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Abstract
In the months following our SHREC 2018 - 2D Scene Image-Based 3D Scene Retrieval (SceneIBR2018) track, we have extended
the number of the scene categories from the initial 10 classes in the SceneIBR2018 benchmark to 30 classes, resulting in a
new benchmark SceneIBR2019 which has 30,000 scene images and 3,000 3D scene models. For that reason, we seek to further
evaluate the performance of existing and new 2D scene image-based 3D scene retrieval algorithms using this extended and more
comprehensive new benchmark. Three groups from the Netherlands, the United States and Vietnam participated and collectively
submitted eight runs. This report documents the evaluation of each method based on seven performance metrics, offers an in-
depth discussion as well as analysis on the methods employed and discusses future directions that have the potential to address
this task. Again, deep learning techniques have demonstrated notable performance in terms of both accuracy and scalability
when applied to this exigent retrieval task. To further enrich the current state of 3D scene understanding and retrieval, our
evaluation toolkit, all participating methods’ results and the comprehensive 2D/3D benchmark have all been made publicly
available.

1. Introduction

2D scene image-based 3D scene model retrieval is to retrieve 3D
scene models given an input 2D scene image. It has many impor-
tant related applications, including highly capable autonomous ve-
hicles like the Renault SYMBIOZ [Ren18] [Tip18], multi-view 3D
scene reconstruction, VR/AR scene content generation, and con-
sumer electronics apps, among others. However, this task is far
from trivial and lacks substantial research due to the challenges
involved as well as a lack of related retrieval benchmarks. Conse-
quently, existing 3D model retrieval algorithms have been limited
to focus on single object retrieval. Seeing the multiple benefits of
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advances in retrieving 3D scene models based on a scene image
query makes this an intriguing research direction.

We organized a 2018 Eurographics Shape Retrieval Contest
(SHREC) track [ARYLL18] [ARYL∗18] titled “2D Scene Image-
Based 3D Scene Retrieval”, by building the first 2D scene image-
based 3D scene retrieval benchmark SceneIBR2018, comprising
10,000 2D scene images and 1,000 3D scene models. All the im-
ages and models are equally classified into 10 indoor as well as
outdoor classes.

However, as can be seen, SceneIBR2018 contains only 10 dis-
tinct scene classes, and this is one of the reasons that all the three
deep learning-based participating methods have achieved excellent
performance on it. Considering this, after the track we have tripled
the size of SceneIBR2018, resulting in an extended benchmark
SceneIBR2019 [ARYLL19], which has 30,000 2D scene images
and 3,000 3D scene models. Similarly, all the 2D images and 3D
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scene models are equally classified into 30 classes. We have kept
the same set of 2D scene images and 3D scene models belonging
to the initial 10 classes of SceneIBR2018.

Hence, this track seeks participants who will provide new contri-
butions to further advance 2D scene image-based 3D scene retrieval
for evaluation and comparison, especially in terms of scalability to
a larger number of scene categories, based on the new benchmark
SceneIBR2019. Similarly, we also provide corresponding evalua-
tion code for computing a set of performance metrics similar to
those used in the Query-by-Model retrieval technique.

2. Benchmark

2.1. Overview

Building process. Scene categories were selected from the Places
scene recognition database [ZLK∗17] with the criteria of selec-
tion being popularity, in terms of the degree to which they are
commonly seen. Through a three-person voting mechanism we se-
lected the most popular 30 scene classes (including the initial 10
classes in SceneIBR2018) from the 88 scene classes of Places88
dataset [ZLK∗18], which are shared by ImageNet [DDS∗09], SUN
[XHE∗10], and Places [ZLK∗17]. Instances for the additional 20
classes, were sourced from Flickr [Fli18] as well as Google Images
[Goo18] for images and downloaded via 3D Warehouse [Tri18] for
scene models.

Benchmark details. Our extended 2D scene image-based 3D
scene retrieval benchmark SceneIBR2019 expands the initial 10
classes of SceneIBR2018 with 20 new classes totaling a more com-
prehensive dataset of 30 classes. SceneIBR2019 contains a com-
plete dataset of 30,000 2D scene images (1,000 per class) and
3,000 3D scene models (100 per class). Examples for each class
are demonstrated in both Fig. 1 and Fig. 2.

In the same manner as the SceneIBR2018 track, we randomly
pull 700 images and 70 models out from each class for training and
the remaining 300 images and 30 models are used for testing, as
shown in Table 1. If a method involves a learning-based approach,
results for both the training and testing datasets need to be submit-
ted. Otherwise, retrieval results based on the complete dataset are
needed.

Table 1: Training and testing datasets information of our
SceneIBR2019 benchmark.

Datasets Images Models
Training (per class) 700 70
Testing (per class) 300 30
Total (per class) 1000 100

Total (all 30 class) 30,000 3,000

2.2. 2D Scene Image Dataset

The 2D scene image query set is composed of 30,000 scene images
(30 classes, each with 1,000 images) that are all from the Flicker
and Google Image websites. One example per class is demonstrated
in Fig. 1.

Figure 1: Example 2D scene images (one example per class) in our
SceneIBR2019 benchmark.

2.3. 3D Scene Model Dataset

The 3D scene model dataset is built on the selected 3,000 3D scene
models downloaded from 3D Warehouse. Each class has 100 3D
scene models. One example per class is shown in Fig. 2.

2.4. Evaluation Method

To have a comprehensive evaluation of the retrieval algorithm, we
employ seven commonly adopted performance metrics in the 3D
model retrieval community: Precision-Recall (PR) diagram, Near-
est Neighbor (NN), First Tier (FT), Second Tier (ST), E-Measure
(E), Discounted Cumulated Gain (DCG) and Average Precision
(AP) [LLL∗15a]. We have developed the related code to compute
these metrics 1.

3. Participants

Of the six groups (two from China, one from Japan, one from the
Netherlands, one from the United States and one from Vietnam)
who initially registered, only three were able to submit results by
the deadline. Each group was given one month to complete the con-
test and submit method results and description. In total, there are
eight runs for the three different methods submitted by the three
groups.

1 http://orca.st.usm.edu/~bli/SceneIBR2019.
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Figure 2: Example 3D scene models (one example per class, shown
in one view) in our SceneIBR2019 benchmark.

The participants and their runs are listed as follows:

• RNIRAP-{1, 2} submitted by Ngoc-Minh Bui, Trong-Le Do,
Khac-Tuan Nguyen, Tu V. Ninh, Khiem T. Le, Thanh-An
Nguyen, Minh-Triet Tran and Vinh-Tiep Nguyen from Vietnam
National University - Ho Chi Minh City (Section 4.1);
• CVAE-{1, 2, 3, 4} and CVAE-VGG submitted by Perez Rey,

Mike Holenderski, Dmitri Jarnikov and Vlado Menkovski from
Eindhoven University of Technology in the Netherlands (Sec-
tion 4.2);
• VMV-VGG submitted by Juefei Yuan, Hameed Abdul-Rashid,

Bo Li, Tianyang Wang, Yijuan Lu from the University of South-
ern Mississippi, Austin Peay State University, and Texas State
University (Section 4.3).

4. Methods

4.1. RNIRAP: ResNet18-Based 2D Scene Image Recognition
with Scene Attributes and Adapting Place Classification
for 3D Models Using Adversarial Training, by N. Bui, T.
Do, K. Nguyen, T. Ninh, K. Le, T. Nguyen, M. Tran and V.
Nguyen

4.1.1. 2D Scene Image Classification with Scenes’ Deep
Features

To classify an image into one of the 30 scene categories in
this track, they apply their method (used in SceneIBR2018
[ARYLL18]) to extract scenes’ deep features using MIT Places

API [ZLK∗17]. They train a simple network with the extracted fea-
tures from Places API and use this network to classify an input
image with 30 labels.

In their first step, an input image is represented as a feature vec-
tor in Places API domain vector space using a pre-trained ResNet-
50 [HZRS15] model on the MIT Places API scene recognition
network. Instead of using 102 scene attributes as in their previ-
ous SceneIBR2018 competition, they use a 512-dimensional deep
feature representation which is generated before being processed
through dense layers for classification.

Next, they utilize the extracted features to train a neural net-
work classifier on the provided 30 scene categories. Different from
their method used in the SceneIBR2018 track, the input feature
is processed through two dense hidden layers with a dimension of
1,024 for each layer, instead of a small network of 100≤ K ≤ 200
dimensions as stated in their previous method. The visualization
of their network configuration is demonstrated in Fig. 3. The net-
work is trained on a server with 1 × NVIDIA Tesla K80 GPU. An
Adam optimizer with learning rate at 0.0001 being hyperparame-
ters. Three models were trained using this network configuration.
The final label prediction of an image is outputted by using a ma-
jority voting scheme from these three models.

Figure 3: 2D scene classification with scenes’ deep features.

4.1.2. 3D Scene Classification with Multiple Screenshots,
Domain Adaptation, and Concept Augmentation

They suggest two steps for 3D scene classification as shown in Fig.
4. In the first step, they use a mixture of multiple classification mod-
els.

First, they employ ResNet-50 [HZRS15] model pretrained on the
ImageNet [DDS∗09] and Places365 [ZLK∗17] datasets to extract a
feature vector for each sampled scene view. Then they implement
different neural network architectures to train for the classification
task. In order to find the best architecture, they try several config-
urations of a fully-connected neural network, with the number of
hidden layers ranging from one to two while the number of neu-
rons in each layer can be 128, 192, 256 or 320. The architecture
that achieves the best accuracy is chosen for the voting scheme.

To utilize the scene attribute information more efficiently,
they extract the 365-dimensional scene attribute features from
Places365 and directly concatenate with the features extracted by
ResNet-50. Some of the scene attribute features are useful and in-
formative for the classification task, such as the attributes of "out-
door" and "swimming" can relate to the "beach" category. How-
ever, concatenating the two feature vectors may cause the model
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Figure 4: Two-step process of the 3D scene classification method.

to overfit data and slow down the training process. Therefore, an
additional step of normalizing the features and reducing the dimen-
sion to 512 using Principal Component Analysis (PCA) is applied.
Finally, they continue to classify on this feature set.

They also collect images from the same set of 30 categories of
the Places365 dataset and from the Internet, each category con-
tains 1,000 images. Then they train a model using this customized
dataset and obtain the weights to initialize the weights of a model
when trained on the sampled views dataset.

Following their SceneIBR2018 method, they apply the adversar-
ial adaptive method to minimize the distance between the represen-
tation of the 3D model and the representation of the corresponding
image. Their method contains two main components: the Adversar-
ial Adaptation component, and the Place Classification component.
In the adversarial adaptation component, a source representation
model Ms will process a natural image into a feature vector and a
target representation model Mt will process a screenshot of a 3D
model into a second feature vector. The two encoded vectors are
then fed into a discriminator to distinguish the two domains. They
train the target representation Mt to fool the discriminator via a
basic adversarial loss. In the place classification component, they
train a classifier whose input is the learned representation of the 3D
model. Multiple 2D scene views are sampled from the 3D model
and processed by the trained classifier. The final label of the 3D
model is selected based on the votes of its sampled views. In order
to further improve the accuracy, a number of classifiers that share
the same architecture are trained to predict the final label. The re-
sults of the classifiers are assembled via a voting scheme.

Because of the wide variation in the design of a 3D scene, it is
not enough to classify the category of a scene simply by extracting
the feature (from ResNet50) or from the features of scene attributes
(from MIT Place, even after domain adaptation). This motivated
them to employ object/entity detectors to identify entities based on
hierarchical semantics present in each sampled view.

In the second step of the proposed method, they reuse the dataset
of natural images collected from the Internet to train object detec-
tors with Faster RCNN [RHGS15] for entities that might appear in
a scene, such as "book" (in a library), "umbrella" (in a beach), etc.

Using this list of scene semantics detected in sampled views, they
further refine their results.

4.2. CVAE: Conditional Variational Autoencoders for Image
Based Scene Retrieval, by P. Rey, M. Holenderski, D.
Jarnikov and V. Menkovski

Figure 5: Overview of scene sampling and CVAE distribution
learning.

4.2.1. Overview

The proposed approach consists of image to image comparison
with conditional variational autoencoders (CVAE) [KMRW14], as
shown in Fig. 5. The CVAE is a semi-supervised method for ap-
proximating the underlying generative model that produces a set
of images and their corresponding class labels in terms of the so-
called unobserved latent variables. Each of the input images is de-
scribed in terms of a probability distribution over the latent vari-
ables and the classes.

Their approach consists of using the probability distributions cal-
culated by the CVAE for each image as a descriptor. The compar-
ison between an image query and the 3D scene renderings is with
respect to the probability distributions obtained from the CVAE.
The method consists of data pre-processing, training and retrieval
described in the following subsections.

4.2.2. Data Preprocessing

Thirteen renderings are obtained for each of the 3D scenes. Each of
the 3D scenes has a predefined view when loaded into the SketchUp
software. This view is saved as a 2D view together with twelve
views at different angles around the scene as in [SMKLM15]. The
training data set consists of the 3D scene renderings together with
the training images. All images are resized to a resolution of 64×
64 and all pixel values are normalized to the interval [0,1]. Image
data augmentation is carried out by performing a horizontal flip
to all images. The corresponding data space is X = [0,1]64×64×3,
while the 3 represents the color space.

4.2.3. Training

The CVAE consists of an encoder and a decoder neural network.
The encoder network calculates from an image x ∈ X the parame-
ters of a probability distribution over the latent space Z = Rd and
over the thirty class values in Y = {1,2,3, . . . ,30}. The decoder
network calculates from a latent variable z ∈ Z and a class y ∈ Y ,
the parameters of a distribution over the data space X .

c© 2019 The Author(s)
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The distributions for the encoder correspond to a normal dis-
tribution over Z and a categorical distribution over Y . A normal
distribution over X is chosen for the decoder. The probabilistic
model used corresponds to the M2 model described in the arti-
cle [KMRW14]. Both the encoding and decoding neural networks
are convolutional.

The CVAE is fed with batches of labeled images during training.
The loss function is the sum of the negative Evidence Lower Bound
(ELBO) and a classification loss. The ELBO is approximated by
means of the parametrization trick described in [KMRW14,KW13]
and represents the variational inference objective. The classifica-
tion loss for their encoding distributions over Y corresponds to the
cross entropy between the probability distribution over Y with re-
spect to the input label.

4.2.4. Retrieval

After training, an image x ∈ X can be described as a conditional
joint distribution over Z×Y . The density qφ(z|x) corresponds to a
normal distribution and qφ(y|x) to a categorical distribution over Y ,
where φ represents the weights of the encoder neural network. The
joint density corresponds to qφ(z,y|x) = qφ(z|x)qφ(y|x).

The similarity D between an input query image x∗ ∈ X and a 3D
scene in terms of its N rendered images S = {xr}N

r=1 is given by the
minimum symmetrized cross entropy Hs between the query and the
rendered images’ probability distributions (see Fig. 5).

D(x∗,S) min
r∈{1,2,...,13}

Hs(qφ(z|x∗),qφ(z|xr))

+αHs(qφ(y|x∗),qφ(y|xr)). (1)

They have used the parameter α = 64× 64× 3 to increase the
importance of label matching. A ranking of 3D scenes is obtained
for each query according to this similarity.

4.2.5. Five Runs

They have sent five submissions corresponding to methods who
differ only on the architecture of the encoding and decoding neural
networks. These are described as follows:

1. CVAE-(1,2,3,4): CVAE with different CNN architectures for
the encoder and decoder.

2. CVAE-VGG: CVAE with features from pre-trained VGG
[Kal17] on the Places data set [ZLK∗18] as part of the encoder.

4.3. VMV-VGG: View and Majority Vote Based 3D Scene
Retrieval Algorithm, by J. Yuan, H. Abdul-Rashid, B. Li,
T. Wang, Y. Lu

Figure 6: VMV-VGG architecture [ARYLL19].

The View and Majority Vote based 3D scene retrieval algorithm
(VMV) utilizes the VGG-16 architecture, as illustrated in Fig. 6.

4.3.1. 3D Scene View Sampling

Each 3D scene model is in a 3D sphere observable by an auto-
mated QMacro that captures 13 scene views. Of these 13 unique
perspectives, 12 are uniformly sampled along the equator of the
sphere while the last view is from a top-down perspective as shown
in Fig. 7.

Figure 7: A 13 sampled scene view images example of an apartment
scene model [ARYLL19].

4.3.2. Data Augmentation

They implemented several augmentations (e.g rotations, transla-
tions and reflections) [YLL16] on the dataset to avoid overfitting.

c© 2019 The Author(s)
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These augmentations extended the dataset to be 500 times its initial
size.

4.3.3. Pre-training and Fine-tuning

They preformed domain adaption with VGG2 on the Places scene
image dataset [ZLK∗17] for 100 epochs. After this adaption phase,
another phase of domain adaption is performed on VGG2 with the
2D scene views training dataset, respectively.

4.3.4. Image/ View Classification and Majority Vote-Based
Label Matching

Probability distributions of classifications were obtained from the
trained VGG2 with the target 2D scene views testing dataset. A
query image and each model’s 13 scene views are used to gener-
ate a rank list for the query by using a majority vote-based label
matching method.

5. Results

Figure 8: Precision-Recall diagram performance comparisons on
testing dataset of of our SceneIBR19 benchmark for the three
learning-based participating methods.

A comparative evaluation has been performed on all methods.
The measured retrieval performance is based on the seven metrics
mentioned in Section 2.4: PR, NN, FT, ST, E, DCG and AP. Fig. 8
and Table 2 compare the three learning-based participating meth-
ods on the testing dataset.

As can be seen in the aforementioned figure and table, Bui’s
RNIRAP algorithm (run 2) performs the best, followed by the base-
line method VMV-VGG and the CVAE method (CVAE2). More de-
tails about the retrieval performance of each individual query of ev-
ery participating method are available on the SceneIBR2019 track
website [ARYL∗19] .

Firstly, during this year’s track all the three methods submitted
by the three participating groups are leaning-based methods, while
there is no submission involving a non-learning based approach.
In addition, all of the three methods have employed a deep neural
networks based learning approach.

Secondly, we could further classify the submitted approaches at a
finer granularity. Both RNIRAP and VMV-VGG utilize CNN mod-
els and a classification-based approach, which contribute a lot to
their better accuracies. While, the CVAE-based method uses a con-
ditional VAE generative model and resulted latent features to mea-
sure the 2D-3D similarities.

Therefore, according to these two years’ SHREC tracks
(SHREC’19 and SHREC’18) on this topic, deep learning-based
techniques are still the most promising and popular approach in
tackling this new and challenging research direction. To further
improve the retrieval performance, Bui used scene object seman-
tic information during the stages of data augmentation and retrieval
results refinement.

In direct comparison to the results from SceneIBR2018,
SceneIBR2019 results do not preform as well. This is to be ex-
pected since the 10 scene categories in the SceneIBR2018 bench-
mark are distinct and have few correlations. As explored by Yuan,
J. et al [ARYLL19], the significant drop in performance can be at-
tributed to the introduction of many correlating scene categories.

Finally, we would like to compare the performance of
SHREC’19 two related tracks on the topic of 3D scene retrieval.
Similarly, this year in a parallel way we also have organized an-
other SHREC’19 track on “Extended 2D Sketch-Based 3D Scene
Retrieval” [ARYL∗19], based on the same target 3D scene dataset
and a different query dataset which contains 25 sketches for each
of the 30 classes. Except CVAE, these two tracks share other two
participating methods (with minor differences). It is the second
time that we have found that the performance achieved in this ex-
tended “Image-Based 3D Scene Retrieval (IBR)” track is signif-
icantly better, compared with that achieved on the back to back
extended “Sketch-Based 3D Scene Retrieval (IBR)” track. This
should be attributed to the same reasons as we have concluded
in [ARYL∗18, ARYLL18]: IBR has a much larger query training
dataset which contains images, instead of sketches, that have much
more details and color information as well, which makes the se-
mantic gap between the 2D query image and 3D target scenes much
smaller.

6. Conclusions and Future Work

6.1. Conclusions

This track provided participants with the most diverse and com-
prehensive 2D/3D scene dataset to date, in hopes to advance 3D
scene retrieval. Participating groups have explored many different
approaches to solve the intractable task of 2D to 3D scene under-
standing.

Considering the importance of this research direction and its
large amount of applications, we built the first 2D scene image-
based 3D scene retrieval benchmark in SHREC’18 [ARYL∗18,
ARYLL18]. This year, we have further extended the number of
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Table 2: Performance metrics comparison on the SHREC’19 SceneIBR Track Benchmark.

Participant Method NN FT ST E DCG AP
Complete benchmark

Bui
RNIRAP1 0.845 0.620 0.674 0.618 0.791 0.5436
RNIRAP2 0.865 0.749 0.792 0.745 0.863 0.7221

Rey

CVAE-VGG 0.071 0.054 0.099 0.055 0.405 0.0535
CVAE1 0.235 0.187 0.295 0.189 0.532 0.1717
CVAE2 0.272 0.217 0.331 0.219 0.560 0.2013
CVAE3 0.199 0.154 0.251 0.157 0.507 0.1445
CVAE4 0.211 0.149 0.246 0.152 0.505 0.1424

Yuan VMV-VGG 0.122 0.458 0.573 0.452 0.644 0.3899

categories from 10 to 30, which further extends the line of our
SHREC related research work on sketch/image-based 3D shape
retrieval: SHREC’12 [LSG∗12, LLG∗14], SHREC’13 [LLG∗13,
LLG∗14], SHREC’14 [LLL∗14,LLL∗15b], SHREC’16 [LLD∗16],
SHREC’18 [ARYLL18] and this year’s SHREC’19 [ARYL∗19].

Though even more challenging than last year, we still have three
groups who have successfully participated in the track and con-
tributed eight runs of three methods. Based on the number of (six)
registrations, we also have found that it seems that this image-
based retrieval track has attracted more potential contributors, com-
pared to our sketch-based retrieval track. We believe this should
be partially related to its relatively fewer difficulties and more
broad applications as well. Extended from SHREC’18 [ARYLL18]
[ARYL∗18], this track, together with its benchmark and retrieval
results, will become an even more useful resource for the re-
searchers that are interested in this topic as well as many related
applications.

6.2. Future Work

This track not only provides us with a common platform to solicit
the retrieval performance (including scalability) from current 2D
image-based 3D scene retrieval algorithms, but also offers us an
opportunity to further identify state-of-the-art approaches as well
as future research directions for this research area.

• Large-scale benchmarks. Our SceneIBR2019, even as the
largest benchmark for 2D scene image-based 3D scene retrieval,
has only thirty scene categories, which is far from large-scale.
This again can partially explain the still relatively good perfor-
mance that has been achieved by the top deep learning-based
participating methods. However, we did see an apparent drop
in the overall performance. Therefore, testing the scalability of
a retrieval algorithm with respect to a large-scale retrieval sce-
nario and various 2D/3D data formats is very important for many
practical applications. Therefore, our next target is to build a
large-scale benchmark which supports multiple modalities of 2D
queries (i.e. images and sketches) and/or 3D target models (i.e.
meshes, RGB-D, LIDAR, and range scans).
• Semantics-driven retrieval approaches. A lot of semantic in-

formation exists in both the 2D query images and the 3D target
scenes in our current SceneIBR19 benchmark. Such informa-
tion would be helpful in further advancing the retrieval perfor-
mance w.r.t both accuracy and scalability, as demonstrated by

Bui’s method. Therefore, in the hope of developing a practical
retrieval algorithm which is scalable to the size of the bench-
mark, we should prioritize this in our future work list.
• Classification-based retrieval. Again, we have found that

classification/recognition-based 3D model retrieval (i.e. Bui’s
RNIRAP and Yuan’s VMV-VGG) has great potential in achiev-
ing better performance.
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