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Abstract

Symmetries exist in many 3D models while efficiently finding their symmetry planes is important and useful for many related
applications. This paper presents a simple and efficientview-basedreflection symmetry detection method based on the viewpoint
entropy features of a set of sample views of a 3D model. Beforesymmetry detection, we align the 3D model based on the Continuous
Principal Component Analysis (CPCA) method. To avoid the high computational load resulting from a directly combinatorial
matching among the sample views, we develop a fast symmetry plane detection method by first generating a candidate symmetry
plane based on a matching pair of sample views and then verifying whether the number of remaining matching pairs is within
a minimum number.Experimental results and two related applications demonstrate better accuracy, efficiency, robustness and
versatilityof our algorithm than state-of-the-art approaches.
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1. Introduction1

Symmetry is an important clue for geometry perception: it is2

not only in many man-made models, but also widely exists in3

the nature[1]. Symmetry has been used in many applications4

such as: 3D alignment [2], shape matching [3], remeshing [4],5

3D model segmentation [5] and retrieval [6].6

However, existing symmetry detection algorithms still have7

much room for improvement in terms of both simplicity and8

efficiency in detecting symmetry planes, as well as the degree9

of freedom to find approximate symmetry planes for a roughly10

symmetric 3D model.In addition, most of the existing symme-11

try detection methods are geometry-based, thustheir computa-12

tional efficiency will be tremendously influencedby the number13

of vertices of a model.Though sampling and simplification can14

be used to reduce the number of vertices, they also decrease the15

shape accuracy and cause deviations in geometry. Therefore, a16

symmetry detection algorithm often directly uses originalmod-17

els as its input, as can be found in many existing related papers.18

Motivated by the symmetric patterns existing in the view-19

point entropy [7] distribution of a symmetric model, we pro-20

pose a novel and efficient view-basedsymmetry detection al-21

gorithm (see Fig. 1)which finds symmetry plane(s) by match-22

ing the viewpoint entropy features of a set of sample views ofa23

3D model aligned beforehandusingContinuous Principal Com-24

ponent Analysis (CPCA) [8]. Based on experimental results,25

we find that our symmetry detection algorithm ismoreaccu-26

rate (in terms of both the positions of detected symmetry planes27
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and sensitivity to minor symmetry differences), efficient, robust28

(e.g. to the number of vertices and parameter settings such as29

view sampling),and versatile in finding symmetry planes of di-30

verse models.31

In the rest of the paper, we first review the related work32

in Section 2. In Section 3, we present the viewpoint entropy33

distribution-based symmetry detection algorithm. Section 4 de-34

scribes diverse experimental evaluation and comparison results35

of the detection algorithm. In Section 5, we show two interest-36

ing applications of our symmetry detection idea in 3D model37

alignment and best view selection. Section 6 concludes the pa-38

per and lists several future research directions. This paper is an39

extension of our prior publication [9].40

2. Related Work41

Symmetry Types. Though there are different types of symme-42

try, reflection symmetry is the most important and commonly43

studied. Chaouch and Verroust-Blondet [2] introduced four44

types of reflection symmetries, which are cyclic (several mirror45

planes passing through a fixed axis), dihedral (several mirror46

planes passing through a fixed axis with one perpendicular to47

the axis), rotational symmetry (looks similar after rotation, e.g.,48

different platonic solids, like tetrahedron, octahedron, icosahe-49

dron and dodecahedron) and unique symmetry (only one mirror50

plane, for instance, many natural and most man-made objects).51

Most symmetric objects are mirror rather than rotational sym-52

metric [10].53

Symmetry Detection. Symmetry detection is to search the (par-54

tial or full) symmetry planes of a 3D object. The latest review55

on symmetry detection is available in [11]. We classify current56
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Figure 1:An overview of our view-based symmetry detection algorithm: an example of an ant model, its viewpoint entropy distribution, and the detected symmetry
plane by matching the viewpoints.

symmetry detection techniques intothe following four groups57

according to the features employed.58

Symmetry detection based on pairing point features. This59

type of approach first samples points on the surface of a 3D60

model and then extracts their features. After that, it finds point61

pairs by matching the points. Based on the point pairs, symme-62

try evidences are accumulated to decide the symmetry plane.63

Two typical algorithms are [12] and [13]. To decide the symme-64

try plane, Mitra et al. [12] adopted a stochastic clusteringand65

region-growing approach, while Calliere et al. [13] followed66

the same framework of pairing and clustering, but utilized 3D67

Hough transform to extract significant symmetries. In fact,the68

initial idea of this approach can be traced back to the symmetry69

distance defined in [14]. Podolak et al. [15] proposed a planar-70

reflective symmetry transform and based on the transform they71

defined two 3D features named center of symmetry and prin-72

cipal symmetry axes, which are useful for related applications73

such as 3D model alignment, segmentation, and viewpoint se-74

lection.75

Symmetry detection based on pairing line features.76

Bokeloh et al. [16] targeted on the so-called rigid symmetries77

by matching feature lines. Rigid symmetries are the reoccur-78

ring components with differences only in rigid transformations79

(translation, rotation and mirror). They first extracted feature80

lines of a 3D model, then performed feature line matching, and81

finally validated the symmetry based on the feature correspon-82

dence information by adopting a region growing approach, as83

well.84

Symmetry detection based on 2D image features. Sawada85

and Pizlo [10] [17] performed symmetry detection based ona86

single 2D imageof a volumetric shape. First, a polyhedron87

is recovered from the single 2D image based on a set of con-88

straints including 3D shape symmetry, minimum surface area,89

maximum 3D compactness and maximum planarity of con-90

tours. Then, they directly compared the two halves ofthe poly-91

hedronto decide its symmetry degree.From a psychological92

perspective, Zou and Lee [18] [19] proposed one method to93

detect the skewed rotational and mirror symmetry respectively94

from a CAD line drawing based on a topological analysis of the95

edge connections.96

Other symmetry detection approaches. Martinet et al. [20]97

proposed a 3D feature named generalized moments for symme-98

try detection. Rather than directly computing original moments99

features, they mapped them into another feature space by spher-100

ical harmonics transform and then searched for the global sym-101

metry in the new feature space.Xu et al. [21] developed an al-102

gorithm to detect partial intrinsic reflectional symmetry based103

on an intrinsic reflectional symmetry axis transform. Afterthat,104

a multi-scale partial intrinsic symmetry detection algorithm was105

proposed in [22]. There are also techniques to detect some other106

specific symmetries, such as curved symmetry [23] and symme-107

tries of non-rigid models [24] [25], as well as symmetry hier-108

archy of a man-made 3D model [26]. Kim et al. [27] detected109

global intrinsic symmetries of a 3D model based on Möbius110

Transformations [28], a stereographic projection approach in111

geometry. Recently, Wang et al. [29] proposed Spectral Global112

Intrinsic Symmetry Invariant Functions (GISIFs), which are ro-113

bust to local topological changes compared to the GISIFs ob-114

tained from geodesic distances. Their generality and flexibil-115

ity outperform the two classical GISIFs: Heat Kernel Signature116

(HKS) [30] and Wave Kernel Signature (WKS) [31].117

All above and existing symmetry detection techniques can118

be categorized into geometry-based approach. However, dis-119

tinctively different from them, we adopt a view-based approach120

to accumulate the geometrical information of many verticesto-121

gether into a view in order to more efficiently detect the reflec-122

tion symmetry of a 3D model, which also serves as the novelty123

and main contribution of our method.124

Symmetry Applications. As an important shape feature, sym-125

metry is useful for many related applications. For example,126

they include symmetry plane detection for 3D MRI image [32],127

shape matching [3] [15], 3D model alignment [33] [6], shape128

processing and analysis [34] including remeshing [4], sym-129

metrization [12], viewpoint selection [15], and subspace shape130

analysis [35], 3D segmentation [15] [5] [29], and curve skeleton131

extraction [36] [37].132

3. Symmetry Detection Algorithm133

3.1. 3D Model Normalization Based on CPCA134

Properly normalizing a 3D model before symmetry detec-135

tion can help us to minimize the searching space for symmetry136

planesto be some 2D planes that have certain common specific137

properties, i.e., passing the same 3D point. The process of 3D138

normalization includes three steps: 3D alignment (orientation139

2



normalization), translation (position normalization), and scal-140

ing (size normalization).141

3D model alignment is to transform a model into a canonical142

coordinate frame, where the representation of the model is inde-143

pendent of its scale, orientation, and position. Two commonly144

used 3D model alignment methods are Principal Component145

Analysis (PCA) [38] and its descendant Continuous Principal146

Component Analysis (CPCA) [8] which considers the area of147

each face. They utilize the statistical information of vertex co-148

ordinates and extract three orthogonal components with largest149

extent to depict the principal axes of a 3D model. CPCA is gen-150

erally regarded as a more stable PCA-based method. In addi-151

tion, Johan et al. [39] proposed a 3D alignment algorithm based152

on Minimum Projection Area (MPA)motivated by the fact that153

many objects have normalized poses with minimum projection154

areas. That is, for many objects, one of their canonical views155

has a minimum projection area compared to the other arbitrary156

views of the objects. Therefore, they align a 3D modelby suc-157

cessively selecting two perpendicular axes with minimum pro-158

jection areas while the third axis is the cross product of the159

first two axes. It is shown in [39] that MPA can align most160

3D models in terms of axes accuracy (the axes are parallel to161

the ideal canonical coordinate frame: front-back, left-right, or162

top-bottom view). It is also robust to model variations, noise,163

and initial poses.However, compared with the PCA-based ap-164

proaches, MPA takes a longer time to align 3D models while165

for this research we want to detect symmetry fast.166

After a comparison(see Section 4.3 for more details)of the167

influences of different 3D model alignment algorithms on the168

efficiency, accuracy and robustness of our view-based symme-169

try detection approach, we choose CPCA to align a model be-170

fore performing symmetry detection. After the alignment with171

CPCA, we translate the model such that the center of its bound-172

ing sphere locates at the origin and scale the model such that173

its bounding sphere has a radius of 1. After this normalization,174

the symmetry plane(s) will pass the origin, which helps us to175

significantly reduce the searching space.176

3.2. View Sampling and Viewpoint Entropy Distribution Gen-177

eration178

Vázquez et al. [7] proposed an information theory-related179

measurement named viewpoint entropy to depict the amount180

of information a view contains. It is formulated based on the181

Shannon entropy and incorporates both the projection area of182

each visible face and the number of visible faces into the defi-183

nition. However, the original definition was developed based on184

perspective projection, thus we use its extended version defined185

in [40] for orthogonal projection.186

For each model, we sample a set of viewpoints based on the187

Loop subdivision [41] on a regular icosahedron, denoted asL0.188

We subdivideL0 n times and denote the resulting mesh asLn.189

Then, we set the cameras on its vertices, make them look at190

the origin (also the center of the model) and apply orthogonal191

projection for rendering. For a 3D model, to differentiate its192

different faces, we assign different color to each face during193

rendering. One example is shown in Fig. 2.194

Figure 2: Face color coding example.

Figure 3: Viewpoint entropy distribution examples: 1st row shows the models
after alignment with CPCA; 2nd row demonstrates their respective viewpoint
entropy distribution.Blue: large entropy;green: mid-size entropy;red: small
entropy.

The viewpoint entropy [40] of a view withm visible faces is
defined as follows.

E = −
1

log2(m + 1)

m∑

j=0

A j

S
log2

A j

S
(1)

where,A j is the visible projection area of thejth ( j=1, 2, · · · ,195

m) face of a 3D model andA0 is the background area.S196

is the total area of the window where the model is rendered:197

S=A0+
∑m

j=1 A j. Projection area is computed by counting the198

total number of pixels inside a projected face.199

Figure 3 shows the viewpoint entropy distributions of several200

models by usingL4 (2,562 sample viewpoints) for view sam-201

pling and mapping their entropy values as colors on the surface202

of the spheres based on the HSV color model. We can see there203

is a perfect correspondence between the symmetry of a model204

and that of its viewpoint entropy distribution sphere: their sym-205

metry planes are the same. Therefore, the symmetry of a 3D206

model can be decided by finding the symmetry in the entropy207

distribution, thus avoiding the high computational cost ofdirect208

matching among its geometrical properties. What’s more, since209

viewpoint entropy is computed based on the projection of each210

face, it is highly sensitive to small differences in the model. In211

addition, each viewpoint simultaneously captures the properties212

of many vertices and faces of a model as a whole, which also213

helps to significantly reduce the computational cost. We also214

find that it is already accurate enough based on a coarse view215

sampling, such as usingL1, as demonstrated in Section 4.2.216

Motivated by these findings, we propose to detect the symmetry217

of a 3D model based on its viewpoint entropy distribution.218
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3.3. Symmetry Detection Based on Iterative Feature Pairing219

Even only usingL1 (42 viewpoints) for view sampling, if220

based on a naive matching approach by first directly selecting221

half of the total viewpoints and then matching them with the222

remaining half, it will result inP(42, 21)=2.75×1031 combina-223

tions. Thus, we develop a much more efficient symmetry de-224

tection method based on the following idea: iteratively select a225

matching pair of viewpoints to generate a symmetry plane and226

then verify all the rest matching pairs to see whether they are227

symmetricas wellw.r.t the symmetry plane or at least in the228

symmetry plane. Themethodis listed in Algorithm 1.229

Algorithm 1: Symmetry detection by iterative pairing
Input : N: number of viewpoints;

Pos[N]: positions ofN viewpoints;
E[N]: entropy values ofN viewpoints;
n: icosahedron subdivision level;
δ=0.015: entropy difference threshold;
ǫ=1e-5: small difference in double values

Output: Symmetry planes’ equations, if applicable
begin

// loop symmetric viewpoint pairs (u, v)
for u← 0 to N − 2 do

Pu ←− Pos[u];
for v← u + 1 to N − 1 do

if |E[u] − E[v]| > δ ∗min{E[u], E[v]} then
continue;

Pv ←− Pos[v], T1←− normalize(Pu − Pv);
matches←− 2;
// verify other matching pairs

for i← 0 to N − 2 do
if i == u OR i == v then

continue;
Pi ←− Pos[i];
for j← i + 1 to N − 1 do

if j == u OR j == v OR j == i then
continue;

if |E[i] − E[ j]| > δ ∗min{E[i], E[ j]}
then

continue;

P j ←− Pos[ j], Pm ←−
Pi+P j

2 ;
T2 = normalize(Pi − P j);
CT = T1 × T2, DT = T1 · T2;
if ‖CT‖ > ǫ AND |DT | , 0 then

continue;
if |T1 · Pm| > ǫ then

continue;
matches=matches+2;
break;

// output the symmetry plane

if matches ≥ N − 2n+2 then
Output and visualize the symmetry plane:
T1[0] ∗ x + T1[1] ∗ y + T1[2] ∗ z = 0

We need to mention the followings for the algorithm. The230

views corresponding tothe viewpointsthat are located onthe231

symmetry plane do not need to match each other. While, ac-232

cording to the Loop rule [41], at most 2n+2 vertices ofLn are233

coplanar in a plane w.r.t a great circle. That is to say, at most234

2n+2 viewpoints could be in the real symmetry plane.An ideal235

algorithm is to perfectly match w.r.t the symmetry plane all236

the viewpoint pairs that are not in the symmetry plane. How-237

ever, we have found that usually there are numerical accuracy238

problems related to 3D model rendering (e.g. aliasing), view-239

point entropy computation (usually the entropy values of two240

symmetric viewpoints are not completely the same), as well as241

possible (either big or minor) differences in mesh triangulation.242

Therefore, we propose to partially solve this issue by relaxing243

some of the conditions though it sometimes causes certain false244

positive detections:if the total number (matches) of matched245

viewpoints w.r.t a candidate symmetry plane is at leastN−2n+2,246

then it is confirmed as a symmetry plane.δ is a threshold which247

can control the strictness of symmetry definition. For example,248

using a small threshold we detect more strictly defined sym-249

metries while using a bigger threshold, we allow some minor250

differences and detect rough symmetry properties.T1 andT2251

are the normals of the planesw.r.t two correspondence points252

(Pu andPv; Pi andP j). The condition‖CT‖ > ǫ AND |DT | , 0253

meansT1 andT2 is neither parallel nor perpendicular to each254

other. In another word, the line betweenPi andP j is not per-255

pendicular to the candidate symmetry plane sinceT1 andT2 are256

not parallel (otherwise,‖CT‖ = 0); andPi andP j are also not257

in the symmetry plane (otherwise,|DT | = 0). Pm is the mid-258

point of the line segment connecting pointsPi and P j. It is259

used to further assert the vertical symmetry property ofPi and260

P j about the candidate symmetry plane by finding out whether261

the midpoint is in the plane, that is|T 1 · Pm| = 0. The compu-262

tational complexity of the algorithm isO(N4), which is much263

faster than the combinatorial matching approach: e.g. there are264

only N2·(N−1)2/4=741,321 combinations based onL1 (N=42),265

which is 3.71×1025 faster than the naive method. In experi-266

ments, we selectn to be 1.267

4. Experiments and Discussions268

4.1. Evaluation w.r.t to Dataset-Level Performance269

We have tested our algorithm on the NIST benchmark [42]270

and selected models from the AIM@SHAPE Shape Reposi-271

tory [43] to compare with state-of-the-art approaches likethe272

Mean shift [12] and 3D Hough transform [13] based methods,273

which are among the few papers that deal with global symmetry274

detection and at the same time provide a quantitative evalua-275

tion based on a common set of 3D models. 3D Hough trans-276

form [13] can only deal with global symmetry, while Mean277

shift [12] can deal with partial and approximate symmetry as278

well. Experiments show that our approach can stably detect the279

symmetry planes of diverse symmetric models and it also can280

detecta symmetry plane for a rough symmetric model with a281

bigger thresholdδ.282

Figure 4 demonstrates several examples while Table 1 com-283

pares their timing information. We need to mention that due284
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to the difference in the specifications of the CPUs used in the285

experiments, we do not directly compare the absolute running286

time, but rather we focus on the change of the running time with287

respect to the increase in the number of vertices of the 3D mod-288

els. As can be seen, our method shows better computational289

efficiency property in terms of scalability to the number of ver-290

tices. This is mainly because the computational time does not291

increase linearly with the increase in the number of vertices of292

a 3D model since we just render the 3D model first and detect293

its symmetry only based on the rendered views. However, for294

the other two geometry-based approaches Mean shift and 3D295

Hough, their computational time is highly affected by the num-296

ber of vertices of the model.This is because the computational297

complexity of Mean Shift (in the best case) and 3D Hough is298

O(NlogN), whereN is the number of pairs when only one it-299

eration is needed [13]. Since both of them are geometry-based300

approach, the value ofN as well as their complexity is highly301

dependent on the number of vertices that a 3D model has. For302

our case, though the computational complexity of the viewpoint303

matching step (Section 3.3) isO(N4), the number of viewpoints304

N (N=42 in our experiments) is a constant number. Therefore,305

this matching step has a constant running cost, that is, it isnot306

dependent on the number of vertices.307

(a) 0.0062/0.0062 (b) 0.0073/0.014 (c) 0.0096/0.0210

(d) 0.0013/0.0036 (e) 0.0003/0.0027 (f) 0.0005/0.0041

Figure 4: Example symmetry detection results with mean/max error mea-
sures [44].

Table 1: Timing information (in seconds) comparison of our methods and other
two state-of-the-art approaches:Mean shift[12] and3D Hough[13] are based
on a Pentium M 1.7 GHz CPU according to [13]; while our method isusing an
Intel(R) Xeon(R) X5675 @ 3.07GHz CPU.

Models Cube Beetle Homer Mannequin
#Vertices 602 988 5,103 6,743
Mean shift 1.8 6.0 91.0 165.0
3D Hough 2.2 3.0 22.0 33.0
Our method 0.7 0.8 1.0 1.1

To measure the accuracy ofthe detected symmetry planes,308

we adopt the mean (normalized by the surface area) and max-309

imum (w.r.t the bounding box diagonal) distance errors devel-310

oped in Metro [44] which is based on surface sampling and311

point-to-surface distance computation. Table 2 compares the312

mean and max errors ofthe fourmodels in Table 1 (see Fig. 4313

for the errors of other models) with the Mean shift [12] and314

3D Hough transform [13] based methods. The errors are com-315

puted based on the original mesh and its reflected 3D model316

w.r.t the detected symmetry plane. As can be seen, our approach317

achieves much (4∼6 timesw.r.t 3D Hough transform and 11∼44318

times w.r.t Mean shift) better overall accuracy(see the mean er-319

rors), in spite that a few points maynot bethe most accurate but320

they still maintain a moderate accuracy(indicated by the max321

errors).322

In addition, it is also very convenient to detect different de-323

grees of symmetries via control of the entropy difference thresh-324

old δ. As shown in Fig. 4, there is a minor asymmetryonthe the325

tail partof the cow, while other parts are symmetric. If we want326

to obtain strict symmetry, a smaller thresholdδ (e.g. by reduc-327

ing it by half: 0.0075) will give the result that it is asymmetric.328

We also find that our approach can simultaneously detect mul-329

tiple symmetry planesfor certain types of meshes, such as the330

Eight, Skyscraper, Bottle, Cup, Desk Lamp, and Swordin [43]331

and [42],as shown in Fig. 5.But we need to mention due to332

the limitation of CPCAand the sensitivity property to minor333

changes of the viewpoint entropy feature, there are a few fail334

cases or certain cases where the proposed method can only par-335

tially determine a set of reflection planes. Examples of such336

models arenon-uniformcubes, butterflies, tori, and pears, as337

demonstrated in Fig. 6:(a) because of non-uniform triangula-338

tion, the cube model cannot be perfectly aligned with CPCA,339

resulting in the unsuccessful symmetry plane detection. How-340

ever, we have found that for most symmetric models (e.g. Mug,341

NonWheelChair, and WheelChair classes) that cannot be per-342

fectly aligned with CPCA [8], our approach can still success-343

fully detect their symmetry planes (e.g. the detection rates of344

Algorithm 1 for those types of models mentioned above are as345

follow: Mug: 7/8, NonWheelChair: 18/19, and WheelChair:346

6/7). Three examples can be found in Fig. 7; (b) the symmetry347

plane of the butterfly cannot be detected if based on the default348

thresholdδ=0.015, and only after increasing it till 0.0166 we349

can detect the plane; (c) only the red symmetry plane of the350

torus is detected based on the default threshold value, while351

both the red and green planes will be detected if we increase352

the thresholdδ to 0.02 and all the three symmetry planes can353

be detected if we further increase it till 0.0215; (d) a falseposi-354

tive (blue) symmetry plane of the pear model will appear under355

the condition of the default threshold, however the error will be356

corrected with a little smaller threshold of 0.0133. An adaptive357

strategy of threshold selection is among our next work plan.358

Finally, we evaluate the overall performance of our view-359

point entropy distribution-based symmetry detection algorithm360

based on the NIST benchmark [42]. In total, we havede-361

tected 647 symmetry planes for all the 800 models (someof362

them are asymmetric). To know the general performance of363

our algorithm, we manually observe the symmetry property of364

each of the first200/300/400 models and label its symmetry365

plane(s)/degree(s) to form the ground truth. Then, we exam-366
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Table 2:Mean/max errors[44] comparison of our methods and othertwo state-of-the-art approaches.For the Cube model, since there are three detected symmetry
planes, we use their normal directions (x/y/z) to differentiate them.

Methods
Cube Beetle Homer Mannequin

mean max mean max mean max mean max
Mean shift [12] N.A. N.A. N.A. N.A. 0.059 0.018 0.111 0.037
3D Hough [13] N.A. N.A. N.A. N.A. 0.007 0.001 0.046 0.009

Our method
0.0005 (x) 0.0008 (x)

0.0062 0.0062 0.0013 0.0036 0.0096 0.0210
0.0057 (y, z) 0.0082 (y, z)

(a) eight (b) skyscraper (c) bottle

(d) cup (e) desk lamp (f) sword

Figure 5:Multiple detected symmetry planes examples.

ine each detected symmetry plane to see whether it is a True367

Positive (TP) or False Positive (FP). Similarly, we set the True368

Negative (TN) value of a model to be 1 if it is asymmetric369

and our algorithm also does not detect any symmetry plane.370

While, if a symmetry plane of a symmetric model is not de-371

tected, we increase its False Negative (FN) by 1. Table 3372

gives the evaluation results (177/277/386 detected symmetry373

planes) on thefirst 200/300/400 models (having191/278/388374

symmetry planes in total), which are uniformly divided into375

10/15/20 classes.Here, for later analysis we successively list376

the names of the 20 classes:Bird, Fish, NonFlyingInsect, Flyin-377

gInsect, Biped, Quadruped, ApartmentHouse, Skyscraper, Sin-378

gleHouse, Bottle, Cup, Glasses, HandGun, SubmachineGun,379

MusicalInstrument, Mug, FloorLamp, DeskLamp, Sword, and380

Cellphone.381

Table 3: Overall symmetry detection performance of our algorithm basedon
the first 200/300/400 models of the NIST benchmark.

# models TP FP TN FN
200 141 36 37 32
300 216 61 60 45
400 292 94 77 77

Based on the TP, FP, TN and FN values, we compute the382

following nine detection evaluation metrics [45], as listed in383

Table 4: Tracker Detection Rate (TRDR,T P
TG ), False Alarm384

(a) non-uniform(CPCA) (b) fail (if δ<0.0166)

(c) partially (if δ<0.0215) (d) one false positive (ifδ>0.0133)

Figure 6:Failed or partially failed examples.

Rate (FAR, FP
T P+FP ), Detection Rate (DR, T P

T P+FN ), Speci-385

ficity (SP, T N
FP+T N ), Accuracy (AC,T P+T N

T F ), Positive Prediction386

(PP, T P
T P+FP ), Negative Prediction (NP, T N

FN+T N ), False Nega-387

tive Rate (FNR or Miss Rate, FN
FN+T P ), and False Positive Rate388

(FPR, FP
FP+T N ), where the total number of symmetry planes389

in the 200/300/400 Ground Truth models TG=191/278/388390

and the total number of our detections (including both391

trues and falses) TF=TP+FP+TN+FN=246/382/540. As can392

be seen, besides the better accuracy in the detected sym-393

metry planes as mentioned before, our detection perfor-394

mance (e.g.,for the first 200/300/400 models, Detection395

Rate DR=81.50%/82.76%/79.13%, and Tracker Detection Rate396

TRDR=73.82%/77.70%/75.26%) is also goodenough. What’s397

more, the minor difference among the detection performance398

of our algorithm on the 200, 300 and 400 models shows that399

the overall performance of our algorithm is stable and robust in400

terms of model type diversity and number of models evaluated.401

In a word, as demonstrated by all the above evaluation re-402

sults, better accuracy and efficiency than state-of-the-art ap-403

proaches have been achieved by our simple but effective sym-404

metry detection method. It also has good stability in dealing405

with various model types.406

4.2. Evaluation w.r.t to Robustness407

Robustness to View Sampling. First, we also testour algorithm408

with different levels of subdivided icosahedronfor the view409
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Table 4:Overall symmetry detection accuracy of our algorithm based onthe first 200/300/400 models of the NIST benchmark.

# models TRDR FAR DR SP AC PP NP FNR FPR
200 73.82% 20.34% 81.50% 50.68% 72.36% 79.66% 53.62% 18.50% 49.32%
300 77.70% 22.02% 82.76% 49.59% 72.25% 77.98% 57.14% 17.24% 50.41%
400 75.26% 24.35% 79.13% 45.03% 68.33% 75.65% 50.00% 20.87% 54.97%

sampling, e.g.,L2, L3, andL4. Table 5 compares themean/max410

errors and running time forthe fourmodels listed in Table 1.411

As can be seen, increasing the view sampling often cannot in-412

crease the accuracy while the running time will be significantly413

increasing. Thus, we choose to sample the views based onL1414

which gives betteroverallperformance in both the accuracy and415

efficiency.416

Robustness to Number of Vertices. We alsotest the robustness417

of our algorithmw.r.t the change of the (especially large) num-418

ber of vertices (resolution) that a 3D model contains. We first419

subdivide a triangular mesh into its finer version based on sev-420

eral iterations of midpoint subdivision by utilizing the tool of421

MeshLab [46] and then use the resulting meshes forthe test422

and comparison.We have tested theElephant,Mannequinand423

Cubemodels, and found that our algorithm can stablyand ac-424

curatelydetect their symmetry planes, independent of the num-425

ber of vertices. Table 6 compares theirmean/max errors and426

timings. We can see that the increase incomputational time427

is often significantly slower (especially for models with an ex-428

tremely large number of vertices; e.g. for Mannequin (467,587429

vertices) and Cube (196,610 vertices) they are about 8 and 28430

times slower, respectively) than the increase inthe number of431

vertices since rendering the sampling views to compute their432

viewpoint entropy dominates the running time.433

Table 6: Mean/max errors and timing comparison of our algorithm w.r.t the
robustness to different number of vertices. For the Cube model,since there
are three detected symmetry planes, we use their normal directions (x/y/z) to
differentiate them.

Models #Vertices mean max time

Elephant
29,285 0.0003 0.0027 3.0

116,920 0.0003 0.0027 12.3
467,252 0.0003 0.0027 48.4

Mannequin
17,450 0.0091 0.0210 2.6
29,194 0.0091 0.0210 3.8

467,587 0.0091 0.0210 48.2

Cube

6,146
0.0050(x) 0.0077(x)

1.50.0082 (y) 0.0137(y)
0.0061(z) 0.0093(z)

24,578
0.0002(x) 0.0003(x)

3.00.0002(y) 0.0004(y)
0.0001(z) 0.0001(z)

196,610
0.0003(x) 0.0005(x)

5.80.0003(y) 0.0004(y)
0.0001(z) 0.0002(z)

Robustness to Noise. Finally, we want to test the versatility as434

well as sensitivity of our algorithm when processing a modified435

version of a symmetric model by adding a certain amount of436

noise. Due to certain factors such as creation, storage, trans-437

mission, and modification, 3D models can be noisy. A symme-438

try detection algorithm should be robust, thus still applicable in439

the case of small amounts of noise. We test the robustness of440

our symmetry detection algorithm against noise by randomly441

adding a small amount of displacement to the vertices of a 3D442

model.443

Figure 8 demonstrates the detected symmetry planes of three444

example models. Table 7 shows a comparative evaluation on445

the detection results w.r.t the mean/max errors and the mini-446

mum entropy difference threshold value, denoted by minδ, for447

a successful detection of the symmetry plane(s) of a model. The448

results show that our algorithm has a good robustness property449

against a small amount of noise: by choosing different levels450

of entropy difference threshold valuesδ, we will have differ-451

ent tolerant levels of noise to detect symmetry planes. That452

is, a symmetry detection will be possible if we choose a big-453

ger threshold if there exists a bigger amount of noise. This is454

contributed to our utilization of the accurate viewpoint entropy455

feature with a threshold for the feature paring process, since in456

general viewpoint entropy is stable under small changes in the457

vertices’ coordinates of a 3D model.458

4.3. Evaluation w.r.t Different 3D Alignment Algorithms459

Considering the apparent advantages of the Minimum Pro-460

jection Area (MPA)-based 3D alignment algorithm in finding461

the ideal canonical coordinate frame of a model, besides CPCA,462

we also evaluate the performance of a variation of our algorithm463

by only replacing the CPCA algorithm module with MPA.464

However, we found that the results are not as stable as those465

of the original CPCA-based version in terms of the percentage466

of either true or false positives based on the same threshold(δ).467

Choosing the threshold is also more difficult and sensitive when468

employing MPA since bigger threshold usually results in more469

false positives.470

An initial analysis based on the experimental results is as fol-471

lows. Due to the viewpoint sampling precision in MPA, espe-472

cially for the search of the second principle axis of a 3D model473

which is based on a step of 1 degree, the axes found by MPA is474

not precise enough for this viewpoint entropy-based symmetry475

detection purpose, though for the 3D model retrieval applica-476

tion, as mentioned in the paper, the accuracy is enough. How-477

ever, since our algorithm directly uses the cameras’ locations478

to compute the symmetry plane(s) by just utilizing their cor-479

respondence relationships, it requires that the 3D model isas480

accurately as possible aligned w.r.t the three standard axes in481

order to reduce the search space and the number of viewpoints482

to achieve better efficiency.483
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Table 5: Mean/max errorsand timing comparison of our algorithm with different view sampling.For the Cube model, since there are three detected symmetry
planes, we use their normal directions (x/y/z) to differentiate them.

View Cube Beetle Homer Mannequin
sampling mean max time mean max time mean max time mean max time

L1

0.0005 (x) 0.0008 (x)
0.7 0.0062 0.0062 0.8 0.0013 0.0036 1.0 0.0096 0.0210 1.10.0057 (y) 0.0082 (y)

0.0057 (z) 0.0082 (z)
L2 0.0005 (x) 0.0008 (x) 3.4 0.0062 0.0062 3.6 0.0013 0.0036 3.8 0.0096 0.0210 3.7
L3 0.0057 (y) 0.0082 (y) 22.6 0.0062 0.0062 16.9 0.0013 0.0036 19.5 0.0096 0.0210 27.3
L4 0.0057 (z) 0.0082 (z) 2481.7 0.0062 0.0062 1048.0 0.0013 0.0036 1600.5 0.0096 0.0210 3465.1

Table 7:Comparison of the mean/max errors and the minimum entropy difference threshold values minδ of our algorithm for successful symmetry detections of the
variations of three example models after we add different levels of noise.

Noise Beetle Homer Mannequin
level (%) mean max minδ mean max minδ mean max minδ

0.0 0.006 0.006 0.003 0.001 0.004 0.002 0.010 0.021 0.012
0.1 0.010 0.010 0.003 0.004 0.006 0.002 0.010 0.022 0.011
0.5 0.019 0.022 0.008 0.005 0.011 0.003 0.012 0.022 0.009
1.0 0.010 0.022 0.013 0.008 0.019 0.007 0.012 0.026 0.012

What’s more, to align a 3D model, MPA usually takes around484

30 seconds if based on 40 Particle Swarm Optimization (PSO)485

iterations while CPCA needs less than 1 second, which demon-486

strates another advantage of CPCA over MPA. In addition, we487

also have found that if based on CPCA, using bounding sphere488

for the 3D normalization can achieve more accurate results than489

the case of using bounding box. This should be due to the490

fact that we also sample the viewpoints on the same bound-491

ing sphere. However, if based on MPA, either using bounding492

sphere or bounding box has only trivial influence on the sym-493

metry detection performance. The reason is that the accuracy494

of the found axes has much more direct and decisive influence495

on the symmetry detection performance. In conclusion, using496

CPCA is more stable, accurate and efficient than MPA, but we497

believe an improved MPA algorithm should be more promising498

in thoroughly solving existing errors in CPCA and achieving499

even better results, which is among our future work.500

4.4. Limitations501

Firstly, though in Section 4.1 we have performed an over-502

all symmetry detection evaluation of our algorithm on the first503

200/300/400 models of the NIST benchmark, we could not per-504

form a comparative evaluation, similar to the one we did based505

on the four models in Section 4.1, in terms of the accuracy of506

the detected symmetry planes. The main difficulty is that: to the507

best of our knowledge, few prior symmetry detection papers508

evaluated their symmetry detection performance on a bench-509

mark dataset, which is also not available till now. In addition,510

their code is not publicly available to facilitate such compara-511

tive evaluation.512

Secondly, we mainly concentrated on global symmetry de-513

tection performance when we compared our algorithm with514

Mean shift [12] and 3D Hough transform [13], though as men-515

tioned in Section 3.3 our approach can perform approximate516

symmetry detection as well: “using a bigger threshold, we al-517

low some minor differences and detect rough symmetry prop-518

erties”.519

In fact, global approximate symmetry detection is one of the520

two research topics (another one is, partial and approximate521

symmetry detection) in Mean shift [12]. While, global sym-522

metry detection is the only topic for 3D Hough transform [13],523

which also compares with Mean shift [12] in its experiment sec-524

tion, in terms of the performance of global symmetry detection525

accuracy and efficiency, and based on the same model set as526

ours. All the available (for us) models selected from the model527

set have been tested and compared in Fig. 4 and Tables 1∼2.528

We also referred to some of the evaluation results of 3D Hough529

transform [13] as well for a quantitative comparison.530

Although we have noticed that there are other related global531

symmetry detection papers, such as [47] and [48], mainly due532

to the fact that their code/executable is not available, we have533

not performed a comparison with them. But, according to the534

above facts, we believe it is enough and even better to compare535

with the two more recent works: Mean shift [12] and 3D Hough536

transform [13].537

5. Applications538

Finally, we also explore two interesting applications of our539

symmetry detection algorithm: 3D model alignment and best540

view selection.541

5.1. 3D Model Alignment542

As we know, the main shortcoming of PCA-based approach543

is that the directions of the largest extent found based on the544

purely numerical PCA analysis are not necessarily parallelto545

the axes of the ideal canonical coordinate frame of a 3D model.546

This is because during the alignment process it lacks semantic547
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(a) Mug (CPCA) (b) Mug (symmetry plane)

(c) NonWheelChair (CPCA) (d) NonWheelChair (symmetry plane)

(e) WheelChair (CPCA) (f) WheelChair (symmetry plane)

Figure 7: Examples to demonstrate that our algorithm can successfully detect
the symmetry planes for most symmetric models that are not perfectly aligned
with CPCA: first columnshows the CPCA alignment results;second column
demonstrates the detected symmetry planes.

analysis in a 3D model’s symmetry [2] [15], or its stability [49]548

after the alignment.549

Based on the detected symmetry planes and the basic idea of550

PCA, it is straightforward to apply our algorithm to 3D align-551

ment: the first principal axis gives the maximum symmetry de-552

gree (that is, it has the smallest total matching cost in terms553

of viewpoint entropy for the symmetric viewpoint pairs w.r.t554

the axis) and the second principal axis is both perpendicular555

to the first axis and also has the maximum symmetry degree556

among all the possible locations within the perpendicular plane.557

Finally, we assign the orientations of each axis. This align-558

ment algorithm is promising to achieve similar results as those559

in [15] which is based on a planar-reflective symmetry trans-560

form, while outperforms either PCA or CPCA for certain mod-561

els with symmetry plane(s). However, our algorithm has better562

efficiency than [15], thus will be more promising for related563

real-time applications including 3D model retrieval.564

Now we present some experimental results of the above565

(a) original (b) 0.1% (c) 0.5% (d) 1.0%

(e) original (f) 0.1% (g) 0.5% (h) 1.0%

(i) original (j) 0.1% (k) 0.5% (l) 1.0%

Figure 8:Examples indicating our algorithm’s robustness to noise: symmetry
detection results of our algorithm in dealing with model variations with different
levels of noise. The first column: original 3D models without adding any noise;
The second to the fourth columns: detection results of the models when we
add noise by randomly moving each vertex with a small displacement vector
whose norm is bounded by 0.1%, 0.5%, and 1% of the diameter of each model’s
bounding box, respectively.

alignment algorithm. As mentioned in Section 2, there are566

four reflection symmetry types: cyclic, dihedral, rotational,567

and unique. In fact, some of our previous experiments already568

demonstrate the main alignment results of several models which569

fall into three of the above four types. For instance, Fig. 5570

shows the two/three principal planes (thus axes) of six models571

that have a cyclic reflection symmetry (see (c) bottle, (d) cup,572

and (e) desk lamp), or dihedral reflection symmetry (see (a)573

eight, (b) skyscraper, and (f) sword). Fig. 4 and Fig. 7 demon-574

strate the first principle planes/axes of several example models575

with a unique symmetry based on our idea. It is a trivial task576

to continue to find other principle axes. For completeness, for577

example, in Fig. 9, we demonstrate the complete alignment re-578

sults of three models that have a rotational symmetry, or do579

not have any reflection symmetry (zero symmetry), or have an580

approximate symmetry. In a word, the alignment algorithm is581

promising to be used in dealing with diverse types of models582

with different degrees of symmetries.583

5.2. Best View Selection584

Here, we provide another option to define and search for the585

best view of a 3D model based on our algorithm. Our definition586

of symmetry is related to viewpoint entropy which indicatesthe587

amount of information that a view contains. In an analogy to 3D588

model alignment, we use the total viewpoint entropy matching589

cost, that is an indicator of asymmetry, to indicate the goodness590

of a candidate best view corresponding to a viewpoint: the big-591

ger the summed matching cost is, the better (more asymmetry)592

the viewpoint is, since it indicates that there is less redundant in-593
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(a) Icosahedron (b) rotational symmetry

(c) Tree (D00606) (d) zero symmetry

(e) MusicalInstrument (D00292) (f) approximate symmetry

Figure 9: Alignment results of Icosahderon and two other example models
from the NIST dataset. Icosahedron has 15 symmetry planes, Tree type model
D00606.off has no symmetry plane, while MusicalInstrument type model
D00292.off has a roughly symmetry plane.

formation in the view. When we compute the viewpoint match-594

ing cost of a candidate view, we only consider visible view-595

points as seen from the candidate view, for instance, within180596

degrees. Algorithm 1 targets finding the minimum viewpoint597

matching cost in terms of entropy, while we now want to find598

the viewpoint that gives a maximum viewpoint entropy match-599

ing cost. Thus, we develop our algorithm for this application by600

modifying Algorithm 1, including changing the “>”s or “≥”s to601

their inverses and setting a bigger thresholdδ (e.g., 0.2 in our602

experiments). The complete best view selection algorithm is603

given in Algorithm 2. Fig. 10 demonstrates several promising604

informative example results based on the Algorithm 2 (usingL1605

for view sampling).606

6. Conclusions and Future Work607

In this paper, we have proposed an efficient and novelview-608

basedsymmetry detection algorithm based on viewpoint en-609

tropy distribution.We have compared withthetwo latest sym-610

metry detection approachesbased on a common set of selected611

models and demonstratedthe better performance of our method612

in terms of accuracy and efficiency.A detailed evaluation of our613

approach on a dataset of 400 models and the promising results614

of two related applications also validate its good robustness,de-615

tection rate, and flexibility.616

To further improve and explore the algorithm, we list several617

promising directions here as our next work. Firstly, traditional618

PCA-based approaches cannot guarantee that the directionsof619

the largest extent are parallel to the axes of the ideal canoni-620

cal coordinate frame of 3D models. One promising approach621

to achieve further improvement in terms of alignment accu-622

racy is an improved versionof the Minimum Projection Area623

(MPA) [39] alignment method.We can improve its accuracy624

to meet our precision requirement by applying the PSO-based625

method used in the first principle axis search in the search for626

the second principle axis as well.We arealso interested in627

combining it with CPCA for the 3D alignment process: first628

performing CPCA for an initial alignment and then correcting629

possible tilt views(poses)by utilizing a similar idea as MPA. It630

is promising to help to achieve even better symmetry detection631

performance, especially for decreasing the percentage of False632

Negative (FN)since more symmetry planes can be successfully633

detected, thus avoiding the fail case like Fig. 6 (a) becauseof634

the limitation of CPCA.635

Secondly, to further improve the efficiency of our algorithm,636

we could consider Hough transform for symmetry evidence vot-637

ing. For example, each pair of matched viewpoints casts a vote638

for their bisecting plane, while the peaks of the voting distri-639

bution correspond to prominent symmetry planes. We need to640

mention that directly applying Hough voting may not work be-641

cause rather like geometric values, symmetric viewpoints do642

not perfectly match each other based on their viewpoint entropy643

values, which has been explained in Section 3.3.644

Finally, an automatic and adaptive strategy to select an ap-645

propriate thresholdδ for respective models or classes is another646

interesting research direction and deserves our further explo-647

ration.648
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Algorithm 2: Best view selection based on maximum view-
point entropy matching cost.
Input : N: number of viewpoints;

Pos[N]: positions ofN viewpoints;
E[N]: entropy values ofN viewpoints;
n: icosahedron subdivision level;
δ=0.2: entropy difference threshold;
ǫ=1e-5: small difference in double values

Output: Symmetry planes’ equations, if applicable
begin

// initialize maximum viewpoint entropy

matching cost

max cost ←− 0.0;
// loop viewpoint pairs (u, v)
for u← 0 to N − 1 do

Pu ←− Pos[u];
for v← 0 to N − 1 do

if u == v then
continue;

Pv ←− Pos[v], T1←− normalize(Pu − Pv);
// initialize the viewpoint entropy

matching cost for the current

view

cur cost ←− 0;
// matching other viewpoint pairs

for i← 0 to N − 2 do
if i == u OR i == v then

continue;
Pi ←− Pos[i];
for j← i + 1 to N − 1 do

if j == u OR j == v OR j == i then
continue;

P j ←− Pos[ j], Pm ←−
Pi+P j

2 ;
T2 = normalize(Pi − P j);
CT = T1 × T2, DT = T1 · T2;
if |DT | < 0 then

continue;
if ‖CT‖ > ǫ AND |DT | , 0 then

continue;
if |T1 · Pm| > ǫ then

continue;
cur cost=cur cost+|E[i] − E[ j]|;
break;

if cur cost > max cost then
max cost = cur cost;
T ←− T1;

// output the best view

T [0] ∗ x + T [1] ∗ y + T [2] ∗ z = 0
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