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ABSTRACT
Regret minimization is an effective technique for almost surely
producing Nash equilibrium policies in coordination games
in the strategic form. Decentralized POMDPs offer a real-
istic model for sequential coordination problems, but they
yield doubly exponential sized games in the strategic form.
Recently, counterfactual regret has offered a way to decom-
pose total regret along a (extensive form) game tree into
components that can be individually controlled, such that
minimizing all of them minimizes the total regret as well.
However, a straightforward extension of this decomposition
in decentralized POMDPs leads to a complexity exponential
in both the joint action and joint observation spaces. We
present a more tractable approach to regret minimization
where the regret is decomposed along the nodes of agents’
policy trees that yields a complexity exponential only in the
joint observation space. We present an algorithm, REMIT,
to minimize regret by this decomposition and prove that it
converges to a Nash equilibrium policy in the limit. We
also use a stronger convergence criterion with REMIT, such
that if this criterion is met then the algorithm must output a
Nash equilibrium policy in finite time. We found empirically
that in every benchmark problems that we tested, this cri-
terion was indeed met and (near) optimal Nash equilibrium
policies were achieved.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems; I.2.8 [Problem Solving,
Control Methods, and Search]:

General Terms
Algorithms, Experimentation, Performance

Keywords
Game and decision theory, Decentralized partially observ-
able Markov decision processes

INTRODUCTION
Decentralized partially observable Markov decision pro-

cesses (Dec-POMDPs) offer a powerful and realistic model
for multi-agent coordination problems. On the one hand
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many exact solvers have been developed for Dec-POMDPs,
which yield the optimal Nash equilibrium solution, but are
highly inefficient due to the inherent complexity of the prob-
lem [18, 17]. On the other hand, many approximate solvers
are known that produce high quality solutions more effi-
ciently, but generally do not guarantee that the returned
solution will be a Nash equilibrium [15, 9]. There also exist
local search techniques, which aim for a locally optimal Nash
equilibrium solution [11, 13]. Stability of the solution is not
important for the exact or approximate solvers, since they
are evaluated by the quality of the solution produced, and
any agent’s incentive for deviation at policy execution time
can only improve the group utility. However, stability is a
key question for local search techniques. Since a local opti-
mum is their logical objective, it is useful to know whether
they reach such a solution. Our work falls in the category of
local search techniques. In this paper we examine the appli-
cation of regret minimization [19] – an effective (and often
efficient) class of techniques from the literature on learning
in games – to Dec-POMDPs.

Recently, regret minimization has been shown to almost
surely achieve Nash equilibrium solution in strategic form
coordination games [10]. We argue that while Dec-POMDPs
can be represented as strategic form coordination games, the
resulting strategy space would be hopelessly intractable for
the application of regret-based techniques. On the other
hand, a recent approach called counterfactual regret which
has been very successful in poker variants, has shown a more
compact way to minimize regret, albeit in extensive form
competitive game trees. The main idea is to decompose
overall regret into components that can be minimized in-
dependently. A straightforward extension of this method
to Dec-POMDPs would decompose total regret along the
histories of action-observations for each agent, which would
yield a complexity exponential in both joint action and joint
observation spaces. We present a more compact way to de-
compose total regret in Dec-POMDPs – one where the indi-
vidually controllable components are defined at each node of
each agent’s policy tree. We show that this decomposition
is indeed valid, i.e., minimizing all component regrets will
indeed minimize the total regret. We present an algorithm,
REMIT, for minimizing regret components, with a complex-
ity that is exponential only in the joint observation space,
and show that it converges to a Nash equilibrium policy in
the limit. We also present a stronger convergence criterion,
that, if satisfied, will yield a Nash equilibrium in finite time.
We show experimentally that this criterion is indeed satisfied
in a range of benchmark problems, with REMIT producing



(near) optimal Nash equilibrium policies.
A major motivation for investigating regret based tech-

niques is the fact that they are often precursors to effec-
tive sample based reinforcement learning (RL) algorithms.
A most recent RL algorithm for Dec-POMDPs has agents
learning alternately, and has a complexity exponential in
both joint action and joint observation spaces for each agent’s
learning phase [2]. Therefore, a sampling based variant of
REMIT, where agents can also update simultaneously, holds
the promise of being relatively more scalable. This paper es-
tablishes some of the theoretical substrate on which such a
distributed learning approach could be built.

BACKGROUND

Dec-POMDPs
A Decentralized POMDP (Dec-POMDP) is defined as a

tuple 〈k, S, b0, A, P, R, Ω, O〉, where:

• k is the number of agents in the system.

• S is a finite set of (unobservable) environment states.

• b0 ∈ ∆(S) is the initial belief state.

• A = ×iAi is a set of joint actions, where Ai is the set
of individual actions that agent i can execute.

• P (s′|s, a) gives the probability of transitioning to state
s′ ∈ S when joint action a ∈ A is taken in state s ∈ S.

• R : S × A → ℜ, where R(s, a) gives the immediate
reward the agents receive upon executing joint action
a ∈ A in state s ∈ S.

• Ω = ×iΩi is the set of joint observations, where Ωi

is the finite set of individual observations that agent i
can receive from the environment.

• O(ω|s′, a) gives the probability of the agents jointly
observing ω ∈ Ω if the current state is s′ ∈ S and the
previous joint action was a ∈ A.

Additionally, a horizon T is also specified for finite hori-
zon problems, and the transition and observation probabili-
ties are often jointly represented as P (s′, ω|s, a). The reward
function R, transition model P , and observation model O are
defined over joint actions and/or observations, which forces
the agents to coordinate. The goal of the Dec-POMDP prob-
lem is to find a set of policies – one for each agent, πi – that
maximizes the total expected reward over T steps of interac-
tion, given that the agents cannot communicate their obser-
vations and actions to each other. For finite horizon prob-
lems, πi is a mapping from the histories of action-observation
pairs of agent i to actions in Ai. A t-step history is repre-
sented as ht = (a0, ω0, . . . , at−1, ωt−1). Figure 1 shows the
example of an agent’s policy in the Dec-Tiger domain for
horizon T = 3, with the policy represented as a mapping
from histories to actions on the left, and equivalently as a
policy tree on the right. In this paper we will refer to a pol-
icy πi in the tree form. The problem of finding an optimal
joint policy (i.e., set of trees, one for each agent) has been
proven to be NEXP-complete [3].

Figure 1: Two equivalent representations of an ex-
ample policy for the single-agent tiger problem. The
goal is to open a door that conceals treasure, instead
of one that hides a tiger. The agent can execute ac-
tions listen (L), open right door (OR) or open left
door (OL). It can hear the tiger’s growl behind the
left door (HL) or the right door (HR).

Strategic Games and Regret
A game in strategic form has three components: a set of

players {1, 2, . . . k}, a pure strategy space Si for each player
i, and payoff functions ui that specifies the ith player’s Von
Neumann-Morgenstern utility ui(s) for each strategy profile
s = (s1, s2, . . . sk). In this paper, we are particularly inter-
ested in cooperative games of identical payoffs, i.e., where
ui(s) = u(s) for all i, s. Henceforth we will only use this
common utility function. We follow the game theoretic con-
vention of representing all players except i as −i. Also,
a variable will indicate a joint over all agents, unless sub-
scripted by an index i or −i.

A mixed strategy of player i, σi, is a probability distribu-
tion over i’s pure strategies, i.e., σi ∈ ∆(Si). It is well-known
that every finite strategic form game has at least one solu-
tion in the form of a mixed strategy Nash equilibrium [12],
given by σ∗

i ∈ ∆(Si) for all i, such that

u(σ∗
i , σ∗

−i) ≥ u(si, σ
∗
−i), ∀si ∈ Si.

It is known that in games of identical payoffs, at least one
pure strategy Nash equilibrium always exists. However,
there may be multiple equilibria, so the goal is generally
to find the (Pareto) optimal one.

The notion of regret is one of the key concepts to learning
in games [19]. A player’s regret for not playing a certain
strategy in the past is determined by the ex-post amount
of utility improvement that would have obtained had the
player played that fixed strategy in every past round in-
stead of the actual strategies that he did. Formally, given
the sequence of mixed strategy profiles actually played for τ
rounds, σ1, . . . , στ , average overall regret of player i is

Rτ
i =

1

τ
max

σ∗

i

t=τ
X

t=1

(u(σ∗
i , σt

−i)− u(σt)) (1)

Obviously there is no way to know whether the other agents,
−i, would have played the same sequence {σt

−i} had i played
σ∗

i all along, or would have responded differently to the hy-
pothetical change. It turns out, however, that it is possible
to drive the average regret Rτ

i to zero, irrespective of {σt
−i}.

A simple yet elegant way to do this is regret matching [8]
which updates

στ+1
i (si) =

[Rτ
i (si)]+

P

sj∈Si
[Rτ

i (sj)]+
(2)



where

Rτ
i (si) =

1

τ

t=τ
X

t=1

(u(si, σ
t
−i)− u(σt))

and [x]+ = max(x, 0). If the denominator of equation 2 is
zero, the probabilities are set arbitrarily.

[8] has proven that in a finite general game, regret match-
ing by a given player almost surely yields no regret against
every possible sequence {σt

−i}. A direct consequence of this
is that if all players use regret matching, then the empirical
distribution of joint strategies converges almost surely to the
set of coarse correlated equilibria (CCE) [8].

This result in general games is rather weak in two respects:
first the CCE is a (potentially vast) superset of Nash equilib-
ria, and secondly the almost sure convergence is in terms of
empirical play, not the σt directly. Recently, [10] has shown
that in the special class of weakly acyclic games, a regret
minimizing sequence {σt} almost surely converges to a pure
strategy Nash equilibrium. The set of weakly acyclic games
contains games of identical payoffs as a special case, hence
this stronger convergence result carries over to these games.

STRATEGIC GAME REPRESENTATION OF
DEC-POMDPS

When a horizon T is specified, a Dec-POMDP can be con-
verted to a strategic form game with identical payoffs, where
each possible complete conditional T -step plan of agent i
(i.e., policy tree πi as shown in Figure 1) in the former is
a separate strategy, si, for that agent in the latter [7], and
the common values (for all agents) of each joint policy tree
gives the identical payoffs of all agents for that joint strat-
egy. Then by [10], regret minimization in such a strategic
form game should lead to a pure strategy Nash equilibrium,
which corresponds to a set of policy trees – exactly one for
each agent – as we would expect a Dec-POMDP solver to
yield.

Unfortunately, the strategy space of each agent in such a

strategic form game is of size O(|A∗||Ω∗|
T

), where A∗, Ω∗ are
the largest individual action and observation spaces. Even
if dominated strategies are eliminated, there is no known
result that ensures significant compaction. Therefore, direct
regret minimization in the strategic form is infeasible. The
main contribution of this paper is a more tractable alter-
native approach to regret minimization in a Dec-POMDP,
that automatically accomplishes regret minimization in its
strategic form.

REGRET DECOMPOSITION IN A TREE
The main idea is to decompose the overall regret into

independently controllable components, such that minimiz-
ing the component-regrets independently also minimizes the
overall regret.

Recently, regret decomposition in an extensive form game
tree in competitive alternate move games with imperfect in-
formation – called counterfactual regret (CFR) – has found
successful application in variants of Poker [20]. In CFR, the
overall regret is decomposed along the information sets of
the game, which roughly translates to individual histories in
a Dec-POMDP. [1] also uses history based regrets in their
mixed integer linear programming (MILP) formulation of
Dec-POMDPs. However, there are O(|A∗|T |Ω∗|T ) histories

in a Dec-POMDP of horizon T . We propose a more compact
decomposition of overall regret in a Dec-POMDP along the
nodes of the policy tree, of which there are O(|Ω∗|T ), leading
to more efficient regret minimization. In order to anchor the
notion of regret on the nodes of a tree and in the context of
Dec-POMDPs, we will introduce a set of notations below.

We consider a stochastic policy tree πi (of agent i), where
each node (contrast with Figure 1 right) ni is labeled by a
mixed strategy, σi(ni), instead of the special case of a pure
strategy. A history leading to node ni in a policy tree πi

is a sequence of pairs of mixed strategies and observations,
notated as hπi(ni). Note that a node in πi can be identified
simply by traversing the sequence of observations in hπi(ni).

We define the utility function v(π, n, s) to represent the
expected payoff given that the joint policy π is being played,
that joint nodes n in the respective policy trees have been
reached, and that the system state is s. If π(n) gives the
(joint) policy subtrees rooted at the joint nodes n = (n1, n2,
. . . , nk), then v evaluates the expected payoff of the joint
subpolicy π(n). Note that individual nodes ni must be at
the same level in all agents’ policy trees, and that π(root) is
simply notated as π. Specifically,

v(π, n, s) =
X

a

σ(n, a)[R(s, a) +
X

s′,ω

P (s′, ω|s, a)v(π, n′, s′)],

where n′ is the joint successor node from n following ω, say
n′ = succ(n, ω).

Let D(ni) be the set of nodes reachable from ni in πi, i.e.,
the set of nodes in the subtree rooted at (and including) ni.
Let πi|D(ni)→π′

i
represent the policy which is identical to πi

except that the subtree rooted at ni is the same as in another
policy π′

i. Then, for agent i, the full regret for playing a
sequence of subpolicies rooted at node ni, {πt

i(ni)}, is

Rτ
i,full(ni) =

1

τ
max

π′

i

t=τ
X

t=1

X

s,n−i

P (s, hπt
−i(n−i)|hπt

i (ni)) ·

[v(πt
i |D(ni)→π′

i
, πt

−i, n, s)− v(πt, n, s)] (3)

Consistent with the counterfactuality of CFR, equation 3
represents the average regret of i for not playing the sub-
policy of π′

i rooted at ni while the others played πt
−i, but

given that i played to reach ni. Note that the path of ob-
servations leading to ni, while determined by nature, is in-
directly controlled by all agents via their actions. However,
the contribution of agent i to reaching ni is discounted by

conditioning on hπt
i (ni) to reflect this counterfactuality.

For the sake of notational consistency, verify that

Rτ
i,full(root) =

1

τ
max

π′

i

X

t,s

P (s, ∅|∅) ·

[v(πt
i |D(root)→π′

i
, πt

−i, root, s) − v(πt, root, s)]

=
1

τ
max

π′

i

X

t,s

b0(s) ·

[v(π′
i, π

t
−i, root, s) − v(πt, root, s)]

=
1

τ
max

π′

i

X

t

(u(π′
i, π

t
−i) − u(πt))

= Rτ
i from equation 1

Given that a pure policy equilibrium always exists in Dec-
POMDPs, i.e., where the node distributions σis are pure, we



Algorithm 1 REMIT

1: Initialize policy trees π0
i , ∀i

2: Initialize R0
i (ni, ai) = 0, ∀i, ni, ai

3: t← 0
4: repeat
5: for each agent i do
6: for each node ni in πt

i (breadth first order) do
7: ∀ai ∈ Ai, Rt+1

i (ni, ai) ← t
t+1

Rt
i(ni, ai) +

1
t+1

[
P

s,n−i
P (s, hπt

−i(n−i)|hπt
i (ni))·

[v(πt
i |σi(ni)→ai

, πt
−i, n, s)− v(πt, n, s)]]

8: ∀ai ∈ Ai, update πt+1
i (ni, ai) to the following:

8

<

:

[Rt+1

i
(ni,ai)]+

P

ai
[Rt+1

i
(ni,ai)]+

if denominator > 0

πt
i(ni, ai) otherwise

9: end for
10: end for
11: t← t + 1
12: until termination condition

can define node regret as

Rτ
i (ni) =

1

τ
max

ai

t=τ
X

t=1

X

s,n−i

P (s, hπt
−i(n−i)|hπt

i (ni)) ·

[v(πt
i |σi(ni)→ai

, πt
−i, n, s)− v(πt, n, s)] (4)

This gives the regret for not executing action ai at node ni

while keeping the rest of the (possibly stochastic) subpolicy
rooted at ni unchanged.

As with CFR, the decomposition of regret along the nodes
of a policy tree is also useful according to the following the-
orem (proof in appendix):

Theorem 1. For each agent, the overall average regret is
upper bounded by the sum of the positive node regrets, i.e.,

Rτ
i ≤

X

ni

[Rτ
i (ni)]+, ∀i

Therefore, as the individual node regrets approach the
nonpositive orthant by regret matching (i.e., individually
become ≤ 0, by Blackwell’s approachability [4]), the overall
average regret must also be minimized, i.e., become nonpos-
itive. The key benefit of Theorem 1 is that the individual
node regrets can be controlled independently as defined in
equation 4. The algorithm, called REMIT (REgret MIni-
mization on Trees), is shown as Algorithm 1. It initializes
all agents’ stochastic policy trees with the uniform distribu-
tion at each node. Then it traverses each agent’s tree in a
breadth first manner and computes the node regrets and the
new node distribution based on regret matching. The com-
plexity of the loop in lines 6–9 is O(|A||S|2|Ω|T ). This is also
effectively the complexity of the for loop in lines 5–10 over
the set of agents, since this loop can be parallelized because
i’s updates only depend on the previous joint policies. This
loop is repeated until a termination condition is met. In this
paper we study the following strong convergence criterion:

Termination Condition. Set the termination condition in
Algorithm 1 line 12, to

Rt
i(ni, ai) = Rt−1

i (ni, ai) ≤ 0, ∀i, ni, ai.

This gives a strong convergence criterion that ∃t′ such that

∀t ≥ t′, πt = πt′ .
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Figure 2: Relative errors in policy values from
known optimals in Dec-Tiger.

This convergence criterion is stronger than the almost sure
convergence of [10]. However, neither of these criteria can be
theoretically guaranteed for REMIT. This is because Mar-
den et al.’s results apply to the strategic form, and rely
on the policy trajectory following a better response path
in weakly acyclic games [10]. In contrast, we deliberately
avoid working in the strategic form for efficiency, as a result
of which there is no guarantee that the sequence of policies
produced by tree-regret minimization treads the better re-
sponse path. In fact, our empirical results show that the
policies do not have strictly improving payoffs, i.e., they are
indeed not following the better response path. Note how-
ever, that even though the means differ, the end is common.
That is, by minimizing the component regrets, Rτ

i (ni), we
indirectly minimize the overall regret by Theorem 1. There-
fore it is not surprising that we can, in fact, guarantee that
the policies πt approach a Nash equilibrium. We show this
with the help of the above termination condition as follows.

While the satisfaction of the above termination condi-
tion is not guaranteed, it can be shown that if it is indeed
achieved, then the terminal policies do indeed form a Nash
equilibrium (proof in appendix).

Theorem 2. If the Termination Condition is satisfied
at time τ , then πτ is a Nash equilibrium.

Note that REMIT performs regret matching at each node
ni, therefore by [6] we know that

Rτ
i (ni) ≤

Z
p

|Ai|√
τ

where Z = maxπ,π′(u(π)− u(π′)). In other words, the Ter-
mination Condition is indeed satisfied in the limit. Hence
we have the following theorem:

Theorem 3. Even if we set termination condition to ’false’,
REMIT converges to a Nash equilibrium in the limit.

Our approach – which is singly exponential in T instead
of doubly exponential – does not contradict the NEXP-
hardness of Dec-POMDPs. Regret minimization converges
to some Nash equilibrium joint policy in the Dec-POMDP,
not necessarily the Pareto dominant one. On the other hand



the complexity of Dec-POMDPs reflect the cost of finding
the Pareto optimal Nash equilibrium, which is clearly harder
than finding just any Nash equilibrium. However, as our ex-
periments show in the next section, REMIT does find (near)
optimal equilibrium policies in a range of benchmark Dec-
POMDP problems.
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Figure 3: Relative errors in policy values from
known optimals in Recycling-Robots.
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known optimals in BroadCast-Channel.

EXPERIMENTAL RESULTS
For experiments, we make an enhancement to line 7 in Al-

gorithm 1, where we replace the weights t/t+1 and 1/t+1 by
(1−α) and α respectively, setting α = 0.7. This updates the
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Figure 5: Relative errors in policy values from
known optimals in Cooperative-Box-Pushing.
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Figure 6: Relative errors in policy values from
known optimals in Fire-Fighting.

regrets with fading memory. As used in [10] 1, fading mem-
ory is particularly useful for coordination problems when we
seek convergence of policies, instead of empirical play. We
also use the Termination Condition as given before in
our experiments. Although there is no guarantee that such
a strong convergence condition will be met, we found it to
be satisfied in every benchmark problem and horizon that
we attempted.

We have experimented in 5 benchmark Dec-POMDP do-
mains – Dec-Tiger, Recycling-Robots,
BroadCast-Channel, Cooperative-Box-Pushing, and
Fire-Fighting (see [16] for details of these problems) –
and found REMIT to converge to near-optimal equilibria
in all except Cooperative-Box-Pushing at T = 3. Even
in this case, it turns out that the reason that REMIT finds
a highly suboptimal equilibrium is that the optimal equi-
librium is not risk-dominant [5]. As observed in [5], “One
might expect that in a learning setting it would be unlikely
for play to converge to a very risky equilibrium, even if the
equilibrium is Pareto efficient.” To remedy this, we simply
raised the payoff of both agents pushing the large box coop-
eratively from 100 to 10000, which turns out to be sufficient

1They also use inertia, which causes slower changes in pol-
icy. While this has a higher chance of reaching the optimal
equilibrium, it also slows down convergence and has not been
tried in the current experiments.



to make the optimal equilibrium risk dominant. REMIT
converges to the optimal equilibrium in this case as well.

Figures 2– 6 show the results of REMIT on the above 5
domains. The x-axis in each plot is the number of iterations
of the repeat loop in Algorithm 1. The y-axis shows the
relative error in policy value at the end of each iteration,
compared to the known optimal for each domain and hori-
zon [16]. The right-most plot point in each (sub)figure cor-
responds to the iteration number when Termination Con-
dition became true. We see that in some cases, especially
in Cooperative-Box-Pushing, the policy values have con-
verged long before this condition is met. If fading memory
was not used, then the weight of the older regrets in the accu-
mulated regrets would have been larger, meaning the initial
regrets would have left a larger imprint in the accumulated
regrets, exacerbating this effect. It is because the older re-
grets are weighed down sharply that the accumulated regrets
can approach nonpositive values (and hence the termination
condition) faster. We also see that REMIT attains optimal
equilibria in Dec-Tiger (all horizons) and Cooperative-

Box-Pushing (horizon 3 in the modified version only, as
described above). In Recycling-Robots, BroadCast-

Channel, and Fire-Fighting, it attains nearly optimal
equilibria. Cooperative-Box-Pushing (horizon 3 origi-
nal version) is the only problem (that we tried) where it
converges to a highly suboptimal equilibrium. In Figure 6
we see an initial oscillatory pattern, which usually indicates
the existence of counteracting attractors in the policy space,
from which the REMIT trajectory eventually frees itself to
achieve monotonically improving policy values. These at-
tractors appear to be of progressively worse value for in-
creasing horizons.

The main bottleneck for REMIT is the exponentially in-
creasing size of policy trees with T . Currently, it is unable to
exploit ideas such as history clustering [14] to compactly rep-
resent policies, and hence cannot solve problems for large T .
However, it does not suffer from the memory and other time
bottlenecks that many exact solvers face, and as a result can
solve some problems beyond the known maximal horizons
quite easily. E.g., in Dec-Tiger, REMIT can solve hori-
zons 7 and 8 in matter of seconds, producing values 9.99357
and 12.2173. Since Dec-Tiger has only been solved up to
horizon 6, we do not know if these are optimal, but these are
very likely to be so (within rounding errors). This is because
the policies produced by REMIT are basically concatena-
tions of horizon 3 policy with horizon 4(5) policy which are
very likely to be optimal for T = 7(8), given the periodic
structure of the problem. For reference, the optimal hori-
zon 6 policy is the concatenation of two horizon 3 policies,
leading to the value 10.3816 = 2× 5.1908. We do not show
plots for T beyond the known max in any problem, due to
uncertainty about the optimal policy values.

The consistent satisfaction of the strong convergence crite-
rion in a range of benchmark problems with different charac-
teristics is surprising. It raises the intriguing possibility that
it can be rigorously proven for general regret matching tech-
niques (including REMIT) in identical payoff games. This
would be a new result in game theory as well. We leave this
for future investigation.

CONCLUSIONS
We have presented a compact way to apply counterfac-

tual regret minimization to Dec-POMDPs, with a per-node

decomposition of regret as opposed to per-history decompo-
sition. We have proven that our algorithm, REMIT, con-
verges to a Nash equilibrium policy. We have also shown
empirically that it actually yields (near) optimal Nash equi-
libria in a finite number of iterations in a range of benchmark
problems.

An immediate future direction is to test a sampling version
of REMIT, where the node regrets are estimated on the basis
of unbiased samples of the subpolicy values. We believe this
will yield a more efficient reinforcement learning algorithm
than what currently exists.
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APPENDIX

PROOF OF THEOREM 1
Suppose the state transitions from s to s′ when the agents

execute joint action a at joint history h, producing joint
observation ω. Let nhi

represent the node at the end of
history hi, and h′ = (h.a.ω), i.e., the next joint history. For
brevity, we write the transition and observation probabilities
jointly as P (s′, ω|s, a). Although our proof of Theorem 1 is
somewhat similar to that of Theorem 3 in [20], a key lemma
that distinguishes our proof concerns the propagation of i’s
conditional belief P (s, h−i|hi), given next. There are also
some original steps embedded in the proof of Lemma 5 which
is the counterpart of Lemma 5 in [20].

Lemma 4. The conditional belief propagation is given as

P (s′, h′
−i|h′

i) =
X

s

P (s′, ω|s, a)π−i(nh−i
, a−i) ·

P (s, h−i|hi)/P (ωi|ai, hi)

Proof: We observe

P (s′, h′
−i|h′

i) =
X

s

P (s, s′, h, a, ω)/P (hi, ai, ωi)

=
X

s

P (s′, ω|s, a)P (s, h, a)/P (hi, ai, ωi)

=
X

s

P (s′, ω|s, a)P (a−i|h−i) ·

P (s, h, ai)/P (hi, ai, ωi)

=
X

s

P (s′, ω|s, a)π−i(nh−i
, a−i) ·

P (s, h−i|hi)P (hi, ai)/P (hi, ai, ωi)

=
X

s

P (s′, ω|s, a)π−i(nh−i
, a−i) ·

P (s, h−i|hi)/P (ωi|ai, hi)

Lemma 5. Suppose the successor joint node after making
the joint observation ω at joint node n be n′. Then,

Rτ
i,full(ni) ≤ Rτ

i (ni) +
X

n′

i

[Rτ
i,full(n

′
i)]+, ∀i

Proof: We break Rτ
i,full(ni) into two components: the node

regret at ni and the full regret of the subtrees under ni,
starting at its definition in equation 3.

Rτ
i,full(ni) =

1

τ
max

π′

i

t=τ
X

t=1

X

s,n−i

P (s, hπt
−i(n−i)|hπt

i (ni)) ·

[v(πt
i |D(ni)→π′

i
, πt

−i, n, s)− v(πt, n, s)]

=
1

τ
max
ai,π′

i

t=τ
X

t=1

X

s,n−i

P (s, hπt
−i(n−i)|hπt

i (ni)) ·

h

v(πt
i |σi(ni)→ai

, πt
−i, n, s)− v(πt, n, s) +

X

n′,s′,a−i

P (n′, s′, a−i|n, s, ai) ·

{v(πt
i |D(n′

i
)→π′

i
, πt

−i, n
′, s′)− v(πt, n′, s′)}

i

≤ Rτ
i (ni) + max

ai,π′

i

1

τ

X

t,s,n−i

P (s, hπt
−i(n−i)|hπt

i (ni)) ·

X

n′,s′,a−i

P (n′, s′, a−i|n, s, ai) ·

h

v(πt
i |D(n′

i
)→π′

i
, πt

−i, n
′, s′)− v(πt, n′, s′)

i

= Rτ
i (ni) + max

ai,π′

i

1

τ

X

t,s,n−i

P (s, hπt
−i(n−i)|hπt

i (ni)) ·

X

ω,s′,a−i

P (s′, a−i, ω|s, hπt

(n), ai) ·

h

v(πt
i |D(n′

i
)→π′

i
, πt

−i, n
′, s′)− v(πt, n′, s′)

i

= Rτ
i (ni) + max

ai,π′

i

1

τ

X

t,ωi

n

X

s′,n−i,a−i,ω−i

X

s

P (s, hπt
−i(n−i)|hπt

i (ni))P (s′, a−i, ω|s, hπt

(n), ai) ·

[v(πt
i |D(n′

i
)→π′

i
, πt

−i, n
′, s′)− v(πt, n′, s′)]

o



Now,

P (s′, a−i, ω|s, hπt

(n), ai) = P (s′, ω|s, a)P (a−i|s, hπt

(n), ai)

= P (s′, ω|s, a)P (a−i|hπt
−i(n−i))

= P (s′, ω|s, a)πt
−i(nh−i

, a−i)

Therefore, we can replace
X

s

P (s, hπt
−i(n−i)|hπt

i (ni))P (s′, a−i, ω|s, hπt

(n), ai)

in the last step of Rτ
i,full(ni) by

X

s

P (s, hπt
−i(n−i)|hπt

i (ni))P (s′, ω|s, a)πt
−i(nh−i

, a−i).

Then using Lemma 4, we can replace this by

P (s′, hπt
−i(n′

−i)|hπt
i (n′

i))P (ωi|hπt
i (ni), ai)

Then continuing from the last step of Rτ
i,full(ni),

Rτ
i,full(ni) ≤ Rτ

i (ni) + max
ai,π′

i

1

τ

X

t,ωi

n

X

s′,n−i,a−i,ω−i

P (s′, hπt
−i(n′

−i)|hπt
i (n′

i))P (ωi|hπt
i (ni), ai) ·

[v(πt
i |D(n′

i
)→π′

i
, πt

−i, n
′, s′)− v(πt, n′, s′)]

o

= Rτ
i (ni) + max

ai,π′

i

1

τ

X

t,ωi

n

P (ωi|hπt
i (ni), ai) ·

X

s′,n′

−i

P (s′, hπt
−i(n′

−i)|hπt
i (n′

i)) ·

[v(πt
i |D(n′

i
)→π′

i
, πt

−i, n
′, s′)− v(πt, n′, s′)]

o

= Rτ
i (ni) + max

ai

X

ωi

n

P (ωi|hπt
i (ni), ai)R

τ
i,full(n

′
i)

o

≤ Rτ
i (ni) +

X

ωi

Rτ
i,full(n

′
i)

= Rτ
i (ni) +

X

n′

i

Rτ
i,full(n

′
i)

≤ Rτ
i (ni) +

X

n′

i

[Rτ
i,full(n

′
i)]+

This concludes the proof of lemma 5.
The rest of the proof of Theorem 1 is by inductive appli-

cation of Lemma 5 from the root to the leaves of i’s policy,
as in [20].

PROOF OF THEOREM 2
We make the standard assumption that all payoffs are

bounded, so that there exists a well defined minimum value
of joint policies:

m , min
π

u(π)

Now if the convergence criterion is satisfied, πτ remains un-
changed for all t > τ if REMIT keeps running beyond τ .
Suppose, πτ is not a Nash equilibrium; then there exists a
policy π∗

i for some agent i such that the joint payoff strictly
improves, i.e., improves by at least ǫ > 0. That is

u(π∗
i , πτ

−i) ≥ u(πτ ) + ǫ.

Let us fix some τ ′ beyond τ such that

τ ′ > τ(1 + |m|/ǫ)

Now the overall regret at the policy root for agent i over τ ′

steps is

Rτ ′

i =
1

τ ′
max

π′

i

τ ′

X

t=1

(u(π′
i, π

t
−i)− u(πt))

≥ 1

τ ′

τ ′

X

t=1

(u(π∗
i , πt

−i)− u(πt))

=
1

τ ′
[

τ
X

t=1

(u(π∗
i , πt

−i)− u(πt)) +

τ ′

X

t=τ+1

(u(π∗
i , πt

−i)− u(πt))]

=
1

τ ′
[

τ
X

t=1

(u(π∗
i , πt

−i)− u(πt)) +

(τ ′ − τ)(u(π∗
i , πτ

−i)− u(πτ ))]

≥ 1

τ ′
[

τ
X

t=1

(u(π∗
i , πt

−i)− u(πt)) + (τ ′ − τ)ǫ]

≥ 1

τ ′
[−|m|τ + (τ ′ − τ)ǫ]

> 0, by the choice of τ ′

However, since all node regrets of all agents are ≤ 0 at τ ′, in

particular for agent i, by Theorem 1 we know that Rτ ′

i ≤ 0 –
a contradiction. Therefore πτ must be a Nash equilibrium.


