetry 218 of a 3D model based on its viewpoint entropy distribution.

219 3.3. Symmetry Detection Based on Iterative Feature Pairing

220 Even only using L_{1} (42 viewpoints) for view sampling, if ${ }_{221}$ based on a naive matching approach by first directly selecting 222 half of the total viewpoints and then matching them with the ${ }_{223}$ remaining half, it will result in $P(42,21)=2.75 \times 10^{31}$ combina224 tions. Thus, we develop a much more efficient symmetry de${ }_{225}$ tection method based on the following idea: iteratively select a 226 matching pair of viewpoints to generate a symmetry plane and ${ }^{227}$ then verify all the rest matching pairs to see whether they are ${ }_{228}$ symmetric as well w.r.t the symmetry plane or at least in the ${ }_{229}$ symmetry plane. The method is listed in Algorithm 1.

```
Algorithm 1: Symmetry detection by iterative pairing
    Input : \(N\) : number of viewpoints;
        \(\operatorname{Pos}[N]\) : positions of \(N\) viewpoints;
        \(E[N]\) : entropy values of \(N\) viewpoints;
        \(n\) : icosahedron subdivision level;
        \(\delta=0.015\) : entropy difference threshold;
        \(\epsilon=1 \mathrm{e}-5\) : small difference in double values
```

 Output: Symmetry planes' equations, if applicable
 begin
 // loop symmetric viewpoint pairs (u, v)
 for \(u \leftarrow 0\) to \(N-2\) do
 \(P_{u} \longleftarrow \operatorname{Pos}[u] ;\)
 for \(v \leftarrow u+1\) to \(N-1\) do
 if \(|E[u]-E[v]|>\delta * \min \{E[u], E[v]\}\) then
 continue;
 \(P_{v} \longleftarrow \operatorname{Pos}[v], T_{1} \longleftarrow \operatorname{normalize}\left(P_{u}-P_{v}\right)\);
 matches \(\longleftarrow 2\);
 // verify other matching pairs
 for \(i \leftarrow 0\) to \(N-2\) do
 if \(i==u\) OR \(i==v\) then
 continue;
 \(P_{i} \longleftarrow \operatorname{Pos}[i] ;\)
 for \(j \leftarrow i+1\) to \(N-1\) do
 if \(j==u O R j==v O R j==i\) then
 continue;
 if \(|E[i]-E[j]|>\delta * \min \{E[i], E[j]\}\)
 then
 continue;
 \(P_{j} \longleftarrow \operatorname{Pos}[j], P_{m} \longleftarrow \frac{P_{i}+P_{j}}{2} ;\)
 \(T_{2}=\) normalize \(\left(P_{i}-P_{j}\right)\);
 \(C T=T_{1} \times T_{2}, D T=T_{1} \cdot T_{2} ;\)
 if \(\|C T\|>\epsilon\) AND \(|D T| \neq 0\) then
 continue;
 if \(\left|T 1 \cdot P_{m}\right|>\epsilon\) then
 continue;
 matches=matches+2;
 break;
 // output the symmetry plane
 if matches \(\geq N-2^{n+2}\) then
 Output and visualize the symmetry plane:
 \(T_{1}[0] * x+T_{1}[1] * y+T_{1}[2] * z=0\)
 Figure 4 demonstrates several examples while Table 1 com${ }_{284}$ pares their timing information. We need to mention that due

Figure 4: Example symmetry detection results with mean/max error measures [44].

Table 1: Timing information (in seconds) comparison of our methods and other two state-of-the-art approaches: Mean shift [12] and 3D Hough [13] are based on a Pentium M 1.7 GHz CPU according to [13]; while our method is using an Intel(R) Xeon(R) X5675 @ 3.07GHz CPU.

Models	Cube	Beetle	Homer	Mannequin
\#Vertices	602	988	5,103	6,743
Mean shift	1.8	6.0	91.0	165.0
3D Hough	2.2	3.0	22.0	33.0
Our method	0.7	0.8	1.0	1.1

To measure the accuracy of the detected symmetry planes,

310 imum (w.r.t the bounding box diagonal) distance errors devel${ }_{311}$ oped in Metro [44] which is based on surface sampling and ${ }_{312}$ point-to-surface distance computation. Table 2 compares the ${ }_{313}$ mean and max errors of the four models in Table 1 (see Fig. 4 ${ }_{314}$ for the errors of other models) with the Mean shift [12] and ${ }_{315}$ 3D Hough transform [13] based methods. The errors are com${ }_{316}$ puted based on the original mesh and its reflected 3D model ${ }_{317}$ W.r.t the detected symmetry plane. As can be seen, our approach ${ }_{318}$ achieves much (4~6 times w.r.t 3D Hough transform and 11~44 ${ }_{319}$ times w.r.t Mean shift) better overall accuracy (see the mean er320 rors), in spite that a few points may not be the most accurate but ${ }_{321}$ they still maintain a moderate accuracy (indicated by the max 322 errors).

In addition, it is also very convenient to detect different de${ }^{324}$ grees of symmetries via control of the entropy difference thresh325 old δ. As shown in Fig. 4, there is a minor asymmetry on the the 326 tail part of the cow, while other parts are symmetric. If we want ${ }_{327}$ to obtain strict symmetry, a smaller threshold δ (e.g. by reduc${ }_{328}$ ing it by half: 0.0075) will give the result that it is asymmetric. ${ }_{329}$ We also find that our approach can simultaneously detect mul${ }_{330}$ tiple symmetry planes for certain types of meshes, such as the ${ }_{331}$ Eight, Skyscraper, Bottle, Cup, Desk Lamp, and Sword in [43] ${ }_{332}$ and [42], as shown in Fig. 5. But we need to mention due to ${ }_{33}$ the limitation of CPCA and the sensitivity property to minor ${ }_{334}$ changes of the viewpoint entropy feature, there are a few fail ${ }_{335}$ cases or certain cases where the proposed method can only par${ }_{336}$ tially determine a set of reflection planes. Examples of such ${ }_{337}$ models are non-uniform cubes, butterflies, tori, and pears, as ${ }_{338}$ demonstrated in Fig. 6: (a) because of non-uniform triangula${ }_{339}$ tion, the cube model cannot be perfectly aligned with CPCA, 340 resulting in the unsuccessful symmetry plane detection. How${ }_{341}$ ever, we have found that for most symmetric models (e.g. Mug, ${ }_{342}$ NonWheelChair, and WheelChair classes) that cannot be per${ }_{343}$ fectly aligned with CPCA [8], our approach can still success${ }_{344}$ fully detect their symmetry planes (e.g. the detection rates of ${ }_{345}$ Algorithm 1 for those types of models mentioned above are as ${ }_{346}$ follow: Mug: 7/8, NonWheelChair: 18/19, and WheelChair: ${ }_{347} 6 / 7$). Three examples can be found in Fig. 7; (b) the symmetry ${ }_{348}$ plane of the butterfly cannot be detected if based on the default ${ }_{349}$ threshold $\delta=0.015$, and only after increasing it till 0.0166 we
${ }_{350}$ can detect the plane; (c) only the red symmetry plane of the ${ }_{351}$ torus is detected based on the default threshold value, while ${ }_{352}$ both the red and green planes will be detected if we increase ${ }_{353}$ the threshold δ to 0.02 and all the three symmetry planes can ${ }_{354}$ be detected if we further increase it till 0.0215 ; (d) a false posi${ }_{355}$ tive (blue) symmetry plane of the pear model will appear under ${ }_{356}$ the condition of the default threshold, however the error will be ${ }_{357}$ corrected with a little smaller threshold of 0.0133 . An adaptive ${ }_{358}$ strategy of threshold selection is among our next work plan.
${ }_{359}$ Finally, we evaluate the overall performance of our view${ }_{360}$ point entropy distribution-based symmetry detection algorithm ${ }_{361}$ based on the NIST benchmark [42]. In total, we have de362 tected 647 symmetry planes for all the 800 models (some of ${ }_{363}$ them are asymmetric). To know the general performance of
${ }_{364}$ our algorithm, we manually observe the symmetry property of
365 each of the first 200/300/400 models and label its symmetry ${ }_{366}$ plane(s)/degree(s) to form the ground truth. Then, we exam-

Table 2: Mean/max errors [44] comparison of our methods and other two state-of-the-art approaches. For the Cube model, since there are three detected symmetry planes, we use their normal directions $(x / y / z)$ to differentiate them.

Methods	Cube		Beetle		Homer		Mannequin	
	mean	max	mean	max	mean	max	mean	max
Mean shift [12]	N.A.	N.A.	N.A.	N.A.	0.059	0.018	0.111	0.037
3D Hough [13]	N.A.	N.A.	N.A.	N.A.	0.007	0.001	0.046	0.009
Our method	$\begin{aligned} & 0.0005(x) \\ & 0.0057(y, z) \end{aligned}$	$\begin{aligned} & 0.0008(x) \\ & 0.0082(y, z) \end{aligned}$	0.0062	0.0062	0.0013	0.0036	0.0096	0.0210

(a) non-uniform (CPCA)

(c) partially (if $\delta<0.0215$)

(b) fail (if $\delta<0.0166$)

(d) one false positive (if $\delta>0.0133$)

Figure 5: Multiple detected symmetry planes examples.
Figure 6: Failed or partially failed examples.
${ }_{367}$ ine each detected symmetry plane to see whether it is a True ${ }^{3}$

Table 3: Overall symmetry detection performance of our algorithm based on the first 200/300/400 models of the NIST benchmark.

\# models	TP	FP	TN	FN
$\mathbf{2 0 0}$	141	36	37	32
$\mathbf{3 0 0}$	216	61	60	45
$\mathbf{4 0 0}$	292	94	77	77

Based on the TP, FP, TN and FN values, we compute the ${ }_{383}$ following nine detection evaluation metrics [45], as listed in ${ }_{384}$ Table 4: Tracker Detection Rate (TRDR, $\frac{T P}{T G}$), False Alarm

385 Rate (FAR, $\frac{F P}{T P+F P}$), Detection Rate (DR, $\frac{T P}{T P+F N}$), Speci386 ficity (SP, $\frac{T N}{F P+T N}$), Accuracy (AC, $\frac{T P+T N}{T F}$), Positive Prediction 387 (PP, $\frac{T P}{T P+F P}$), Negative Prediction (NP, $\frac{T N}{F N+T N}$), False Nega${ }_{388}$ tive Rate (FNR or Miss Rate, $\frac{F N}{F N+T P}$), and False Positive Rate $389\left(\mathrm{FPR}, \frac{F P}{F P+T N}\right)$, where the total number of symmetry planes 390 in the 200/300/400 Ground Truth models TG=191/278/388 391 and the total number of our detections (including both 392 trues and falses) $\mathrm{TF}=\mathrm{TP}+\mathrm{FP}+\mathrm{TN}+\mathrm{FN}=246 / 382 / 540$. As can ${ }_{393}$ be seen, besides the better accuracy in the detected sym394 metry planes as mentioned before, our detection perfor395 mance (e.g., for the first 200/300/400 models, Detection ${ }_{396}$ Rate DR $=81.50 \% / 82.76 \% / 79.13 \%$, and Tracker Detection Rate ${ }_{397}$ TRDR $=73.82 \% / 77.70 \% / 75.26 \%$) is also good enough. What's ${ }_{398}$ more, the minor difference among the detection performance 399 of our algorithm on the 200, 300 and 400 models shows that 400 the overall performance of our algorithm is stable and robust in 401 terms of model type diversity and number of models evaluated. 402 In a word, as demonstrated by all the above evaluation re403 sults, better accuracy and efficiency than state-of-the-art ap404 proaches have been achieved by our simple but effective sym405 metry detection method. It also has good stability in dealing 406 with various model types.

407 4.2. Evaluation w.r.t to Robustness

${ }_{408}$ Robustness to View Sampling. First, we also test our algorithm 409 with different levels of subdivided icosahedron for the view

Table 4: Overall symmetry detection accuracy of our algorithm based on the first 200/300/400 models of the NIST benchmark.

\# models	TRDR	FAR	DR	SP	AC	PP	NP	FNR	FPR
$\mathbf{2 0 0}$	73.82%	20.34%	81.50%	50.68%	72.36%	79.66%	53.62%	18.50%	49.32%
$\mathbf{3 0 0}$	77.70%	22.02%	82.76%	49.59%	72.25%	77.98%	57.14%	17.24%	50.41%
$\mathbf{4 0 0}$	75.26%	24.35%	79.13%	45.03%	68.33%	75.65%	50.00%	20.87%	54.97%

${ }_{410}$ sampling, e.g., L_{2}, L_{3}, and L_{4}. Table 5 compares the mean/max ${ }_{411}$ errors and running time for the four models listed in Table 1. 412 A 413 414 415 416
${ }_{417}$ Robustness to Number of Vertices. We also test the robustness 418

Table 6: Mean/max errors and timing comparison of our algorithm w.r.t the robustness to different number of vertices. For the Cube model, since there are three detected symmetry planes, we use their normal directions $(x / y / z)$ to

Models	\#Vertices	mean	max	time
Elephant	29,285	0.0003	0.0027	3.0
	116,920	0.0003	0.0027	12.3
	467,252	0.0003	0.0027	48.4
Mannequin	17,450	0.0091	0.0210	2.6
	29,194	0.0091	0.0210	3.8
	467,587	0.0091	0.0210	48.2
Cube	6,146	0.0050 (x)	0.0077 (x)	1.5
		0.0082 (y)	0.0137 (y)	
		$0.0061(z)$	0.0093 (z)	
	24,578	0.0002 (x)	0.0003 (x)	3.0
		0.0002 (y)	0.0004 (y)	
		$0.0001(z)$	0.0001 (z)	
	196,610	0.0003 (x)	0.0005 (x)	5.8
		0.0003 (y)	0.0004 (y)	
		0.0001 (z)	0.0002 (z)	

${ }_{434}$ Robustness to Noise. Finally, we want to test the versatility as ${ }_{435}$ well as sensitivity of our algorithm when processing a modified
${ }_{436}$ version of a symmetric model by adding a certain amount of ${ }_{437}$ noise. Due to certain factors such as creation, storage, trans${ }_{48}$ mission, and modification, 3D models can be noisy. A symme${ }_{439}$ try detection algorithm should be robust, thus still applicable in 440 the case of small amounts of noise. We test the robustness of ${ }_{441}$ our symmetry detection algorithm against noise by randomly 442 adding a small amount of displacement to the vertices of a 3D 443 model.
444 Figure 8 demonstrates the detected symmetry planes of three 446 the detection results w.r.t the mean/max errors and the mini447 mum entropy difference threshold value, denoted by $\min \delta$, for ${ }_{448}$ a successful detection of the symmetry plane(s) of a model. The 449 results show that our algorithm has a good robustness property ${ }_{450}$ against a small amount of noise: by choosing different levels ${ }_{451}$ of entropy difference threshold values δ, we will have differ${ }_{452}$ ent tolerant levels of noise to detect symmetry planes. That ${ }_{453}$ is, a symmetry detection will be possible if we choose a big${ }_{454}$ ger threshold if there exists a bigger amount of noise. This is 455 contributed to our utilization of the accurate viewpoint entropy ${ }_{456}$ feature with a threshold for the feature paring process, since in ${ }_{457}$ general viewpoint entropy is stable under small changes in the ${ }_{458}$ vertices' coordinates of a 3D model.

459 4.3. Evaluation w.r.t Different 3D Alignment Algorithms

460 Considering the apparent advantages of the Minimum Pro${ }_{461}$ jection Area (MPA)-based 3D alignment algorithm in finding 462 the ideal canonical coordinate frame of a model, besides CPCA, 463 we also evaluate the performance of a variation of our algorithm ${ }^{464}$ by only replacing the CPCA algorithm module with MPA. ${ }_{465}$ However, we found that the results are not as stable as those ${ }_{466}$ of the original CPCA-based version in terms of the percentage ${ }^{467}$ of either true or false positives based on the same threshold (δ). ${ }_{468}$ Choosing the threshold is also more difficult and sensitive when ${ }^{469}$ employing MPA since bigger threshold usually results in more ${ }_{470}$ false positives.
${ }^{471}$ An initial analysis based on the experimental results is as fol${ }_{472}$ lows. Due to the viewpoint sampling precision in MPA, espe${ }_{473}$ cially for the search of the second principle axis of a 3D model ${ }_{474}$ which is based on a step of 1 degree, the axes found by MPA is 475 not precise enough for this viewpoint entropy-based symmetry 476 detection purpose, though for the 3D model retrieval applica${ }_{477}$ tion, as mentioned in the paper, the accuracy is enough. How${ }_{478}$ ever, since our algorithm directly uses the cameras' locations 479 to compute the symmetry plane(s) by just utilizing their cor480 respondence relationships, it requires that the 3D model is as ${ }_{481}$ accurately as possible aligned w.r.t the three standard axes in 482 order to reduce the search space and the number of viewpoints ${ }_{48}$ to achieve better efficiency.

Table 5: Mean/max errors and timing comparison of our algorithm with different view sampling. For the Cube model, since there are three detected symmetry planes, we use their normal directions $(x / y / z)$ to differentiate them.

| View | | | | | | | | | | | | |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| sampling | Cube | | | Beetle | | | Homer | | | Mannequin | | |
| | mean | max | time | mean | \max | time | mean | \max | time | mean | max | time |
| | $0.0005(x)$ | $0.0008(x)$ | | | | | | | | | | |
| L_{1} | $0.0057(y)$ | $0.0082(y)$ | 0.7 | 0.0062 | 0.0062 | 0.8 | 0.0013 | 0.0036 | 1.0 | 0.0096 | 0.0210 | 1.1 |
| | $0.0057(z)$ | $0.0082(z)$ | | | | | | | | | | |
| L_{2} | $0.0005(x)$ | $0.0008(x)$ | 3.4 | 0.0062 | 0.0062 | 3.6 | 0.0013 | 0.0036 | 3.8 | 0.0096 | 0.0210 | 3.7 |
| L_{3} | $0.0057(y)$ | $0.0082(y)$ | 22.6 | 0.0062 | 0.0062 | 16.9 | 0.0013 | 0.0036 | 19.5 | 0.0096 | 0.0210 | 27.3 |
| L_{4} | $0.0057(z)$ | $0.0082(z)$ | 2481.7 | 0.0062 | 0.0062 | 1048.0 | 0.0013 | 0.0036 | 1600.5 | 0.0096 | 0.0210 | 3465.1 |

Table 7: Comparison of the mean/max errors and the minimum entropy difference threshold values min δ of our algorithm for successful symmetry detections of the variations of three example models after we add different levels of noise

Noise	Beetle			Homer			Mannequin		
level (\%)	mean	\max	$\min \delta$	mean	\max	$\min \delta$	mean	\max	$\min \delta$
$\mathbf{0 . 0}$	0.006	0.006	0.003	0.001	0.004	0.002	0.010	0.021	0.012
$\mathbf{0 . 1}$	0.010	0.010	0.003	0.004	0.006	0.002	0.010	0.022	0.011
$\mathbf{0 . 5}$	0.019	0.022	0.008	0.005	0.011	0.003	0.012	0.022	0.009
$\mathbf{1 . 0}$	0.010	0.022	0.013	0.008	0.019	0.007	0.012	0.026	0.012

What's more, to align a 3D model, MPA usually takes around 30 seconds if based on 40 Particle Swarm Optimization (PSO) iterations while CPCA needs less than 1 second, which demonstrates another advantage of CPCA over MPA. In addition, we also have found that if based on CPCA, using bounding sphere for the 3D normalization can achieve more accurate results than the case of using bounding box. This should be due to the fact that we also sample the viewpoints on the same bounding sphere. However, if based on MPA, either using bounding sphere or bounding box has only trivial influence on the symmetry detection performance. The reason is that the accuracy of the found axes has much more direct and decisive influence on the symmetry detection performance. In conclusion, using CPCA is more stable, accurate and efficient than MPA, but we believe an improved MPA algorithm should be more promising in thoroughly solving existing errors in CPCA and achieving even better results, which is among our future work.

4.4. Limitations

Firstly, though in Section 4.1 we have performed an overall symmetry detection evaluation of our algorithm on the first 200/300/400 models of the NIST benchmark, we could not perform a comparative evaluation, similar to the one we did based on the four models in Section 4.1, in terms of the accuracy of the detected symmetry planes. The main difficulty is that: to the best of our knowledge, few prior symmetry detection papers evaluated their symmetry detection performance on a benchmark dataset, which is also not available till now. In addition, their code is not publicly available to facilitate such comparative evaluation.
Secondly, we mainly concentrated on global symmetry detection performance when we compared our algorithm with Mean shift [12] and 3D Hough transform [13], though as mentioned in Section 3.3 our approach can perform approximate

517 symmetry detection as well: "using a bigger threshold, we al518 low some minor differences and detect rough symmetry prop519 erties".
520 In fact, global approximate symmetry detection is one of the 521 two research topics (another one is, partial and approximate 522 symmetry detection) in Mean shift [12]. While, global sym523 metry detection is the only topic for 3D Hough transform [13], 524 which also compares with Mean shift [12] in its experiment sec525 tion, in terms of the performance of global symmetry detection ${ }_{526}$ accuracy and efficiency, and based on the same model set as 527 ours. All the available (for us) models selected from the model ${ }_{528}$ set have been tested and compared in Fig. 4 and Tables 1~2. ${ }_{529}$ We also referred to some of the evaluation results of 3D Hough 530 transform [13] as well for a quantitative comparison.

Although we have noticed that there are other related global 532 symmetry detection papers, such as [47] and [48], mainly due ${ }_{533}$ to the fact that their code/executable is not available, we have ${ }_{534}$ not performed a comparison with them. But, according to the ${ }_{535}$ above facts, we believe it is enough and even better to compare ${ }_{536}$ with the two more recent works: Mean shift [12] and 3D Hough 537 transform [13].

538 5. Applications

Finally, we also explore two interesting applications of our ${ }_{540}$ symmetry detection algorithm: 3D model alignment and best ${ }_{541}$ view selection.

542 5.1. 3D Model Alignment

${ }_{543}$ As we know, the main shortcoming of PCA-based approach 544 is that the directions of the largest extent found based on the ${ }_{545}$ purely numerical PCA analysis are not necessarily parallel to 546 the axes of the ideal canonical coordinate frame of a 3D model. ${ }_{547}$ This is because during the alignment process it lacks semantic

Figure 7: Examples to demonstrate that our algorithm can successfully detect the symmetry planes for most symmetric models that are not perfectly aligned with CPCA: first column shows the CPCA alignment results; second column demonstrates the detected symmetry planes.
analysis in a 3D model's symmetry [2] [15], or its stability [49] after the alignment.
Based on the detected symmetry planes and the basic idea of PCA, it is straightforward to apply our algorithm to 3D alignment: the first principal axis gives the maximum symmetry degree (that is, it has the smallest total matching cost in terms of viewpoint entropy for the symmetric viewpoint pairs w.r.t the axis) and the second principal axis is both perpendicular to the first axis and also has the maximum symmetry degree among all the possible locations within the perpendicular plane. Finally, we assign the orientations of each axis. This alignment algorithm is promising to achieve similar results as those in [15] which is based on a planar-reflective symmetry transform, while outperforms either PCA or CPCA for certain models with symmetry plane(s). However, our algorithm has better efficiency than [15], thus will be more promising for related real-time applications including 3D model retrieval.
Now we present some experimental results of the above

Figure 8: Examples indicating our algorithm's robustness to noise: symmetry detection results of our algorithm in dealing with model variations with different levels of noise. The first column: original 3D models without adding any noise; The second to the fourth columns: detection results of the models when we add noise by randomly moving each vertex with a small displacement vector whose norm is bounded by $0.1 \%, 0.5 \%$, and 1% of the diameter of each model's bounding box, respectively.

566 alignment algorithm. As mentioned in Section 2, there are ${ }_{567}$ four reflection symmetry types: cyclic, dihedral, rotational, ${ }_{568}$ and unique. In fact, some of our previous experiments already ${ }_{569}$ demonstrate the main alignment results of several models which 570 fall into three of the above four types. For instance, Fig. 5 571 shows the two/three principal planes (thus axes) of six models 572 that have a cyclic reflection symmetry (see (c) bottle, (d) cup, 573 and (e) desk lamp), or dihedral reflection symmetry (see (a) ${ }_{574}$ eight, (b) skyscraper, and (f) sword). Fig. 4 and Fig. 7 demon575 strate the first principle planes/axes of several example models 576 with a unique symmetry based on our idea. It is a trivial task ${ }_{577}$ to continue to find other principle axes. For completeness, for 578 example, in Fig. 9, we demonstrate the complete alignment re579 sults of three models that have a rotational symmetry, or do 580 not have any reflection symmetry (zero symmetry), or have an ${ }_{581}$ approximate symmetry. In a word, the alignment algorithm is ${ }_{582}$ promising to be used in dealing with diverse types of models ${ }_{583}$ with different degrees of symmetries.

584 5.2. Best View Selection

585
Here, we provide another option to define and search for the ${ }_{586}$ best view of a 3D model based on our algorithm. Our definition ${ }_{587}$ of symmetry is related to viewpoint entropy which indicates the ${ }_{588}$ amount of information that a view contains. In an analogy to 3D 589 model alignment, we use the total viewpoint entropy matching ${ }_{590}$ cost, that is an indicator of asymmetry, to indicate the goodness ${ }_{591}$ of a candidate best view corresponding to a viewpoint: the big${ }_{592}$ ger the summed matching cost is, the better (more asymmetry) ${ }_{593}$ the viewpoint is, since it indicates that there is less redundant in-

Figure 9: Alignment results of Icosahderon and two other example models D00606.off has no symmetry plane, while MusicalInstrument type model D00292.off has a roughly symmetry plane.
formation in the view. When we compute the viewpoint matching cost of a candidate view, we only consider visible viewpoints as seen from the candidate view, for instance, within 180 degrees. Algorithm 1 targets finding the minimum viewpoint matching cost in terms of entropy, while we now want to find the viewpoint that gives a maximum viewpoint entropy matching cost. Thus, we develop our algorithm for this application by modifying Algorithm 1, including changing the " $>$ "s or " \geq "s to their inverses and setting a bigger threshold δ (e.g., 0.2 in our experiments). The complete best view selection algorithm is given in Algorithm 2. Fig. 10 demonstrates several promising informative example results based on the Algorithm 2 (using L_{1} for view sampling).

${ }^{507}$ 6. Conclusions and Future Work

 609In this paper, we have proposed an efficient and novel viewbased symmetry detection algorithm based on viewpoint en-

${ }_{649}$ Acknowledgments

The work of Bo Li, Yuxiang Ye and Yijuan Lu is supported ${ }_{51}$ by the Texas State University Research Enhancement Program 652 (REP), Army Research Office grant W911NF-12-1-0057, and ${ }_{653}$ NSF CRI 1305302 to Dr. Yijuan Lu.

Henry Johan is supported by Fraunhofer IDM@NTU, which 655 is funded by the National Research Foundation (NRF) and man${ }_{656}$ aged through the multi-agency Interactive \& Digital Media Pro${ }_{657}$ gramme Office (IDMPO) hosted by the Media Development ${ }_{658}$ Authority of Singapore (MDA).

${ }_{659}$ References

[1] Y. Liu, H. Hel-Or, C. S. Kaplan, L. J. V. Gool, Computational symmetry in computer vision and computer graphics, Foundations and Trends in Computer Graphics and Vision 5 (2010) 1-195.

Figure 10: Best views (in terms of asymmetry property) of eight example models. The two numbers in each parenthesis are the running time (in seconds) for the model based on a computer with an $\operatorname{Intel}(\mathrm{R}) \mathrm{Xeon}(\mathrm{R}) \mathrm{X} 5675$ @ 3.07 GHz CPU and the number of vertices the model has.
[2] M. Chaouch, A. Verroust-Blondet, Alignment of 3D models, Graphical 70 Models 71 (2009) 63-76.
[3] M. M. Kazhdan, T. A. Funkhouser, S. Rusinkiewicz, Symmetry descriptors and 3D shape matching, in: J.-D. Boissonnat, P. Alliez (Eds.), Symp. on Geom. Process., volume 71 of ACM International Conference Proceeding Series, Eurographics Association, 2004, pp. 115-23.
[4] J. Podolak, A. Golovinskiy, S. Rusinkiewicz, Symmetry-enhanced remeshing of surfaces, in: A. G. Belyaev, M. Garland (Eds.), Symp. on Geom. Process., volume 257 of ACM International Conference Proceeding Series, Eurographics Association, 2007, pp. 235-42.
[5] P. D. Simari, D. Nowrouzezahrai, E. Kalogerakis, K. Singh, Multiobjective shape segmentation and labeling, Comput. Graph. Forum 28 (2009) 1415-25.
[6] K. Sfikas, T. Theoharis, I. Pratikakis, Rosy+: 3D object pose normalization based on PCA and reflective object symmetry with application in 3D object retrieval, Int. J. Comput. Vis. 91 (2011) 262-79.
[7] P.-P. Vázquez, M. Feixas, M. Sbert, W. Heidrich, Viewpoint selection using viewpoint entropy, in: T. Ertl, B. Girod, H. Niemann, H.-P. Seidel (Eds.), VMV, Aka GmbH, 2001, pp. 273-80.
[8] D. Vranic, 3D Model Retrieval, Ph.D. thesis, University of Leipzig, 2004.
[9] B. Li, H. Johan, Y. Ye, Y. Lu, Efficient view-based 3D reflection symmetry detection, in: SIGGRAPH Asia 2014 Creative Shape Modeling and Design, Shenzhen, China, December 03-06, 2014, 2014, p. 2. URL: http://doi.acm.org/10.1145/2669043.2669045. doi:10.1 145/2669043.2669045.
10] T. Sawada, Z. Pizlo, Detecting mirror-symmetry of a volumetric shape from its single 2D image, in: CVPR Workshops, CVPRW '08, 2008, pp. 1-8. doi:10.1109/CVPRW.2008.4562976.
11] N. J. Mitra, M. Pauly, M. Wand, D. Ceylan, Symmetry in 3D geometry: Extraction and applications, in: EUROGRAPHICS State-of-the-art Report, 2012.
12] N. J. Mitra, L. J. Guibas, M. Pauly, Partial and approximate symmetry detection for 3D geometry, ACM Trans. Graph. 25 (2006) 560-8.
13] D. Cailliere, F. Denis, D. Pele, A. Baskurt, 3D mirror symmetry detection using hough transform, in: ICIP, IEEE, 2008, pp. 1772-5.
[14] H. Zabrodsky, S. Peleg, D. Avnir, Symmetry as a continuous feature, IEEE Trans. Pattern Anal. Mach. Intell. 17 (1995) 1154-66. Y. Xiong, Symmetry hierarchy of man-made objects, Comput. Graph. Forum 30 (2011) 287-96.
[27] V. G. Kim, Y. Lipman, X. Chen, T. A. Funkhouser, Möbius transformations for global intrinsic symmetry analysis, Comput. Graph. Forum 29 (2010) 1689-700.
7_{36} [28] Y. Lipman, T. A. Funkhouser, Möbius voting for surface correspondence,

ACM Trans. Graph. 28 (2009).
29] H. Wang, P. Simari, Z. Su, H. Zhang, Spectral global intrinsic symmetry invariant functions, Proc. of Graphics Interface (2014).
30] J. Sun, M. Ovsjanikov, L. J. Guibas, A concise and provably informative multi-scale signature based on heat diffusion, Comput. Graph. Forum 28 (2009) 1383-92.

31] M. Aubry, U. Schlickewei, D. Cremers, The wave kernel signature: A quantum mechanical approach to shape analysis, in: ICCV Workshops, IEEE, 2011, pp. 1626-33.
32] A. V. Tuzikov, O. Colliot, I. Bloch, Evaluation of the symmetry plane in 3D MR brain images, Pattern Recogn. Lett. 24 (2003) 2219-33.
33] J. Tedjokusumo, W. K. Leow, Normalization and alignment of 3D objects based on bilateral symmetry planes, in: T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S. Chua, L.-T. Chia (Eds.), MMM (1), volume 4351 of Lecture Notes in Computer Science, Springer, 2007, pp. 74-85.
34] A. Golovinskiy, J. Podolak, T. A. Funkhouser, Symmetry-aware mesh processing, in: E. R. Hancock, R. R. Martin, M. A. Sabin (Eds.), IMA Conference on the Mathematics of Surfaces, volume 5654 of Lecture Notes in Computer Science, Springer, 2009, pp. 170-88.
35] A. Berner, M. Wand, N. J. Mitra, D. Mewes, H.-P. Seidel, Shape analysis with subspace symmetries, Comput. Graph. Forum 30 (2011) 277-86.
36] A. Tagliasacchi, H. Zhang, D. Cohen-Or, Curve skeleton extraction from incomplete point cloud, ACM Transactions on Graphics (Special Issue of SIGGRAPH) 28 (2009) Article 71, 9 pages.
37] J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, Z. Su, Point cloud skeletons via laplacian-based contraction, in: Proc. of IEEE Conf. on Shape Modeling and Applications, 2010, pp. 187-97.
38] I. Jolliffe, Principal Component Analysis (2nd edition), Springer, Heidelberg, 2002.
39] H. Johan, B. Li, Y. Wei, Iskandarsyah, 3D model alignment based on minimum projection area, The Visual Computer 27 (2011) 565-74.
40] S. Takahashi, I. Fujishiro, Y. Takeshima, T. Nishita, A feature-driven approach to locating optimal viewpoints for volume visualization, in: IEEE Visualization, IEEE Computer Society, 2005, pp. 495-502.
41] C. Loop, Smooth Subdivision Surfaces Based on Triangles, Master's thesis, University of Utah, 1987.
42] R. Fang, A. Godil, X. Li, A. Wagan, A new shape benchmark for 3D object retrieval, in: G. Bebis, et al. (Eds.), ISVC (1), volume 5358 of Lecture Notes in Computer Science, Springer, 2008, pp. 381-92.
43] AIM@SHAPE, http://shapes.aimatshape.net/, 2014.
44] P. Cignoni, C. Rocchini, R. Scopigno, Metro: Measuring error on simplified surfaces, Comput. Graph. Forum 17 (1998) 167-74.
45] V. Manohar, P. Soundararajan, H. Raju, D. B. Goldgof, R. Kasturi, J. S. Garofolo, Performance evaluation of object detection and tracking in video, in: P. J. Narayanan, S. K. Nayar, H.-Y. Shum (Eds.), ACCV (2), volume 3852 of Lecture Notes in Computer Science, Springer, 2006, pp. 151-61.
46] MeshLab, http://meshlab.sourceforge.net/, 2014.
47] C. Sun, J. Sherrah, 3d symmetry detection using the extended gaussian image, IEEE Trans. Pattern Anal. Mach. Intell. 19 (1997) 164-8.
[48] M. M. Kazhdan, B. Chazelle, D. P. Dobkin, T. A. Funkhouser, S. Rusinkiewicz, A reflective symmetry descriptor for 3d models, Algorithmica 38 (2003) 201-25.
49] H. Fu, D. Cohen-Or, G. Dror, A. Sheffer, Upright orientation of manmade objects, ACM Trans. Graph. 27 (2008).

> Algorithm 2: Best view selection based on maximum viewpoint entropy matching cost.

Input : N : number of viewpoints;
$\operatorname{Pos}[N]$: positions of N viewpoints;
$E[N]$: entropy values of N viewpoints; n : icosahedron subdivision level;
$\delta=0.2$: entropy difference threshold; $\epsilon=1 \mathrm{e}-5$: small difference in double values
Output: Symmetry planes' equations, if applicable begin
// initialize maximum viewpoint entropy
matching cost
max_cost $\longleftarrow 0.0$;
// loop viewpoint pairs (u, v)
for $u \leftarrow 0$ to $N-1$ do
$P_{u} \longleftarrow \operatorname{Pos}[u] ;$
for $v \leftarrow 0$ to $N-1$ do
if $u==v$ then
continue;
$P_{v} \longleftarrow \operatorname{Pos}[v], T_{1} \longleftarrow \operatorname{normalize}\left(P_{u}-P_{v}\right)$;
// initialize the viewpoint entropy
matching cost for the current
view
cur_cost $\longleftarrow 0$;
// matching other viewpoint pairs
for $i \leftarrow 0$ to $N-2$ do
if $i==u$ OR $i==v$ then
continue;
$P_{i} \longleftarrow \operatorname{Pos}[i] ;$
for $j \leftarrow i+1$ to $N-1$ do
if $j==u O R j==v O R j==i$ then
continue;
$P_{j} \longleftarrow \operatorname{Pos}[j], P_{m} \longleftarrow \frac{P_{i}+P_{j}}{2} ;$
$T_{2}=$ normalize $\left(P_{i}-P_{j}\right)$;
$C T=T_{1} \times T_{2}, D T=T_{1} \cdot T_{2} ;$
if $|D T|<0$ then
continue;
if $||C T \|>\epsilon A N D| D T| \neq 0$ then continue;
if $\left|T 1 \cdot P_{m}\right|>\epsilon$ then
continue;
cur_cost=cur_cost $+|E[i]-E[j]|$;
break;
if cur_cost $>$ max_cost then
max_cost $=$ cur_cost;
$T \longleftarrow T_{1} ;$
// output the best view
$T[0] * x+T[1] * y+T[2] * z=0$

