
Rehearsal Based Multi-agent Reinforcment Learning of
Decentralized Plans

Landon Kraemer
The University of Southern Mississippi

118 College Dr. #5106
Hattiesburg, MS 39402

Landon.Kraemer@eagles.usm.edu

Bikramjit Banerjee
The University of Southern Mississippi

118 College Dr. #5106
Hattiesburg, MS 39402

Bikramjit.Banerjee@usm.edu

ABSTRACT
Decentralized partially-observable Markov decision processes
(Dec-POMDPs) are a powerful tool for modeling multi-agent
planning and decision-making under uncertainty. Prevalent
Dec-POMDP solution techniques require centralized com-
putation given full knowledge of the underlying model. Re-
inforcement learning (RL) based approaches have been re-
cently proposed for distributed solution of Dec-POMDPs
without full prior knowledge of the model, but these meth-
ods assume that conditions during learning and policy ex-
ecution are identical. In practical scenarios this may not
necessarily be the case, and agents may have difficulty learn-
ing under unnecessary constraints. We propose a novel RL
approach in which agents are allowed to rehearse with in-
formation that will not be available during policy execution.
The key is for the agents to learn policies that do not ex-
plicitly rely on this information. We show experimentally
that incorporating such information can ease the difficulties
faced by non-rehearsal-based learners, and demonstrate fast,
(near) optimal performance on many existing benchmark
Dec-POMDP problems. We also propose a new benchmark
that is less abstract than existing problems and is designed
to be particularly challenging to RL-based solvers, as a tar-
get for current and future research on RL solutions to Dec-
POMDPs.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems; I.2.8 [Problem Solving,
Control Methods and Search]:

General Terms
Algorithms, Experimentation, Performance

Keywords
Multi-agent reinforcement learning, Dec-POMDPs

INTRODUCTION
Decentralized partially observable Markov decision pro-

cesses (Dec-POMDPs) offer a powerful model of decentral-
ized decision making under uncertainty and incomplete knowl-
edge. Many exact and approximate solution techniques have

Appears in The Eighth Annual Workshop on Multiagent Se-
quential Decision-Making Under Uncertainty (MSDM-2013),
held in conjunction with AAMAS, May 2013, St. Paul, Minnesota, USA.

been developed for Dec-POMDPs [9, 5, 7], but these ap-
proaches are not scalable because the underlying problem is
provably NEXP-complete [3].

Recently, reinforcement learning (RL) techniques, par-
ticularly multi-agent reinforcement learning (MARL), have
been applied [10, 2] to overcome other limitations of the Dec-
POMDP solvers, viz., that they are centralized and model-
based. That is, these traditional Dec-POMDP solvers com-
pute the set of prescribed behaviors for agents centrally, and
assume that a comprehensive set of model parameters are
already available. While RL distributes the policy compu-
tation problem among the agents themselves, it essentially
solves a more difficult problem, because it does not assume
the model parameters are known a-priori. The hardness of
the underlying problem translates to significant sample com-
plexity for RL solvers as well.

One common feature of the existing RL solvers is that the
learning agents subject themselves to the same constraints
that they would encounter when executing the learned poli-
cies. In particular, agents assume that the environment
states are hidden and the other agents’ actions are invisi-
ble, in addition to the other agents’ observations being hid-
den too. We argue that in many practical scenarios, it may
actually be easy to allow learning agents to observe some
otherwise hidden information while they are learning. We
view such learning as a rehearsal – a phase where agents are
allowed to access information that will not be available when
executing their learned policies. While this additional infor-
mation can facilitate the learning during rehearsal, agents
must learn policies that can indeed be executed in the Dec-
POMDP (i.e., without relying on this additional informa-
tion). Thus agents must ultimately wean their policies off of
any reliance on this information. This creates a principled
incentive for agents to explore actions that will help them
achieve this goal. Based on these ideas, we present a new ap-
proach to RL for Dec-POMDPs – Reinforcement Learning as
a Rehearsal or RLaR, including a new exploration strategy.
Our experiments show that this new approach can nearly op-
timally solve most existing benchmark Dec-POMDP prob-
lems with a low sample complexity. We raise the bar for RL
solvers by proposing a new benchmark problem that is par-
ticularly challenging to RL solvers – robot alignment. We
hope this problem will spur research to address the difficul-
ties that it poses, leading to more competent RL solvers of
Dec-POMDPs in the future.

BACKGROUND

Decentralized POMDPs
We can define a Dec-POMDP as a tuple 〈n, S,A, P,R,Ω, O〉,

where:

• n is the number of agents in the domain.

• S is a finite set of (unobservable) environment states.

• A = ×iAi is a set of joint actions, where Ai is the set
of individual actions that agent i can perform.

• P (s′|s,~a) gives the probability of transitioning to state
s′ ∈ S when joint action ~a ∈ A is taken in state s ∈ S.

• R(s,~a) gives the immediate reward the agents receive
upon executing action ~a ∈ A in state s ∈ S.

• Ω = ×iΩi is the set of joint observations, where Ωi
is the finite set of individual observations that agent i
can receive from the environment.

• O(~ω|s′,~a) gives the probability of the agents jointly
observing ~ω ∈ Ω if the current state is s′ ∈ S and the
previous joint action was ~a ∈ A.

Additionally, for finite horizon problems, a horizon T is given
that specifies how many steps of interaction the agents are
going to have with the environment and each other. The ob-
jective in such problems is to compute a set of decision func-
tions or policies – one for each agent – that maps the history
of action-observations of each agent to its best next action,
such that the joint behavior (note the transition, reward,
and observation functions depend on joint actions) over T
steps optimizes the total reward obtained by the team.

In Dec-POMDPs, it is generally assumed that agents can-
not communicate their observations and actions to each other.
These constraints are often present in real world scenarios,
where communication may be expensive or unreliable. Con-
sider, a scenario in which a team of robots must coordinate
to search a disaster area for survivors. In such a task, robots
may need to disperse to efficiently cover the area and also
may need to travel deep underneath rubble, both of which
could interfere with wireless communication.

Reinforcement Learning for Dec-POMDPs
Reinforcement Learning (RL) is a family of techniques ap-

plied normally to MDPs [8] 〈S,A, P,R〉 (i.e., Dec-POMDPs
with full observability and single agent). When states are
visible, the task of an RL agent in a horizon T problem is
to learn a non-stationary policy π : S × t 7→ A that maxi-
mizes the sum of current and future rewards from any state
s, given by,

V π(s0, t) = EP [R(s0, π(s0, t)) +R(s1, π(s1, t+ 1)) +

. . .+R(sT−t, π(sT−t, T))]

where s0, s1, . . . sT−t are successive samplings from the dis-
tribution P following the Markov chain with policy π. A
popular RL algorithm for such problems isQ-learning, which
maintains an action-quality value function Q given by

Q(s, t, a) = R(s, a) + max
π

X
s′

P (s′|s, a)V π(s′, t+ 1)

This quality value stands for the sum of rewards obtained
when the agent starts from state s at step t, executes action
a, and follows the optimal policy thereafter. These Q-values

Figure 1: The Scribbler 2 robots featured in the
robot alignment problem.

can be learned in model-free ways, where no prior knowledge
of R, P is required.

Multi-agent reinforcement learning (MARL) has recently
been applied to Dec-POMDPs [10, 2], where a quality func-
tion Q(h, a) is learned, mapping the history of an agent’s
own past actions and observations, h, and next actions (a)
to real values. While [10] assumes perfect communication
among teammates in a special class of Dec-POMDPs (called
ND-POMDPs), we assume indirect and partial communica-
tion among the agents, via a third party observer (but only
while learning). Whereas the approach proposed in [2] has
a large sample complexity, our results are all based on or-
ders of magnitude fewer episodes in each setting. Further-
more, [2] proposes a turn taking learning approach where
the non-learner’s experience is wasted, whereas we propose
a concurrent learning algorithm.

MOTIVATING DOMAIN
Many benchmark problems have been developed for eval-

uation of Dec-POMDP solvers in the past [6]. The majority
of these problems were developed to illustrate concepts per-
taining to methods which compute solutions given the full
Dec-POMDP model. Furthermore, these benchmarks tend
to be rather abstract. We introduce a new, more concrete,
Dec-POMDP benchmark problem that illustrates the diffi-
culties faced by learning-based Dec-POMDP solvers.

Figure 1 shows two Scribbler 2 robots, each possessing two
infra-red (IR) emitters and one IR receiver on their front
faces – marked by the shaded sector as shown. The robots
can rotate by some angle, emit or receive IR signals, and can
also locomote. The IR system can be used for communica-
tion between robots, but only if the robots are facing each
other.

A task that is often required in robotics is for robots to get
aligned, i.e., face each other. The S2 robots, for instance,
need to be aligned to communicate with IR. Not only is it
important that the robots become aligned, but they must
also know that they are aligned, since alignment is usually
a precursor to some other behavior. This problem is more
concrete than most Dec-POMDP benchmark problems be-
cause a computed policy can be readily implemented on real
S2 robots.

The Dec-POMDP Model
We model this problem using the Dec-POMDP framework

as follows. The heading space of each agent is discretized
into slices as shown in Figure 1. The state space of the Dec-
POMDP model S is simply all possible combinations of joint
headings (slices). It is assumed there is exactly one state,
say a0b0 (when both the shaded sectors touch the dotted
line in Figure 1) in which agents are aligned.

Each agent is capable of four actions: Ai={done, no-op,
emit-IR, turn-left}. Observation sets are Ωi={IR, no-IR}.
An agent observes IR only if the other agent emitted IR and
they are in state a0b0, otherwise it observes no-IR. How-
ever, if both agents emit IR in state a0b0, neither observes
IR due to the destructive interference of the IR waves. The
transition function encodes state transitions when at least
one agent turns-left, otherwise the state remains unchanged.
Agents get maximum reward, Rmax, if they jointly execute
done in state a0b0. If agents execute the done action in any
state other than a0b0, or if only one agent executes done,
the agents receive −Rmax. All other actions cost -1. The
reward structure we place on the done action encourages
agents to understand that they are aligned, and heavily pe-
nalizes incorrectly assuming they are aligned. Whenever an
agent executes the done action, we assume that the state
resets (i.e. a new state is chosen randomly from a uniform
distribution).

Difficulties for RL
Because P, O are deterministic in the above problem, it is

easily solved by traditional Dec-POMDP solvers, especially
if the number of joint heading sectors is small. However, this
problem embodies one of the most challenging scenarios for
RL, viz., combination lock. A combination lock represents a
scenario where an agent must execute a specific sequence of
actions (a combination) to reach a desirable state or unlock
high rewards, and the reward structure is such that the agent
is not naturally guided to this state by exploring greedily. In
a multi-agent scenario this is further compounded because
the agents must execute a joint combination. With indepen-
dent random exploration, it would be extremely difficult for
them to hit the right joint combination even once, let alone
learn good Q estimates by repeatedly reaching the goal.

In the robot alignment problem, the agents must reach a
particular goal state (i.e. a0b0), probe to understand that
they have reached the goal, and then coordinate to signal
that they are aligned. This constitutes a combination lock
of significant proportions. Contrast this with problems such
as DecTiger and Box Pushing. In DecTiger, agents do not
need to reach a particular state and are only tasked with
probing to understand which door conceals the tiger, and
coordinating to open a door. In Box Pushing, on the other
hand, agents do not need to probe to receive observations
and are tasked with navigating the state space and coordi-
nating to push boxes.

One considerable source of difficulty in the robot align-
ment problem is that agents must coordinate in order to
receive informative observations about the state. If neither
agent emits IR or if both agents emit IR, the agents will
not observe IR, regardless of the state. Thus, at least two
steps are required for both agents to be able to determine if
a particular state is the goal, with a different agent emitting
IR in each step. Contrast this with DecTiger. In DecTiger,
agents must also coordinate to gather information about the
state in DecTiger; however, in DecTiger, to gain informa-
tion both agents execute the same action, listen, and both

receive information. This is not the case, in robot alignment
as there are two different roles for information gathering, the
IR-emitter and the receiver, with the emitter receiving no
information. Also, the reward structure of DecTiger is such
that agents will automatically prefer listen when they are
unsure of the state because it is a relatively safe action. In
robot alignment, however, agents are not guided by rewards
to prefer any action involved in information gathering, much
less to coordinate with the other agent.

Just as the immediate rewards do not guide the agents
to engage in information gathering, they also do not induce
a non-uniform preference over the state space. Agents will
receive the same immediate reward executing no-op every
step as they will executing turn left every step unless done
is executed properly. Thus, in order to learn that becoming
aligned is worthwhile, agents must first become aligned, be
able to recognize that they are aligned, and then signal that
they are aligned.

REINFORCEMENT LEARNING AS A REHEARSAL
RL has previously been applied in [10, 2] to enable agents

to learn mappings from local action-observation histories to
next actions. While their assumptions about local informa-
tion differ - Banerjee et. al assume that agents only observe
their own actions and observations, where Zhang and Lesser
assume that agents observe those of their team mates as well
- both methods assume that only local information is avail-
able during learning. That is, they both assume that the
learning must occur under execution conditions. However,
we argue this assumption is not always necessary and may
make learning unnecessarily difficult.

There are many scenarios for which the training conditions
need not be as strict as execution conditions. Consider, for
example, the multi-robot rescue scenario mentioned previ-
ously. If those robots were trained in a simulator, rather
than in the field, they could easily access information that
would be hidden in a true rescue scenario. Consider also the
robot alignment problem. Since the dynamics of the align-
ment problem do not depend on the environment, robots
could easily be trained in a laboratory setting, where a com-
puter connected to an overhead camera could relay states
and others’ actions to the robots. Note that providing robots
with this same information in a typical execution environ-
ment would be unwieldy as some sort of third robot with
a camera would have to follow the robots around, requiring
more coordination than the original problem. Clearly, then,
while constraints on execution conditions may be justified,
these constraints need not always be applied to the training
environment.

To this end, we explicitly break up a problem into dis-
tinct“learning”and“execution”phases. We treat the MARL
problem as a rehearsal before a final stage performance, so
to speak. The inspiration comes from real life; while ac-
tors train together to produce a coordinated performance on
stage, they do not necessarily subject themselves to the same
constraints during rehearsal. For instance, actors routinely
take breaks, use prompters, receive feedback, practice sepa-
rately, etc. during rehearsals, that are not available/doable
during the final stage performance. Similarly in MARL,
while the agents must learn distributed policies that can be
executed in the target task (the stage of performance), they
do not need to be constrained to the exact setting of the
target task while learning.

In this paper, we assume that agents rehearse under the
supervision of a third party observer that can convey to them
the hidden state when they are learning/rehearsing, but not
when they are executing the learned policies. This observer
also tells the agents what the other agents’ last actions were.
However, this observer cannot observe the agents’ obser-
vations and hence cannot cross-communicate them at any
time. We call the extra information available to a learner
during rehearsal, (s ∈ S, a−) - i.e, the hidden state and
the others’ actions - the rehearsal features. The key chal-
lenge is that agents still must learn policies that will not rely
on these external communications, because the rehearsal fea-
tures will not be visible at the time of executing the policies.
Therefore, the policies returned by our approach must be in
the same language as those returned by the Dec-POMDP
solvers. We call our algorithm (described in the next sec-
tion) Reinforcement Learning as a Rehearsal, or RLaR.

The RLaR Algorithm
An immediate benefit of providing agents with the state, s,

and joint action, ~a, is that agents can maintain their own es-
timates of the transition function P̂ (s′|s,~a), the reward func-

tion R̂(s,~a), the initial distribution over states b0 ∈ ∆S, and

an individual observation probability function Ôi(ωi|s′,~a).
That is, the agents can maintain internal models of the en-
vironment’s dynamics.

More importantly, this enables the agents to treat the
problem as the fully-observable MDP 〈S,A, P̂ , R̂〉, and learn
an MDP policy via action-quality values given by

Q(s, t,~a) = R̂(s,~a) +
X
s′∈S

P̂ (s′|s,~a) max
~a′∈A

Q(s′, t+ 1, ~a′) (1)

Obviously, this MDP policy will not be useful during pol-
icy execution as it assumes nearly full observability. Instead,
this policy could be a useful starting point – an idea studied
before as transfer learning. In the robot alignment problem,
having learned the MDP policy, agents will have an under-
standing of the mechanics of aligning themselves; however,
they will still have no understanding of how to coordinate
with each other to detect alignment when the third party
observer disappears. But the MDP policy tells the agents
that jointly executing done in state s = a0b0 is desirable,
and as a result, they will have the incentive to learn how to
detect alignment when s is not available. In general, RLaR
agents will have an incentive to learn to predict the rehearsal
features (s, a−), which creates a new, principled exploration
strategy for such learners, that is unique to partially observ-
able domains. We shall expand on this exploration strategy
in the next section.

We break the rehearsal phase into 2 successive stages,
where the MDP policy is learned as above in the first stage.
In the second stage, agents learn joint action values given s
and the current observable history ht, i.e., Q(s, ht,~a), while
also learning the correlation between the (ultimately for-
bidden) rehearsal features and the observable history. The
MDP Q values are used to initialize the Q(s, ht,~a) values as

Q(s, ht,~a)← Q(s, t,~a).

Then the Q(s, ht,~a) are learned as

Q(s, ht,~a) = R̂(s,~a) +
X
ω∈Ωi

P̃ (ω|s,~a) max
a′∈Ai

Q(ht+1, a
′), (2)

where ~a = 〈a, a−〉 with a− representing the other agents’
actions, ht+1 is the concatenation of ht with (a, ω), i.e.

(ht, a, ω), and Q(ht+1, a
′) is explained later. P̃ (ω|s,~a) is

calculated using the agent’s internal model parameters via

P̃ (ω|s,~a) = α
X
s′∈S

P̂ (s′|s,~a)Ôi(ω|s′,~a) (3)

where α is a normalization factor.
Q(s, ht,~a) gives the immediate reward agents will receive

when executing ~a in state s plus the future reward agents can
expect when the next state s′ and other agent’s next action
a′− cannot be observed. This future reward is encapsulated
in the quantity Q(ht+1, a

′) used in the update rule of equa-
tion 2, and maintained by the learners alongside Q(s, ht,~a)
values. Q(ht, a) values are the real objective of RLaR since
they are independent of rehearsal features and can be used
during the execution phase.

As with RL algorithms used for Dec-POMDPs, Q(ht, a)
gives the expected reward of executing individual action a
having observed individual action-observation history, ht.
However, instead of learning these values, we estimate them
based on the learned Q(s, ht,~a) values as follows:

Q(ht, a) =
X
s∈S

X
a−∈A−

P (s, a−|ht)Q(s, ht,~a). (4)

P (s, a−|ht) gives the probability (or the learner’s belief)
that after observing ht, the state will be s and the other
agent will execute a−. This is essentially the agent’s predic-
tion of the rehearsal features based on observable history.
Agents could estimate this probability directly via sampling;
however, we note that P (s, a−|ht) = P (a−|ht, s)P (s|ht).
Therefore, agents can estimate P (a−|ht, s) by sampling, but
propagate the belief P (s|ht) using

P (s′|ht) =
X
s∈S

X
a−∈A−

Ôi(ω|s′, a)P̂ (s′|s,~a)P (s, a−|ht−1)

(5)
where ht = (ht−1, a, ω). This allows an agent to incorporate
its model estimate into the calculation, which can improve
belief estimates because while P (a−|ht, s) changes as the
agents learn, the underlying internal model tracks stationary
distributions.

The RLaR algorithm is outlined in Algorithm 1. Each
agent executes a separate instance of RLaR, but concur-
rently with other agents. Since the Dec-POMDP framework
assumes that actions are synchronized, calls to Execute-
Action represent synchronization points. ExecuteAction
returns the next state s′, the last joint action ~a, the agent’s
own observation ω, and the reward r. This feedback includes
rehearsal features, and comes from the third party observer.
Upon receiving this feedback, each agent updates its model
〈S,A, P̂ , R̂,Ωi〉 as well as its model of the other agent’s ac-
tion P (a−|ht, s). In the first stage agents do not require a
model of other agent’s actions; however, we have found it
useful to sample P (a−|t, s) to replace missing P (a−|ht, s)
values in stage 2. UpdateQ(s, t,~a) implements equation 1,
while UpdateQ(s, h,~a) implements equations 3, 2, 4, 5 in
that order.

Action Selection
One common method of action selection in reinforcement

learning is the ε-greedy approach [8], in which an agent

Q∗i (hi, ai) =
X

s∈S,a−i∈A−i,h−i∈H−i

I(h−i, a−i)P (s, h−i|hi) ·

24R(s,~a) +
X
ωi∈Ωi

P (ωi|s,~a) max
b∈Ai

Q∗i ((hi, ai, ωi), b)

35 (6)

P (s′, (h−i, a−i, ω−i)|(hi, ai, ωi)) = I(h−i, a−i)
X
s∈S

P (s′, ω−i|s,~a, ωi)P (s, h−i|hi) (7)

Algorithm 1 RLaR(mdp episodes, total episodes)

1: for m = 1 . . . total episodes do
2: s← GetInitialState()
3: h← ∅
4: for t = 1 . . . T do
5: if m ≤ mdp episodes then
6: a← SelectActionMDP()
7: (s′,~a, ω, r)← ExecuteAction(a)
8: UpdateModel(s,~a, s′, ω, r)
9: UpdateQ(s, t,~a)

10: else
11: a← SelectAction()
12: (s′,~a, ω, r)← ExecuteAction(a)
13: UpdateModel(s,~a, s′, ω, r)
14: UpdateQ(s, h,~a)
15: end if
16: s← s′

17: h← (h, a, ω)
18: end for
19: end for

chooses its action randomly with some probability ε (i.e., ex-
plores randomly), but otherwise greedily chooses the action
which maximizes the expected value, i.e., arg maxaQ(ht, a).
However, since the learners intend to output policies that are
independent of the rehearsal features, there is a principled
incentive to explore actions that help predict the rehearsal
features. Thus, we propose an additional exploration crite-
rion, beyond ε-greedy, that values information gain rather
than expected reward.

Having observed history ht, a learner can pick action aexplore
with some probability, given by

aexplore = arg max
a∈Ai

X
ω∈Ωi

P (ω|ht, a)E(ht, a, ω) (8)

where P (ω|ht, a) =
P
s,a−

P̃ (ω|s,~a).P (s, a−|ht), calculated

from equation 3 and its prediction of the rehearsal features.
While E(ht, a, ω) measures the entropy of the prediction dis-
tribution that would result if action a is executed and ob-
servation ω is received, equation 8 measures the expected
entropy accounting for the fact that action a has not been
executed yet, and observation ω has not actually been re-
ceived. E(ht, a, ω) is estimated as

E(ht, a, ω) = −
X
s∈S

X
a−∈A−

P (s, a−|ht, a, ω) log P (s, a−|ht, a, ω)

where P (s, a−|ht, a, ω) is estimated as P (s, a−|ht, a, ω) =

αP̃ (ω|s,~a)P (s, a−|ht), where α is a normalization factor.
One of the difficulties the robot alignment problem poses

is that agents have no incentive to gather information until
they have gathered information frequently enough to learn
that it is worthwhile. Therefore, we expect this exploration

criterion – called entropy based exploration – to be particu-
larly beneficial to robot alignment. However, given the gen-
eral need of a RLaR learner to achieve independence from
rehearsal features, we expect it to be valuable in all Dec-
POMDP problems.

In our experiments, we use an upper-confidence bound
(UCB) [1] approach for SelectActionMDP; however, other
action selection approaches might be applied successfully
too. Under the UCB approach, agents select joint actions
via

arg max
~a∈A

Q(s, t,~a) + (Rmax −Rmin)C

s„
2 logns,t
ns,t,~a

«
, (9)

for some constant C, where ns,t is the number of times the
state s has been encountered at step t, and ns,t,~a is the
number of times ~a has been executed in state s at step t.
The term added to Q(s, t,~a) is an exploration bonus that
balances exploration with exploitation with optimal asymp-
totic behavior.

Ideal Solution
In this work, we only evaluate the convergence of RLaR

empirically by comparing an agents learned Q-Values, Qi(hi, a),
against a set of target (optimal) Q-Values, Q∗i (hi, a

∗). In
principle, we can calculate these Q∗-values by solving a con-
straint optimization problem with real variables Q∗i (hi, a),
P (s, h−i|hi), and binary variables I(hi, a) for every agent i.
The I(hi, a) variables essentially describe the agents’ poli-
cies, i.e. I(hi, a) = 1 implies that agent i will execute action
a after observing history hi. The I(hi, a) are constrained to
be consistent with theQ∗-values so that arg maxb∈Ai Q

∗
i (hi, b) 6=

ai =⇒ I(hi, ai) = 0, and they are further constrained so
that exactly one action must be chosen for each history, i.e.P
ai∈Ai

I(hi, a) = 1.

The P (s, h−i|hi) variables are constrained by equation 7.
A given P (s, h−i|hi) describes the probability that agent −i
encountered h−i and the state is s after agent i encountered
hi. Note the value of a given P (s, h−i|h−i) depends on the
policy of agent −i but not agent i’s policy.

Finally, the Q∗i (hi, a) values are constrained by equation
6, and the objective of the target optimization problem is
given by max

Pn
i=1

P
a∈Ai

I(h∅, a)Q∗i (h∅, a), where h∅ is the
empty history.

Solving this optimization problem will yield an optimal
policy via the I variables as well as the optimal Q-values
corresponding to that policy. Unfortunately, this cannot be
any easier than solving the Dec-POMDP, and furthermore,
this optimization problem may have multiple solution sets
corresponding to multiple optimal policies. The important
thing to note is that while there may be multiple optimal
policies, there is exactly one set of Q∗ values for a given
optimal policy.

Figure 4: GridSmall Figure 5: Box Pushing Figure 6: Robot Alignment

Figure 2: Dectiger

Figure 3: Recycling

EXPERIMENTS
We evaluated the performance of RLaR for the robot

alignment problem as well as four well-known benchmark
problems: Dectiger, Meeting on a 2x2 Grid (GridSmall),
Recycling Robots, and Box Pushing [6].

In the particular variant of the robot alignment prob-
lem we used, agent 1’s heading space is discretized into two
slices and agent 2’s heading space discretized into four slices.
While noise could be added to transition and observation
distributions, we assumed no noise in either, and set Rmax
to 100.

For RLaR we used a combination of entropy-based explo-
ration (equation 8) with a probability of 0.25 and ε-greedy
exploration with ε = 0.005.

For each domain and horizon value T , we evaluated the
performance of RLaR over 20 runs of 100000 episodes each.
For the box pushing domain we allocated 10000 of those
episodes to stage 1, and for the others we used 5000 stage 1
episodes. For comparison purposes, we also report the per-
formance of concurrent Q-Learning without rehearsal, i.e.
agents that learn Q(ht, a) using only local information. This
setting is labeled as“Q-Conc”. No stage 1 episodes were allo-
cated for Q-Conc because an MDP policy cannot be learned
without access to the rehearsal features. Furthermore, while
an initialization phase for Q-Conc was studied in [4], it was
unclear that such an initialization improved results. We use
ε-greedy exploration for Q-Conc with ε = 0.05 which gave
the best results for Q-conc.

As noted previously, we only study the convergence of
RLaR empirically by comparing the learned Q-ValuesQi(hi, a)
to the ideal Q∗i (h, a) values described in equation 6. Despite
the existence of multiple solution sets, if we already have an
optimal policy, π, we can easily find a unique set of Q∗ values
by setting the I to be consistent with π. Note that when
calculating Q∗ this way, if a given history hi is inconsis-
tent with π, Q∗i (hi, ·) will be undefined. Thus, we compare
the set of Q-values only for those histories which are consis-
tent with the known optimal policy. Some domains, such as
the robot alignment and GridSmall have multiple optimal
policies, which necessarily have different sets of consistent
histories, and so, in order to measure convergence more ac-
curately, when possible, we compared to the particular op-
timal policy that each run converged to. For runs that did
not converge to an optimal policy we chose an optimal com-
parison policy arbitrarily. In the plots, we report this value

as Q-Error =
P
h∈HC

|Q∗i (h,a∗)−Qi(h,a∗)|
|HC | , where HC is the

set of histories consistent with the comparison policy and a∗

for a given history h is arg maxa∈Ai Q
∗
i (h, a).

Q-Errors only indicate the quality of the learner’s value
function for the histories in HC . However, a learner poten-
tially learns Q-values for a much larger set of histories, HL,
and poor learning on HL − HC can produce poor policies
even when Q-Errors are low. Therefore, it is important to
also evaluate the quality of the policies actually produced by
RLaR. In order to measure the policy quality for RLaR and
Q-Conc after each episode, we found the error of agents’ cur-
rent policy relative to the known optimal policy value (the

comparison policy), i.e.
|vpol−vopt|
|vopt| . We refer to this measure

in our plots as the “policy error” or “P-Error”.
From Figures 2–6 we can see that RLaR converges rapidly

(usually in fewer than 20000 episodes) to (near) optimal poli-
cies (< 0.1 policy error) on all domains and horizons except
for robot alignment T = 3, 5. Q-Conc performs much worse
than RLaR in all domains, which highlights the impact of in-
corporating non-local information into the learning process,
i.e., the efficacy of rehearsal based learning. Also note that,
Q-Conc performs substantially worse on the robot alignment
problem than it does in the other domains, which reinforces
our claim that robot alignment is a difficult problem for
learning-based approaches.

The Q-Error was relatively small in all domains except
Robot Alignment, suggesting that the learned Q-Values in-
deed converged to values close to the ideal Q∗ values. Note
that in robot alignment, multiple optimal policies exist for
each horizon, and many runs did not converge to a clear
optimal policy, so the arbitrary comparison policy (as men-
tioned before) contributed to large Q-Error. Furthermore,
due to the “combination lock” nature of the robot alignment
problem, when agents fail to converge to the optimal so-
lution, the histories in HC tend to be unexplored, so the
Q-Error is especially high for those runs.

CONCLUSIONS
We have presented a novel reinforcement learning approach,

RLaR with a new exploration strategy suitable for partially
observable domains, for learning Dec-POMDP policies when
agents are able to rehearse using information that will not be
available during execution. We have shown that RLaR can
learn near optimal policies for several existing benchmark
problems, with a low sample complexity.

We have also introduced a new benchmark problem, robot
alignment, which is easy for centralized solvers that compute
policies given the full Dec-POMDP model, yet quite difficult
for reinforcement-learning based Dec-POMDP solvers. Our
hope is that this benchmark problem will help motivate more
sophisticated RL-based Dec-POMDP solution techniques in
the future.

REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite time

analysis of the multiarmed bandit problem. Machine
Learning, 47(2-3):235–256, 2002.

[2] B. Banerjee, J. Lyle, L. Kraemer, and R. Yellamraju.
Sample bounded distributed reinforcement learning for
decentralized pomdps. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial
Intelligence (AAAI-12), pages 1256–1262, Toronto,
Canada, July 2012.

[3] D. S. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control
of markov decision processes. Mathematics of
Operations Research, 27:819–840, 2002.

[4] L. Kraemer and B. Banerjee. Informed initial policies
for learning in dec-pomdps. In Proceedings of the
AAMAS-12 Workshop on Adaptive Learning Agents
(ALA-12), pages 135–143, Valencia, Spain, June 2012.

[5] F. A. Oliehoek, M. T. J. Spaan, J. S. Dibangoye, and
C. Amato. Heuristic search for identical payoff
bayesian games. In Proceedings of the Ninth
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS-10), pages 1115–1122,
Toronto, Canada, 2010.

[6] M. Spaan. Dec-POMDP problem domains and format.
http:

//users.isr.ist.utl.pt/~mtjspaan/decpomdp/.

[7] M. T. J. Spaan, F. A. Oliehoek, and C. Amato.
Scaling up optimal heuristic search in Dec-POMDPs
via incremental expansion. In Proceedings of the
Twenty-Second International Joint Conference on
Artificial Intelligence (IJCAI-11), pages 2027–2032,
Barcelona, Spain, 2011.

[8] R. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. MIT Press, 1998.

[9] D. Szer and F. Charpillet. Point-based dynamic
programming for dec-pomdps. In Proceedings of the
21st National Conference on Artificial Intelligence,
pages 1233–1238, Boston, MA, 2006.

[10] C. Zhang and V. Lesser. Coordinated multi-agent
reinforcement learning in networked distributed
POMDPs. In Proc. AAAI-11, San Francisco, CA,
2011.

