
Congestion Avoidance in Multi-Agent-based Egress Simulation

Bikramjit Banerjee, Matthew Bennett, Mike Johnson, Adel Ali
University of Southern Mississippi

Hattiesburg, MS 39406
Keywords: Intelligent agents, Applications: Game AI, agent-based simulation

Contact: Bikramjit.Banerjee@usm.edu

Abstract

We focus on multi-agent-based egress simulation from
large sports stadiums. We present the efficient Portal Clear-
inghouse algorithm for locating bottlenecks that are tem-
porarily congested by agents. The purpose of this step is
to allow agents who intend to use the congested portals
to re-rout and avoid adding to existing congestions. We
present simple heuristic techniques for other sub-problems
in congestion avoidance, and demonstrate our approach
on a small hand-crafted domain. Interestingly, we observe
that a sophisticated vision based avoidance behavior can be
emulated with our simple and efficient technique, on some
maps.

1 Introduction

Crowd behavior simulation [1, 2, 3, 4, 5] has been an ac-
tive field of research because of the utility of simulation in
several applications such as emergency planning and evacu-
ations, designing and planning pedestrian areas, subway or
rail-road stations, besides in education, training and enter-
tainment. In this paper, we focus on egress behavior from a
large sports stadium, using a distributed multi-agent-based
simulation framework. Although most of the relevant issues
of domain modeling and agent pathing can be solved using
traditional techniques from visual simulation and gaming,
there is one issue that has not been addressed adequately,
to the best of our knowledge. When agents form a conges-
tion at a bottleneck, other agents who intend to pass through
the same bottleneck should not keep accumulating and ex-
panding the congestion. Instead, these agents should find an
alternate route and avoid existing congestions. We call this
problem congestion avoidance. We are not aware of any ex-
isting technique that solves this problem in time linear with
the number of agents or bottlenecks. This is precisely our
contribution in this paper.

In order to keep the computational complexity limited to

linear in the number of agents or bottlenecks, we do not im-
plement any costly vision/perception mechanism. Instead,
we simulate the effect of vision through indirect means.
We introduce the technique of Portal Clearinghouse (PCH)
which identifies the set of bottlenecks that are temporarily
blocked by agents. We use AI blind search technique for
identifying agents who can “see” a congestion and then use
the popular A* [6] algorithm for re-routing groups of agents
with common destinations. The PCH is the main novel con-
tribution of this paper, which solves the major sub-problem
of congestion location in a scalable manner (O(n+p) where
n is the number of agents and p is the number of portals).
We demonstrate the working of our congestion avoidance
mechanism on a small map with 3 corridors between the
start and the target regions, showing agents successfully us-
ing the longer routes in an attempt to avoid congestion along
the shortest route.

2 Related work

In order to face the complex challenges that crowd sim-
ulation poses, primarily three approaches1 have been tradi-
tionally used. One approach assumes that the individuals
are passive entities that drift in the presence of forces – the
so-called “social forces” model [1] and the associated vari-
ants of gaskinetic model proposed by Helbing. This model
has been extended to include further individual-level details
such as familial ties and altruism [4].

The other approach is an agent-based model where in-
dividuals are modeled as intelligent agents with (limited)
perception and decision-making capabilities. Some of the
earliest applications of simple agent-based behaviors were
seen in Reynolds’ flocking model – the “boids” [7]. In this
and related works, each agent is endowed with a mix of sim-
ple steering behaviors, that produce complex macroscopic
(group-level) behaviors as emergent phenomena. The ba-

1We do not discuss user-guided or scripted crowd behaviors since they
are not relevant to our application domain, viz., stadium egress



sic idea of emergent behaviors has been extended to rule-
based systems [2, 3] that offer the added advantages of effi-
ciency and variety in behaviors. In this paper, we adopt the
agent-based approach, but our focus is to advance the state-
of-the-art by solving the associated problem of congestion
avoidance in an efficient manner.

Cellular automata [5] underlie the third major approach,
with recent improvements [8] for pedestrian room evacu-
ation. Since our intended application is egress from large
stadiums, a CA approach is not quite appropriate due to
scalability concerns on very large maps.

Figure 1. Partitioning of the walkable surface
into convex polygons.

Figure 2. Portals shown in green on one sec-
tion of a stadium.

3 Egress Simulation

In this paper, we focus on simulating the egress behavior
of spectators from a sports stadium. The input to our simu-
lation is a sketch-up of a stadium with all walkable surfaces
partitioned into a set of convex polygons, P . Figure 1 shows
the partitioning of the walkable surface into rectangles of
various sizes (the different colors are not relevant here). We

have developed a GUI to populate the stadium with agents
of different sizes and speeds. The main task is to make the
agents egress the stadium in a human-like manner. In par-
ticular, the agents should be able to

• Choose the shortest path to exits if there are no con-
gestions in bottlenecks, or no dynamically added ob-
stacles.

• If there is a congestion at a bottleneck, the agents
should be able to replan an alternate path cheaply. This
problem is the main focus of this paper.

• If there are dynamically added obstacles, such as de-
bris from an explosion, or barricades placed by emer-
gency personnel, the agents should be able to replan an
alternate path. Although the handling of such obsta-
cles is no different from dynamic congestions (previ-
ous bullet), this is a lesser challenge since the locations
of such obstacles are user-defined. Hence there is no
need to autonomously locate such obstacles, as is the
case with dynamic congestion.

We call the junction (plane) between two polygonal regions
a portal if it is passable. It is possible that two regions
are connected by a physical device such as a door, or just
an open connection between two polygons in a contiguous
open region; we refer to all such polygon-to-polygon con-
nections as portals. Figure 2 shows the portals in green, for
one face of a stadium.

Given a partition of the walkable surface into a set of
polygons (P ) connected through portals, it is simple mat-
ter to calculate all-pair-shortest-paths by the Floyd Warshall
algorithm, offline, based on the polygon-graph. While the
polygons form the nodes of the graph, its edges are formed
by the portals with the edge weights determined by the sum
of Euclidean distances between the centroids of the adjacent
polygons and the center of the intervening portal. We save
the resulting distances and path-lookup tables for online use
during the simulation.

The agents’ pathfinding is done in two levels. At the top
(abstract) level, a path specifies the series of polygons that
an agent must step through to reach its goal, as discussed in
the previous paragraph. At the lower level, an agent needs
to navigate within a polygon. This navigation task is sim-
plified by the knowledge that there are no static obstacles
within a polygon, since all such obstacles are skirted during
the initial partitioning. Furthermore, since all polygons are
convex, we are guaranteed that an agent can navigate from
any point in a polygon to any other point in that polygon,
without encountering a static obstacle. The only obstacle
that an agent may encounter within a polygon is another
agent, or a dynamically added obstacle.

We use the seek steering behavior [7] to let an agent seek
an appropriate point on a portal connecting to the next poly-

2



gon on the agent’s path. We also use the collision-avoidance
steering behavior [7] to enable an agent avoid running into
other agents or dynamically placed obstacles.

While steering behaviors allow an agent to navigate re-
alistically within a polygon, a common pathing problem
in egress scenarios is the congestion at narrow portals that
should prompt an agent to repath. Ignoring this aspect will
produce ever-increasing congestions that are not only visu-
ally unrealistic, but also yield erroneous egress rates, in-
validating the simulation. We call this problem congestion
avoidance and outline our solution to this problem in the
next section.

4 Congestion Avoidance

There are three major subproblems under congestion
avoidance:

Blocked portal identification: Here the problem is to
identify which portals are congested, i.e., congestion
location.

Re-routing candidate selection: Given that a blocked
portal has been identified, this problem deals with
identifying a subset of agents who can visually locate
this congestion and decide to repath.

Re-routing: Finally, given the subset of agents who have
decided to repath, how do we actually compute an al-
ternative path for such an agent, which must be the
shortest path under the constraint that the congested
portal is (temporarily) unpassable?

The main focus of this paper is the first problem, viz.,
blocked portal identification. We offer a novel and efficient
(linear in the number of agents and portals) solution to this
problem. For the remaining two problems, we offer simple
heuristic solutions that are to be improved in the future. We
describe these solutions below.

4.1 Blocked Portal Identification

A first-cut solution to this problem would be portal-
driven. Each portal checks its vicinity and if it sees a large
enough crowd then it announces that it is closed. This solu-
tion (O(np)) is more efficient than an agent-driven solution
(O(n2)) where agents check their vicinity for crowds, since
there are usually fewer portals than agents. Although the
portal-driven solution is in the spirit of smart terrain [9] it
still involves significant computation (potentially O(n)) per
portal, and allows for flip-flop decisions when using a hard
cut-off for crowd size to decide on closure.

We offer a novel solution, called portal clearinghouse
(PCH), that is both agent-driven and portal-driven, thus dis-
tributing the computational load, as well as making the

overall computations simple. This solution has a complex-
ity of O(n + p). The portal clearinghouse is a table that
records number of complaints (cp) against each portal, p.
A complaint is issued by an agent i if it is unable to pass
through a portal (p) connecting its current polygon with the
next polygon on its path, within a given time dip. Since ev-
ery agent uses sophisticated navigation technique within a
polygon, it is reasonable to assume that the only reason an
agent fails to pass through a portal on its path is a crowd
blocking that portal, if dip is reasonably chosen. The por-
tal clearinghouse iterates through the list of portals and for
every cp that exceeds a threshold C, p is closed.

Since dip has to be chosen for every agent i, it is nec-
essary to keep the computation of dip simple, to manage
the overall complexity of the blocked portal identification
process. We use a heuristic approach that is simple yet ef-
fective. When an agent i enters a polygon, it computes the
total time, Tip, that it would take to reach the portal 2 p
(connecting to the next polygon) from its current position,
at its current speed, assuming a straight line path. Its ac-
tual path would most likely be different since there could be
other agents to avoid collision with. So, for some choice of
m > 1, we say

dip = m · Tip

Everytime an agent enters a new polygon, dip is computed
and a timer is started. When the timer exceeds dip with the
agent still in the same polygon, the agent issues a complaint
and the portal clearinghouse increments cp. Since a crowd

Figure 3. Overview of the Portal Clearing-
house (PCH) technique.

blocking a portal is a temporary obstacle, each complaint
received by the portal clearinghouse is also timed. Every
message (from agent i about portal p) expires after a time

2More specifically, the time to reach the seek point on the portal by the
seek steering behavior.

3



tip from the time it is issued, and cp is decremented. Conse-
quently, an agent i must keep its timer running and reissue
a complaint every tip units of time after issuing a complaint
about p for the first time, unless it manages to move into the
next polygon on its path, at which point its timer is reset.
Figure 3 illustrates the basic process.

The cutoff C is chosen based on the relative sizes of the
portal and the agents. Each agent is displayed as a cylinder
of a chosen radius, but fixed height. The approximate max-
imum number of agents that can stand side to side along the
length of a portal is given by the ratio (length of a portal /
average agent radius ). The value of C is chosen to be this
maximum scaled by a fixed constant.

It is important to note that a closed portal does not mean
it is unusable. The agents that are currently crowding a
closed portal will continue to attempt to pass through it. It
is only the agents that intend to pass through the same por-
tal, and are in the vicinity during the period that the portal is
closed, that will try to avoid it. We turn to identifying this
set of agents in the next section.

4.2 Re-routing Candidate Selection

Once a closed portal is identified, the next task is to iden-
tify the set of agents (other than the set of agents that is
already crowding this portal) who should be able to “see”
this congestion. Since we do not perform expensive agent-
vision, we again use a heuristic approach for this step.
Given the farthest distance that an agent can see (the vis-
ible distance), each polygonal region with a closed portal
performs a distance limited depth-first search [6] to iden-
tify which other polygons are in its Potentially Visible Set
(PVS), using the visible distance as the distance limit. The
PVS is the set of all polygons such that agents located in
these polygons can potentially “see” the congested portal.
This is, however, a crude measure since polygons that are
separated by a wall could be included in the PVS of each
other, if the route between them is shorter than the visible
distance. So the PVS set needs to be refined, by eliminating
such candidate regions. In this paper, we leave this refine-
ment as a future work, and accept the PVS as the actual
visible set.

All agents in the visible set are potentially candidates for
re-routing. It is rather straightforward to verify if the closed
portal lies on the path of a potential candidate, by checking
if the pair of regions that the portal connects appears in its
path. Every agent in the visible set that passes this test is a
re-routing candidate.

4.3 Re-routing

In a stadium egress scenario, especially in a panic situ-
ation, most (if not all) agents in a polygon have the same

destination. As a result, we can reduce the problem of re-
routing candidates to the problem of re-routing groups of
candidates. For each such group, we perform A* search
under the constraint that the given portal is closed. It is
possible that several more portals along new paths are also
closed, but the agents should not know about them until they
navigate to the PVS of the associated polygons. This natu-
rally limits the complexity of re-routing.

5 Demonstration

To demonstrate how the system works, we show a se-
ries of snapshots of the crowd behavior on a small map,
shown in Figures 4, 5. The map consists of a source re-
gion (where the agents are initially located) and a sink re-
gion (shown in blue), with 3 corridors connecting these re-
gions. The corridors are created such that the progressively
shorter routes pass through the progressively narrower cor-
ridors, thus forcing the agents to invoke the re-routing be-
havior at various times. The green lines on the maps show
the portals. Figure 4(a) shows the initial configuration. In
Figure 4(b), bulk of agents approach the narrowest corridor,
thus closing it quickly, prompting a branch to approach the
middle corridor. In Figure 4(c) we see the middle corridor
gets more crowded, but since it is wider, it takes a while for
it to get closed, while the crowd spills toward the bottom
corridor (Figure 4(d)).

Figure 5(e) shows an interesting side effect of our PCH
system. Since many agents had spilled over toward the bot-
tom corridor while waiting to pass through the middle cor-
ridor, they were already in a polygon with the red portal
(Figure 5(e)). When these agents find the portal to the mid-
dle corridor closed, they re-route and their new path passes
across the red portal. However, since they were already lo-
cated in this polygon, their timers had started, and agents
start complaining even before they reach this (red) portal.
With sufficient number of complaints, the portal gets closed
(a portal turns red when it gets closed). This allows the
trailing agents in the adjacent region (see Figures 5(f) and
(g)) to re-route and turn back to the middle corridor since
that portal had opened by this time. This behavior emulates
the ability of humans to re-route not only when an exit is
blocked, but also when we see a huge crowd approaching
a narrow exit on our way, and re-route in anticipation. Fi-
nally, Figure 5(h) shows the agents approaching the target
region via all three corridors.

The above side effect that emulates re-routing in antici-
pation, is actually the result of a combination of timer-based
PCH and appropriate polygonal partitioning, rather than
PCH alone. It might not have arisen with a different scheme
of partitioning. Hence we do not tout this as a guaranteed
benefit of the PCH system, or a potential replacement for
costly vision-based techniques. However, the demonstra-

4



tion does indicate that the PCH system works seamlessly
with imperceptible computational delay in a 1000 agent
simulation.

6 Conclusions and Future Work

We have presented the Portal Clearinghouse algorithm
for efficient congestion location in a multi-agent-based sta-
dium egress simulation scenario, and demonstrated its ef-
fectiveness in a simulation with 1000 agents. For the two
related subproblems of re-routing candidate selection, and
re-routing, we have used simple heuristic solutions that we
intend to refine in the future. Although we do not employ
expensive vision algorithms, we have demonstrated that our
technique can display sophisticated behaviors that emulate
vision based complex AI, on some maps. In the future, we
would like to refine the PVS identification approach, and
explore more efficient re-routing algorithms.

7 Acknowledgments

This work was supported in part by a Department of
Homeland Security grant (BOA:4200000225, Task Order 2
63894), managed by the Oak Ridge National Lab through
the SERRI program, and a start-up grant from the Univer-
sity of Southern Mississippi. All views expressed in this
paper are solely of the authors, and in no way reflect the
views of the US government, or the University of Southern
Mississippi.

References

[1] Helbing, D., Molnar, P.: Social force model for pedes-
trian dynamics. Physical Review E 51 (1995) 42–82

[2] Ulicny, B., Thalmann, D.: Towards interactive real-
time crowd behavior simulation. Computer Graphics
Forum 21(4) (2002)

[3] Pan, X., Han, C., Dauber, K., Law, K.: A multi-agent
based framework for simulating human and social be-
haviors during emergency evacuations. In: Social Intel-
ligence Design, Stanford University (March 2005)

[4] Braun, A., Musse, S.R., de Oliveira, L.P.L., Bodmann,
B.E.J.: Modeling individual behaviors in crowd simu-
lation. In: Proceedings of the 16th International Con-
ference on Computer Animation and Social Agents
(CASA, Los Alamitos, CA, USA, IEEE Computer So-
ciety (2003) 143–148

[5] Fukui, M., Ishibashi, Y.: self-organized phase transi-
tions in CA-models for pedestrians. J. Phys. Soc. Japan
(1999) 2861–2863

[6] Russell, S., Norvig, P.: Artificial Intelligence: A Mod-
ern Approach. Prentice Hall (1995)

[7] Reynolds, C.: Flocks, herds and schools: A distrtibuted
behavior model. In: Proceedings of ACM SIGGRAPH.
(1987)

[8] Gudowski, B., Was, J.: Some criteria of making de-
cisions in pedestrian evacuation algorithms. In: Proc.
6th International Conference on Computer Informa-
tion Systems and Industrial Management Applications
(CISIM’07), IEEE (2007)

[9] Rabin, S.: Promising Game AI Techniques. In: AI
Game Programming Wisdom. Volume 2. CHARLES
RIVER MEDIA (2003) 15–28

5



(a)

(b)

(c)

(d)

Figure 4. Demonstration of PCH technique on a small map

6



(e)

(f)

(g)

(h)

Figure 5. Demonstration of PCH technique on a small map (continued from Figure 4).

7


