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ABSTRACT

Decentralized partially-observable Markov decision processes
(Dec-POMDPs) are a powerful tool for modeling multi-agent
planning and decision-making under uncertainty. Prevalent
Dec-POMDP solution techniques require centralized com-
putation given full knowledge of the underlying model. Re-
inforcement learning (RL) based approaches have been re-
cently proposed for distributed solution of Dec-POMDPs
without full prior knowledge of the model, but these meth-
ods assume that conditions during learning and policy ex-
ecution are identical. This assumption may not always be
necessary and may make learning difficult. We propose a
novel RL approach in which agents rehearse with informa-
tion that will not be available during policy execution, yet
learn policies that do not explicitly rely on this information.
We show experimentally that incorporating such informa-
tion can ease the difficulties faced by non-rehearsal-based
learners, and demonstrate fast, (near) optimal performance
on many existing benchmark Dec-POMDP problems.
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1. INTRODUCTION
Decentralized partially observable Markov decision pro-

cesses (Dec-POMDPs) offer a powerful model of decentral-
ized decision making under uncertainty and incomplete knowl-
edge. Many exact and approximate solution techniques have
been developed for finite-horizon Dec-POMDPs, e.g. [3],
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but these approaches are not scalable because the underly-
ing problem is provably NEXP-complete [2].

Traditional Dec-POMDP solvers are limited in that they
compute the set of prescribed behaviors for agents centrally,
and assume that a comprehensive set of model parame-
ters are available a priori; however, multi-agent reinforce-
ment learning (MARL) techniques, have recently been ap-
plied [4, 1] to overcome these limitations. These RL-based
approaches distribute the policy computation problem among
the agents themselves but essentially solve a more difficult
problem, because they do not assume the model parameters
are known a priori. The hardness of the underlying problem
translates to significant sample complexity for RL solvers.

Existing RL-based approaches subject learning agents to
the same constraints that they would encounter when exe-
cuting the learned Dec-POMDP policies, i.e. environment
states are hidden and the other agents’ actions and obser-
vations are invisible. In practice, however, it may actually
be easy to allow learning agents to observe some otherwise
hidden information while they are learning. We view such
learning as a rehearsal – a phase where agents are allowed to
access information that will not be available when execut-
ing their learned policies. Since agents must still learn poli-
cies that can be executed without hidden information, there
is a principled incentive for agents to explore actions that
will help them reduce reliance on these rehearsal features.
Based on these ideas, we present a new approach to RL
for Dec-POMDPs – Reinforcement Learning as a Rehearsal
or RLaR, including a new exploration strategy based on
information-gain. Our experiments show that this new ap-
proach can nearly optimally solve most existing benchmark
Dec-POMDP problems with a low sample complexity.

2. PROBLEM
A Dec-POMDP is a tuple 〈n, S,A, P,R,Ω, O〉 where n is

a finite number of agents, S is finite set of (unobservable)
states, A = ×iAi is a set of joint actions(Ai being agent i’s
individual actions), P (s′|s,~a) gives the probability of tran-
sitioning from state s to s′ when joint action ~a is executed,
R(s,~a) gives the reward agents receive upon executing ~a in
s, Ω = ×iΩi is a set of joint observations, and O(~w|s′,~a) is
the probability that agents jointly observe ~ω ∈ Ω in s′ if ~a
was executed. Typically, agents do not observe other agents’
actions and observations, and thus each agent requires a pol-
icy πi that prescribes an action for each individual action-
observation history (ht) it may encounter. For finite-horizon



Method Dectiger Recycling GridSmall BoxPush Alignment
T=3 T=4 T=5 T=3 T=4 T=5 T=3 T=4 T=5 T=2 T=3 T=4 T=3 T=4 T=5

RLaR 0.000 0.071 0.053 0.004 0.0028 0.024 0.000 0.000 0.002 0.000 0.000 0.000 0.328 0.089 0.141
Q-Conc 1.711 0.713 1.191 0.358 0.361 0.397 0.643 0.679 0.650 0.376 0.814 0.874 1.246 1.159 0.979

Table 1: Average relative error (compared to known optimal values) for RLaR and Q-Conc for Dectiger,
Recycling, GridSmall, BoxPush, and Alignment after 60000 episodes.

Dec-POMDPs, the goal is to find a joint policy π∗ = ×iπ
∗

i

that maximizes expected reward over T steps of interaction.

3. MOTIVATING DOMAIN

Figure 1:

Figure 1 shows two robots,
each with two infra-red
(IR) emitters and one IR
receiver on their front
faces. The robots can loco-
mote, rotate, and emit or
receive IR signals. They
can communicate via IR;
however, due to destruc-
tive interference, agents must take turns emitting and re-
ceiving IR, and, importantly, agents must be facing each
other. Thus, larger tasks which require communication may
require robots to become aligned, i.e. face each other.
During execution of this alignment subtask, robots will

certainly be unable to observe their orientation (the state)
and the actions of their counterparts, but learning under
these conditions (i.e. only observing IR signals) is particu-
larly challenging because agents must first become aligned
and then coordinate IR signals to even receive meaningful
observations. We argue, however, that robots could instead
learn in a laboratory setting, where a computer connected
to an overhead camera could relay hidden information (such
as the state and the actions of their counterparts) to them.
This apparatus would be unavailable in most scenarios that
require alignment, however, so agents should learn policies
that do not rely on this hidden information.

4. REINFORCEMENTLEARNINGASARE-

HEARSAL (RLAR)
We treat the MARL problem as a rehearsal before a final

stage performance. During this rehearsal, agents learn under
the supervision of a third-party observer that can convey
(s ∈ S, a− ∈ A−) - i.e. the hidden state and the others’
actions - to them. The key challenge is that agents still must
learn policies that will not rely on these rehearsal features
because they will not be available during policy execution.
Providing agents with the rehearsal features allows them

to maintain their own estimates of the transition function
P̂ (s′|s,~a), the reward function R̂(s,~a), the initial distribu-
tion over states b0 ∈ ∆S, and an individual observation
probability function Ôi(ωi|s

′,~a). Importantly, agents can
use this internal model to construct P (s, a−|ht) for predic-
tion of rehearsal features under execution conditions (i.e.
given only an individual action-observation history ht).
Our algorithm consists of two stages:

1. Agents treat the problem as the fully-observable MDP
〈S,A, P̂ , R̂〉 and learn an MDP policy via action-quality

values Q(s, t,~a) = R̂(s,~a)+
∑

s′∈S
P̂ (s′|s,~a)max~a′∈A ·

Q(s′, t+ 1, ~a′).

2. Each agent i learns action-quality valuesQi(ht, a) which
induce a valid policy (i.e. πi(ht) = argmaxa∈Ai

Q(ht, a))
that can be executed without rehearsal features. Agent

i still uses rehearsal features to learn Qi(ht, a); how-
ever, they are ultimately marginalized out using the
agent’s predictive model P (s, a−|ht), viz.

Qi(ht, a) =
∑

s∈S,a−∈A−

P (s, a−|ht)Qi(s, ht,~a). (1)

Qi(s, ht,~a) represents the immediate reward of execut-

ing joint action ~a in state s (i.e. R̂(s, a)) plus the future
reward when rehearsal features are not observable (i.e.∑

ω∈Ωi
P (ω|s,~a)maxa′inAi

Qi((ht, a, ω), a
′)). In order

to transfer the knowledge gained in stage 1, agents ini-
tialize Qi(s, ht,~a)← Qi(s, t,~a).

In our example, robots would first learn how to face each
other in stage 1, and then they would learn how to coordi-
nate their IR signals to detect alignment in stage 2.

Since agents must ultimately learn policies that are inde-
pendent of the rehearsal features, there is a principled incen-
tive to explore actions during stage 2 that help predict the
rehearsal features. So, in addition to traditional exploration
methods, we propose that, with some probability, agents ex-
plore actions which are expected to best reduce uncertainty
about the hidden features.

Table 1 gives the average relative error (when compared
to known optimal policies) of the expected values of policies
produced by RLaR (with our new information-based explo-
ration scheme) and Q-Conc - a concurrent learner which does
not use rehearsal features - for various benchmark problems,
including our new robot alignment1 problem.
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1See http://www.cs.usm.edu/~banerjee/alignment for
more details


