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Abstract
Sketch-based 3D model retrieval has the intuitiveness advantage over other types of retrieval schemes. Currently, there is a lot
of research in sketch-based 3D model retrieval, which usually targets the problem of retrieving a list of candidate 3D models
using a single sketch as input. 2D scene sketch-based 3D scene retrieval is a brand new research topic in the field of 3D
object retrieval. Unlike traditional sketch-based 3D model retrieval which ideally assumes that a query sketch contains only a
single object, this is a new 3D model retrieval topic within the context of a 2D scene sketch which contains several objects that
may overlap with each other and thus be occluded and also have relative location configurations. It is challenging due to the
semantic gap existing between the iconic 2D representation of sketches andmore accurate 3D representation of 3D models. But
it also has vast applications such as 3D scene reconstruction, autonomous driving cars, 3D geometry video retrieval, and 3D
AR/VR Entertainment. Therefore, this research topic deserves our further exploration.
To promote this interesting research, we organize this SHREC track and build the first 2D scene sketch-based 3D scene retrieval
benchmark by collecting 3D scenes from Google 3D Warehouse and utilizingour previously proposed 2D scene sketch dataset
Scene250. The objective of this track is to evaluate the performance of different 2D scene sketch-based 3D scene retrieval al-
gorithms using a 2D sketch query dataset and a 3D Warehouse model dataset. The benchmark contains 250 scene sketches and
1000 3D scene models, and both are equally classified into 10 classes. Inthis track, six groups from five countries (China, Chile,
USA, UK, and Vietnam) have registered for the track, while due to many challenges involved, only 3 groups have successfully
submitted 8 runs. The retrieval performance of submitted results has been evaluated using 7 commonly used retrieval perfor-
mance metrics. We also conduct a thorough analysis and discussion on those methods, and suggest several future research
directions to tackle this research problem. We wish this publicly available [YLL18] benchmark, comparative evaluation results
and corresponding evaluation code, will further enrich and advance theresearch of 2D scene sketch-based 3D scene retrieval
and its applications.

Categories and Subject Descriptors(according to ACM CCS): H.3.3 [Computer Graphics]: Information Systems—Information
Search and Retrieval

1. Introduction

2D scene sketch-based 3D scene retrieval is to retrieve relevant
3D scenes (in either .OBJ or .SKP format) using a 2D scene sketch
as input. This scheme is intuitive and convenient for users to learn

† Track organizers. *Corresponding author. For any questionrelated to the
track, please contact Bo Li. E-mail: bo.li@usm.edu.
‡ Track participants.

and search for 3D scenes. It is also very promising and has great po-
tentials in many applications such as autonomous driving cars, 3D
scene reconstruction, 3D geometry video retrieval, virtual reality
(VR) and augmented reality (AR) in 3D Entertainment like Disney
World’s Avatar Flight of Passage Ride [Wik18,Att18, tM18].

However, although there are many existing 2D sketch-based 3D
shape retrieval systems, there is little existing research work on 2D
scene sketch-based 3D scene retrieval due to two major reasons 1)
It is challenging to collect a large-scale 3D scene dataset and there
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exists a very limited number of available 3D scene shape bench-
marks. 2) Like 2D sketch-based 3D shape retrieval, there is a big se-
mantic gap between the iconic representation of 2D scene sketches
and the accurate 3D coordinate representations of 3D scenes. All
of above reasons make the task of retrieving 3D scene models us-
ing 2D scene sketch queries a challenging, although interesting and
promising, research direction.

Ye et al. [YLJ16] collected the Scene250 benchmark compris-
ing 250 2D scene sketches of 10 classes, each with 25 sketches.
It avoids the bias issue since they collected the same number of
sketches for every class, while the sketch variation within one class
is also adequate enough. However, there are no 3D scene dataset
corresponding to this 2D scene sketch dataset.

Motivated by above obstacles, 100 3D scene models have been
selected for each of the ten classes in Scene250 from 3D Ware-
house [Tri18], an open source library which allows SketchUp users
to upload 3D models to share and download needed 3D models.
The SketchUp (.SKP) type of the online 3D scene models can be
transformed into many other formats, such as OBJ, PLY, and OFF.

We organize this track to foster this challenging research direc-
tion by soliciting retrieval results from current state-of-the-art 3D
scene retrieval methods for comparison, especially in terms of scal-
ability to 2D scene sketch queries. We also provide corresponding
evaluation code for computing a set of performance metrics similar
to those used in the Query-by-Model retrieval technique.

2. SceneSBR Benchmark

2.1. Overview

Our 2D scene sketch-based 3D scene retrieval benchmarkSce-
neSBRutilizes the 250 2D scene sketches in Scene250 [YLJ16]
as its 2D scene sketch dataset and 1000 SketchUp 3D scene mod-
els (.OBJ and .SKP format) as its 3D scene dataset. Each of the
ten classes has the same number of 2D scene sketches (25) and 3D
scene models (100).

To facilitate learning-based retrieval, we randomly select 18
sketches and 70 models from each class for training and use the
remaining 7 sketches and 30 models for testing, as indicated in
Table 1. Participants are required to submit results on the test-
ing dataset only if they use learning in their approach(es). Oth-
erwise, the retrieval results based on the complete (250 sketches,
1000 models) dataset is needed.

Table 1: Training and testing datasets (per class) of ourSceneSBR
benchmark.

SceneSBRBenchmark Sketch Model
Training 18 70
Testing 7 30

Total (per class) 25 100

Figure 1: Example 2D scene sketches (one example per
class) [YLJ16] in our SceneSBRbenchmark.

2.2. 2D Scene Sketch Dataset

The 2D scene sketch query set comprises 250 2D scene sketches
(10 classes, each with 25 sketches), while all the classes have rel-
evant models in the target 3D scene dataset which are downloaded
from the 3D Warehouse. One example per class is demonstrated in
Fig. 1.

2.3. 3D Scene Dataset

The 3D scene dataset is built on the selected 1000 3D scene mod-
els downloaded from 3D Warehouse. Each class has 100 3D scene
models. One example per class is shown inFig. 2.

2.4. Evaluation Method

The objective of this track is to evaluate the performance of dif-
ferent 2D scene sketch-based 3D scene retrieval algorithms using a
2D sketch query dataset and a 3D Warehouse model dataset. While,
each algorithm targets retrieving 3D scene models that belong to
the same class as that of each query 2D scene sketch. To have a
comprehensive evaluation of the retrieval algorithm, we employ
seven commonly adopted performance metrics in the 3D model re-
trieval community [LLL ∗15, LLG∗14]. They are Precision-Recall
(PR) diagram, Nearest Neighbor (NN), First Tier (FT), Second Tier
(ST), E-Measures (E), Discounted Cumulated Gain (DCG) and Av-
erage Precision (AP). We also have developed the code to compute
them.

3. Participants

There were six groups who registered for the track. Two groups
come from China, and one group each comes from Chile, USA,
UK, and Vietnam. Each group was given three weeks to complete
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Figure 2: Example 3D scene models (one example per class) in our
SceneSBRbenchmark.

the contest. They were registered to submit both their results and
methods description.

Three groups have finally participated in the SHREC’18 track
on 2D Scene Sketch-Based 3D Scene Retrieval. Eight (8) rank list
results (runs) for four (4) different methods developed by three (3)
groups have been submitted. The participants and their runs are
listed as follows:

• VGGandMMD-VGGsubmitted by Wenhui Li, Shu Xiang, Heyu
Zhou, Weizhi Nie, Anan Liu, and Yuting Su from Tianjin Uni-
versity, China (Section4.1);

• TCL1, TCL2, and TCL3 submitted by Xiaolong Liu, Xinwei
He, Zhichao Zhou, Yang Zhou, Song Bai and Xiang Bai from
Huazhong University of Science and Technology, China (Sec-
tion 4.2);

• RNSRAP1, RNSRAP2, andRNSRAP3submitted by Minh-Triet
Tran, Tu-Khiem Le, Van-Tu Ninh, Khac-Tuan Nguyen, Ngoc-
Minh Bui, Vinh Ton-That, Trong-Le Do, Vinh-Tiep Nguyen,
Minh N. Do and Anh-Duc Duong from Vietnam National
University, Vietnam and the University of Illinois at Urbana-
Champaign, USA (Section4.3).

4. Methods

4.1. MMD-VGG: Maximum Mean Discrepancy Domain
Adaptation on the VGG-Net, by W. Li, S. Xiang, H. Zhou,
W. Nie, A. Liu, and Y. Su

They proposed the Maximum Mean Discrepancy based on the
VGG model (MMD-VGG) to tackle sketch-based 3D scene re-
trieval task. The query data are 2D scene sketches and the target
data are 3D scene models. Obviously, those two types of data have
diverse data distribution. They address this task from two settings,
learning-based setting and non-learning based setting. As the query
data and target data have different types, the first step of the algo-

Figure 3: Several example views of scene models.

rithm is data preprocessing. Then, they use the processed data to
learn the feature representation of sketch images and scene models.

4.1.1. Data preprocessing

As the scene models are 3D format, they use the 3D design soft-
ware SketchUp to automatically extract the views of all the 3D
models. The input data type of SketchUp is the SKP and the output
of SketchUp is the 480*480 view image.Fig. 3 shows several ex-
ample images resulting from transforming 3D scene models to 2D
images.

4.1.2. Feature representation

After using SketchUp to extract the images of a 3D model, the 2D-
to-3D retrieval problem can be transformed into a 2D-to-2D task.
For the feature representation, they use the training data to learn
the feature representation model for the testing dataset, that is, a
learning-based setting or a non-learning based setting to represent
the features of the complete dataset.

4.1.2.1. Learning-based setting
They employ the deep networks VGG [SZ14] pretrained on the
Places dataset [ZLK∗17] as the initial network parameters and fine-
tune the network on the 180 sketch images and 700 images of 3D
models. Then, they use the output of the last but one (fc7) layer
as the feature representation for each image. It is obvious that the
divergence between the sketch image and the scene image is quite
huge even though they depict the same category. The divergence
makes it difficult for cross-domain similarity measurement. In this
algorithm, they adopt Maximum Mean Discrepancy [LWD∗13] to
compute the difference in both marginal and conditional distribu-
tions from two different domains and construct a feature represen-
tation by using the Principal Component Analysis (PCA) method.
After the above steps, the features of two domains have been pro-
jected into a common space and then can be measured by using the
Euclidean distance.

4.1.2.2. Non-Learning based setting
For the complete data, they directly use the VGG [SZ14] model
which is pretrained on the Places dataset [ZLK∗17] to extract the
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features of sketch images and model images. Then, they use the Eu-
clidean distances between the scene sketch images and the images
of 3D scene models as their similarities to generate the retrieval
results.

4.2. TCL: Triplet center loss, by X. Liu, X. He, Z. Zhou, Y.
Zhou, S. Bai and X. Bai

Their method is based on a two-stream CNN which processes sam-
ples from either domain with a corresponding CNN stream. Based
on triplet center loss [HZZ∗18] and softmax loss supervision, the
network is trained to learn a unified feature embedding for each
sample, which is then used for similarity measurement in the fol-
lowing retrieval procedure. Below is the detailed description of the
method.

4.2.1. View Rendering

Their approach exploits the view-based representations of 3D scene
models. For each 3D scene model (with color texture), they render
it into multiple color images fromNv (Nv = 12 in their experiments)
view directions. Each view image is of size 256× 256. To fit the
pre-defined CNNs during training, images of size 224× 224 are
randomly cropped as input from these rendered view images. While
for testing, they only take the center crop of the same size from each
view image.

4.2.2. Network Architectures

An overview of the feature learning network is depicted inFig. 4.
Considering the huge semantic gap between images and 3D scene
models, they adopt two separate CNN streams for samples from the
two different domains. A normal CNN (Stream 1) is used to extract
the features of sketches. While the MVCNN [SMKLM16] frame-
work (Stream 2) is adopted to obtain features from the rendered
view images. In their experiment, these two streams are based on
the same backbone (e.g. VGG11-bn [SZ14]). But note that their
parameters are not shared.

4.2.3. Triplet Center Loss

In order to increase the discrimination of the features, they adopt
triplet center loss (TCL) [HZZ∗18] for feature learning. Given a
batch of training data withM samples, they define TCL as

Ltc =
M

∑
i=1

max
(

D
(

fi ,cyi

)

+m− min
j∈C\{yi}

D
(

fi ,c j
)

,0
)

(1)

whereD(·) represents the squared Euclidean distance function.yi
and fi and are the ground-truth label and the embedding for sample
i respectively.C is the label set.cyi (or c j ) is the center of embed-
ding vectors for classcyi (or j). Intuitively, TCL is to enforce the
distances between the samples and their corresponding centercyi

(calledpositive center) smaller than the distances between the sam-
ples and their nearestnegative center(i.e. centers of other classes
C\{yi}) by a marginm. For a better performance, softmax loss is
also employed.

4.2.4. Retrieval

After training, they first extract features for all the testing sam-
ples, including sketches and 3D scene models. Then they calcu-
late the similarity matrix between the sketches and 3D scene mod-
els using Euclidean distance metric. To improve the final retrieval
performance, the re-ranking algorithm they use is the same as
that of GIFT [BBZ∗16]. They experiment with three runs:Run
1 only uses a single VGG11-bn model, whileRun 2and Run 3
use the ensemble results of different models including VGG11-bn,
ResNet50 [HZRS16] and ResNet101 [HZRS16] but have different
re-ranking parameters.

4.3. RNSRAP: ResNet50-Based Sketch Recognition and
Adapting Place Classification for 3D Models Using
Adversarial Training, by M. Tran, T. Le, V. Ninh, K.
Nguyen, N. Bui, V. Ton-That, T. Do, V. Nguyen, M. Do,
and A. Duong

4.3.1. Sketch Recognition with ResNet50 Encoding

In sketch classification task, they employ the output of ResNet50
[HZRS16] to encode a sketch image into a feature vector of 2048
elements. Due to the extremely small-scale data in sketch data, it
is difficult to use only the extracted features to train their neural
network model directly, so they create variant samples by data aug-
mentation. From the original training dataset, different variations
of a sketch image can be generated. Regular transformations can
be applied, including flipping, rotation, translation, and cropping.
From the saliency map of an image, they extract different patches
with their natural boundaries corresponding to different entities in
the image and synthesize other sketch images by matting these
patches. By this way, they enrich the training dataset with 2000
images.

They construct two types of fully connected neural networks.
The first network type contains two hidden layers to train extracted
feature vectors. The number of nodes in the first and second hid-
den layers are 256 and 128, respectively. The second network type
uses only one hidden layer with 200 nodes. Extracted features from
ResNet50 of all training sketch images, including the original and
synthesized extra samples, are used to train different classification
models conforming the two proposed neural network structures.

Owing to the small-scale training data, Batch Gradient Descent
with Adam optimizer is used to minimize the cross entropy loss
function in the training process [KB14]. The output scores are pro-
cessed through softmax function to provide proper predicted prob-
ability for each class.

They improve the performance and accuracy of their system by
training multiple classification networks with different initializa-
tions for random variables for the two types of neural networks.
They fuse the results of those models by using the majority-vote
scheme to determine the label of a sketch query image.

They use ASUS-NotebookSKU X541UV, Intel(R) Core(TM)
i5-6198DU CPU @ 2.30GHz, 8 GB Memory, and 1 x NVIDIA
GeForce 920MX. The training time for a classification model is
about 30 minutes. It takes less than 1 second to predict the category
of a sketch image.
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Figure 4: An overview of the network architecture. They adopt two separate CNN streams to extract features for different domains. Triplet
center loss and softmax loss (not shown here) are used as the supervision loss.

4.3.2. Saliency-Based Selection of 2D Screenshots

For a 3D model, there exist multiple viewpoints to capture screen-
shots, some capture the general views of the model while others
focus on a specific set of entities in the scene. They randomly gen-
erate multiple screenshots from different viewpoints at 3 differ-
ent scales: general views, views on a set of entities, and views on
a specific entity. Screenshots with many occlusions are removed.
Then, they estimate the saliency map of a screenshot with DHSNet
[LH16] to evaluate if this view has sufficient human-oriented vi-
sually attracted details. By this way, they generate a set of visually
information rich screenshots for each 3D model. In this task, exper-
imental results show that using no more than 5 appropriate views
can be sufficient to classify the place of a 3D model with high ac-
curacy.

4.3.3. Place Classification Adaptation for 3D Models

Adversarial training is a promising approach for training robust
deep neural network. Adversarial approaches are also possible to
unsupervised domain adaptation [THSD17, SLZ∗17]. They apply
the adversarial adaptive method to minimize the distance between
the source and target mapping distributions. This approach aims to
create an efficient target mapping model due to substantial variance
between the two domains.

In this work, the source domain is a set of natural images that are
used to train Places365-CNN models, while the target domain is a
set of 3D place screenshots that are captured from given 3D mod-
els. Inspired by the idea of adversarial discriminative domain adap-
tation for face recognition [THSD17], they propose their method to
train the target mapping model so as to match the source distribu-
tion for place classification.Fig. 5 illustrates the overview of their
proposed method to adapt a place classification system from natural
images to screenshots of 3D models. They first train a target rep-
resentationMt to encode a screenshot of a 3D model into a feature
vector that cannot be distinguished with the feature from a natural
image by the domain discriminator. Then they train a classifierC
that can correctly classify target images.

In theAdversarial Adaptationstep, a natural image is encoded
by a source representationMs and a screenshot of a 3D model is
encoded by a target representationMt . The goal of this step is to
learnMt so that the discriminator cannot distinguish the domain of
a feature vector encoded by eitherMs or Mt . They keep the source
representationMs fixed and train the target representationMt using

a basic adversarial loss until the feature maps of the two domains
are indistinguishable by the discriminator. By this way, they obtain
a transformation to match the target distribution (screenshots from
3D models) with the source distribution (natural images).

In the Classification for Target Domainstep, they useMt to
encode screenshots of 3D models and train a classifier with data
from the training dataset. The label for a 3D model is determined
by voting from the results of its selected screenshots with the coef-
ficient weights corresponding to the prediction score of each view.
To further boost the overall accuracy for place classification of 3D
models from 2D screenshots, they train multiple classifiers with the
same network structure and assemble the output results with vot-
ing scheme. They use Google cloud machines n1-highmem-2, each
with 2 vCPUs, Intel(R) Xeon(R) CPU @ 2.50GHz Intel Xeon E5
v2, 13 GB Memory, and 1 x NVIDIA Tesla K80.

4.3.4. Ranking Generation

Because of the wide variation of sketch images, for each sketch
image in the test set, they consider up to the two best labels of the
sketch image, then retrieve all related 3D models (via their common
labels), and finally sort all retrieved items (3D models) in ascending
order of dissimilarity.

• Single-labeled sketch image: they select all the 3D models corre-
sponding to the label of a sketch image and insert them into the
rank list in a descending order of confidence scores measuring
the possibility that a 3D model belongs to that category.

• Multi-labeled sketch image: the similarity score between a
sketch image and a 3D model is determined by the product of the
confidence score of the sketch image and that of the 3D model.
All 3D models in categories related to a sketch image are inserted
into the rank list and sorted in descending order of similarity, i.e.
ascending order of distance.

In this track, they submit 3 runs as follows:

• Run 1: they use the single label of a sketch image from one net-
work in Type 1 and the single label of a 3D model from one place
classification model.

• Run 2: they use the single label of a sketch image from the fusion
of 3 networks (one Type 1 and two Type 2 networks) and the sin-
gle label of a 3D model from the fusion of 5 place classification
models.

• Run 3: they use the two best labels of a sketch image from one
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Figure 5: Place classification for screenshots of 3D models with adversarial discriminative domain adaptation.

network in type 1 and the single label of a 3D model from the
fusion of 5 place classification models.

5. Results

In this section, we perform a comparative evaluation of the eight
runs of the four methods submitted by the three groups. We mea-
sure retrieval performance based on the seven metrics mentioned in
Section2.4: PR, NN, FT, ST, E, DCG and AP.Fig. 6 andTable 2
compare three learning-based participating methods and one non-
learning-based participating method on the testing and complete
dataset, respectively.

As shown in the aforementioned figure and table, in the learn-
ing based category, Tran’s RNSRAP algorithm (run 2) performs
the best, followed by Liu’s TCL method (run 3), while the over-
all performance of all the learning-based methods are close to each
other. In the non-learning based category, there is only one partic-
ipating method, whose performance is much inferior if compared
with learning-based ones. More details about the retrieval perfor-
mance of each individual query of every participating method can
be found on the track homepage [YLL18].

Though we cannot directly compare non-learning based ap-
proaches and learning-based approaches together, we have found
much more promising results in learning-based approaches. The
CNNs contribute a lot to the top performance of those three
learning-based approaches. Considering many latest sketch-based
3D model retrieval methods utilize deep learning techniques, we re-
gard it as the currently most popular and promising machine learn-
ing technique for 2D/3D feature learning and related retrieval. In
fact, the three methods that adopt certain deep learning models also
perform well when adapted to this challenging benchmark.

Based on the same target 3D scene dataset of this Sketch-
Based 3D Scene Retrieval (SBR) track, we also organized an-
other SHREC’18 track on 2D Image-Based 3D Scene Retrieval
(IBR) [ARYLL18], whose 2D query image dataset contains 1000
images for each of the 10 classes. The IBR track also has almost
the same four participating methods, while as can be seen from the
corresponding figures and tables, for the same method each per-
formance metric achieved on the IBR track is significantly better
than that on the SBR track. We believe at least the following three
differences of IBR contribute to its better performance: (1) it has a

much larger query dataset which is very helpful for the training of
the deep neural networks; (2) compared with the query sketches of
SBR, there is much more accurate 3D shape information in IBR’s
query images; and (3) each of IBR’s query images has additional
color information to correlate to the texture information existing in
the 3D scene models. Therefore, there is a much smaller seman-
tic gap to bridge between the query and target datasets for the IBR
track, while the SBR track is much more challenging due to a big
semantic gap there.

Finally, we classify all the participating methods with respect
to the techniques employed: all the three participating groups (Li,
Liu, Tran) utilize local features. All of the three groups (Li, Liu,
Tran) employ deep learning framework to automatically learn the
features. But Tran further applies regular transformations and ad-
versarial training as well. On the other hand, Li and Liu directly
compute the 2D-3D distances based on the distributions of sketches
and models by using the Euclidean distance metric, while Tran con-
ducts the retrieval based on 2D/3D classification.

6. Conclusions and Future Work

6.1. Conclusions

Due to the semantic gap existing between the inaccurate 2D scene
sketch queries and more accurate 3D scene model representa-
tions for the same scene that we want to search in this scenario
of 2D scene sketch-based 3D scene model retrieval, learning a
deep model is potential in bridging the gap. In conclusion, this
2D scene sketch-based 3D scene model retrieval track is to fur-
ther foster the challenging and interesting research direction of
sketch-based 3D model retrieval, encouraged by the success of
SHREC’12 [LSG∗12, LLG∗14], SHREC’13 [LLG∗13, LLG∗14],
SHREC’14 [LLL ∗14,LLL ∗15] and SHREC’16 [LLD∗16] sketch-
based 3D shape retrieval tracks.

Though 2D scene sketch-based 3D scene retrieval is even more
challenging than 2D sketch-based 3D model retrieval and 2D
image-based 3D model retrieval, we still have three groups who
have successfully participated in the track and contributed eight
runs of four methods. This track provides a common platform to
solicit current 2D scene sketch-based 3D scene model retrieval ap-
proaches in terms of this 2D sketch-based 3D scene retrieval sce-
nario. We also hope that theSceneSBRbenchmark, together with
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Figure 6: Precision-Recall diagram performance comparisons on two different datasets of ourSceneSBRbenchmark for three learning-
based and one non-learning based participating method.

Table 2: Performance metrics comparison on two different datasets of of ourSceneSBRbenchmark for three learning-based and one non-
learning based participating method.

Participant Method NN FT ST E DCG AP
Testing dataset
Li MMD-VGG 0.771 0.630 0.835 0.633 0.856 0.685

Liu
TCL1 0.643 0.582 0.753 0.579 0.810 0.606
TCL2 0.814 0.630 0.794 0.626 0.860 0.688
TCL3 0.800 0.640 0.801 0.633 0.861 0.691

Tran
RNSRAP1 0.729 0.658 0.659 0.637 0.826 0.689
RNSRAP2 0.786 0.729 0.734 0.707 0.864 0.757
RNSRAP3 0.729 0.652 0.766 0.637 0.834 0.707

Complete benchmark
Li VGG 0.336 0.262 0.428 0.151 0.684 0.243

the retrieval results we have obtained in the track, will become a
useful reference for researchers in this community.

6.2. Future Work

This track not only helps us identify state-of-the-art methods, but
also existing problems, current challenges and future research di-
rections for this important, new and interesting research topic.

• Building a large-scale and/or multimodal 2D scene-based 3D
scene retrieval benchmark.Our proposedSceneSBRcontains
only ten scene classes, which is one of the reasons that all the
three deep learning-based participating methods have achieved
excellent performance. However, since scalability to a large scale

retrieval and 2D/3D format diversities is very important for re-
lated applications, we plan to significantly extend theSceneSBR
benchmark by incorporating much more scene categories, as
well as more modalities in either 2D query (i.e. sketches and
images) or 3D target (i.e. RGD-D scenes, LIDAR scene images,
and other scene range scans produced by other range scanners)
format. Then, we will invite people to adapt and run their algo-
rithms on the new benchmark again to evaluate their scalability
in a large-scale and/or multimodal 3D scene retrieval scenario.

• Semantics-driven 2D scene sketch-based 3D scene retrieval.
To improve either the accuracy or efficiency of a 2D scene
sketch-based 3D scene retrieval algorithm, we need to consider
utilizing the semantic information existing in both a 2D scene

c© 2018 The Author(s)
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sketch query and all the 3D scene target models. None of the
four participating methods has exploited this already available
semantic information. We believe related applications (i.e. on-
line 3D scene retrieval, 3D Entertainment contents development,
and autonomous driving cars) will benefit a lot from the retrieval
based on extracted semantic information in both the queries and
targets.

• Application-oriented 2D scene-based 3D scene retrieval.De-
veloping a 2D scene-based 3D scene retrieval dedicated for a
related application, such as creating 3D scene contents for a new
4D immersive program, like Disney World’s Avatar Flight of
Passage Ride [Wik18, Att18, tM18], or for retrieving domain-
specific 3D scenes such as indoor/outdoor scenes, sand table
models for real estate applications, rainforest scenes for cartoon
or movie production, and so on.

• Developing new deep learning models specially for this re-
search topic. According to the evaluation, we have found
promising performance achieved by deep learning techniques.
However, due to limited competition time, most of the partici-
pating methods are a straight-forward application of a retrieval
algorithm developed for another purpose. Therefore, we have
confidence to believe that their performance will be elevated fur-
ther if they consider the characteristics of this retrieval problem,
or even better develop new deep learning models which fit this
scenario well.

• Interdisciplinary research directions. We have noticed the
more outstanding performance achieved by Tran’s 3D scene
retrieval algorithm RNSRAP which is based on sketch and
model classification. According to our previous class-based or
semantic information-based 3D model retrieval research experi-
ence [LJ13, LLJF17], it is a promising approach to further im-
prove retrieval accuracy, especially for NN, and FT since we can
push more 3D scene models classified into one class forward to
the front part of a retrieval rank list.
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