
Solving Finite Horizon Decentralized POMDPs by
Distributed Reinforcement Learning

Bikramjit Banerjee
School of Computing

The University of Southern
Mississippi

Hattiesburg, MS 39406
Bikramjit.Banerjee@usm.edu

Jeremy Lyle
Dept. of Mathematics

The University of Southern
Mississippi

Hattiesburg, MS 39406
Samuel.Lyle@usm.edu

Landon Kraemer
School of Computing

The University of Southern
Mississippi

Hattiesburg, MS 39406
Landon.Kraemer@eagles.usm.edu

Rajesh Yellamraju
School of Computing

The University of Southern Mississippi
Hattiesburg, MS 39406

Rajesh.Yellamraju@eagles.usm.edu

ABSTRACT
Decentralized partially observable Markov decision processes
(Dec-POMDPs) offer a powerful modeling technique for re-
alistic multi-agent coordination problems under uncertainty.
Prevalent solution techniques are centralized and assume
prior knowledge of the model. We propose a distributed re-
inforcement learning approach, where agents take turns to
learn best responses to each other’s policies. This promotes
decentralization of the policy computation problem, and re-
laxes reliance on the full knowledge of the problem param-
eters. We derive the relation between the sample complex-
ity of best response learning and error tolerance. Our key
contribution is to show that even the “per-leaf” sample com-
plexity could grow exponentially with the problem horizon.
We show empirically that even if the sample requirement is
set lower than what theory demands, our learning approach
can produce (near) optimal policies in some benchmark Dec-
POMDP problems. We also propose a slight modification
that empirically appears to significantly reduce the learning
time with relatively little impact on the quality of learned
policies.

1. INTRODUCTION
Decentralized partially observable Markov decision pro-

cesses (Dec-POMDPs) offer a powerful modeling technique
for realistic multi-agent coordination and decision making
problems under uncertainty. Because solving Dec-POMDPs
is NEXP-complete [4], exact solution techniques for finite
horizon problems require significant time and memory re-
sources [20, 15, 18]. However, solution techniques for Dec-
POMDPs (exact or approximate) suffer from less acknowl-
edged limitations as well: that most of them are centralized
and assume prior knowledge of the model. That is, a sin-
gle program computes the optimal joint policy, with the full
knowledge of the problem parameters. While these tech-
niques have had success in benchmark problems with com-
prehensively defined domain parameters, such strict defini-

The Seventh Annual Workshop on Multiagent Sequential
Decision-Making Under Uncertainty (MSDM-2012), held in
conjunction with AAMAS, June 2012, in Valencia, Spain.

tions may be difficult and tedious in many real-world prob-
lems. In these cases, the problem parameters may need to be
first estimated from experience and then exact/approximate
solvers may be applied. However, this problem of model es-
timation can be complex in POMDPs because states are
unobservable [6], and additionally in Dec-POMDPs agents
are incapable of observing each other’s actions and obser-
vations. Not surprisingly, model estimation is largely ig-
nored in the Dec-POMDP literature. Furthermore, the task
of computing optimal policies in Dec-POMDPs has seldom
been decentralized in any meaningful way (e.g., see [8].)

In this paper we propose a distributed reinforcement learn-
ing approach to solving finite horizon Dec-POMDPs. When
agents learn their own policies, not only is the task of policy
computation distributed, but also the problem parameters
do not need to be known a priori. In lieu of the knowledge
of problem parameters, access to a simulator, or simply the
ability to draw samples from unknown distributions would
be sufficient. Effectively, estimation of the problem param-
eters is built into the learning algorithm. Policy learning in
finite horizon tasks is justified due to the same reasons as
finite horizon reinforcement learning, viz., that agents can
learn policies in offline simulations before applying them in
the real domain. Furthermore, unlike many exact and ap-
proximate solution approaches for Dec-POMDPs, the mem-
ory usage of a learning approach is not much larger than the
size of a single policy per agent at any time, which makes it
relatively more memory efficient. Thus we posit distributed
reinforcement learning as a more practical alternative to the
traditional Dec-POMDP solvers.

Reinforcement learning has been applied in infinite hori-
zon POMDPs in both model based [6, 12, 17] and model
free [13] ways. Model based methods learn a model (e.g.,
hidden Markov models or utile suffix memories for POMDPs)
of the environment first and then compute a policy based
on the learned model, while model free methods learn a
policy directly. Model learning can be more complex in
Dec-POMDPs because the actions and the observations of
the other agents are unobservable. We use a semi-model
based approach, where we do not attempt to estimate the
Dec-POMDP parameters owing to their hidden parts, but
instead learn intermediate functions that capture the visi-

ble parts of the dynamics (see equations 4, 5 given later)
via Monte Carlo estimation, and compute a policy based on
these functions.

Zhang and Lesser [21] recently applied reinforcement learn-
ing to a variant of the finite horizon Dec-POMDP problem,
where agents are organized in a network, and agents’ in-
fluence on each other are limited to cliques. This factored
structure of the domain is exploited to solve such problems
more scalably than regular Dec-POMDPs. Zhang and Lesser
also exploited the known communication structure to coor-
dinate the sub-teams via distributed contraint optimization,
and produced a more efficient learning-based alternative to
the regular solvers. While our goal is similar and we also
consider finite horizon problems, we focus on less structured
and unfactored Dec-POMDPs that are inherently less scal-
able. As in our work, [21] does not guarantee optimality
unless the agent coordination graph is acyclic.

Our initial experiments with concurrent independent rein-
forcement learning [7] in benchmark Dec-POMDP problems
have yielded unsatisfactory results, some of which are in-
cluded in the experiments section. In this paper we propose
a non-concurrent independent learning approach, where agents
take turn in learning best response policies to each other via
a semi-model based Monte Carlo algorithm, but no agent
explicitly attempts to model the other agent. We show the-
oretically that Monte Carlo reinforcement learning for best
response has a complexity of O(T 3|A|T |Ω|3T−1), where T is
the horizon length, |A| and |Ω| are respectively the num-
ber of actions and observations available to an agent. While
it is intuitive that this expression could be exponential in
T , the reason turns out to be less intuitive. Our analysis
shows that it depends on the number of distinct scenarios
that the other (non-learning and invisible) agent may en-
counter. This is a key distinction between POMDPs and
Dec-POMDPs. We also show empirically that a “few” al-
ternations of best response learning produce (near) optimal
policies in some benchmark problems, although in general
alternate best response learning can converge to local op-
tima. Finally, we propose a slight modification of our algo-
rithm, that empirically appears to significantly reduce the
learning time with relatively little impact on the quality of
the learned policies. A shorter version of this paper appears
in [3].

2. DECENTRALIZED POMDP
The Decentralized POMDP (Dec-POMDP) formalism is

defined as a tuple 〈n, S, A, P, R, Ω, O〉, where:

• n is the number of agents playing the game.

• S is a finite set of (unobservable) environment states.

• A = ×iAi is a set of joint actions, where Ai is the set
of individual actions that agent i can perform.

• P (s′|s,~a) gives the probability of transitioning to state
s′ ∈ S when joint action ~a ∈ A is taken in state s ∈ S.

• R : S × A → R, where R(s,~a) gives the immediate
reward the agents receive upon executing action ~a ∈ A
in state s ∈ S.

• Ω = ×iΩi is the set of joint observations, where Ωi

is the finite set of individual observations that agent i
can receive from the environment.

• O(~ω|s′,~a) gives the probability of the agents jointly
observing ~ω ∈ Ω if the current state is s′ ∈ S and the
previous joint action was ~a ∈ A.

The reward function R, transition model P , and observa-
tion model O are defined over joint actions and/or obser-
vations, which forces the agents to coordinate. Addition-
ally, for finite horizon problems, horizon T is also specified.
The goal of the Dec-POMDP problem is to find a policy
for each agent (joint policy) that maximizes the total ex-
pected reward over T steps of interaction, given that the
agents cannot communicate their observations and actions
to each other. A joint policy Π is a set of individual policies,
πi, which maps the histories of action-observation pairs of
agent i to actions in Ai.

3. REINFORCEMENT LEARNING
Reinforcement learning (RL) problems are modeled as

Markov Decision Processes or MDPs [19]. An MDP is given
by the tuple 〈S, A, R, P 〉, where S is the set of environmental
states that an agent can be in at any given time, A is the set
of actions it can choose from at any state, R : S × A 7→ ℜ
is the reward function, i.e., R(s, a) specifies the reward from
the environment that the agent gets for executing action
a ∈ A in state s ∈ S; P : S×A×S 7→ [0, 1] is the state tran-
sition probability function specifying the probability of the
next state in the Markov chain consequential to the agent’s
selection of an action in a state. In finite horizon prob-
lems, the agent’s goal is to learn a non-stationary policy
π : S× t 7→ A that maximizes the sum of current and future
rewards from any state s, given by,

V π(s0, t) = EP [R(s0, π(s0, t)) + R(s1, π(s1, t + 1)) +

. . . + R(sT−t, π(sT−t, T))]

where s0, s1, . . . sT−t are successive samplings from the dis-
tribution P following the Markov chain with policy π.

Reinforcement learning algorithms often evaluate an action-
quality value function Q given by

Q(s, a, t) = R(s, a) + max
π

γ
X

s′

P (s, a, s′)V π(s′, t + 1) (1)

This quality value stands for the sum of rewards obtained
when the agent starts from state s at step t, executes ac-
tion a, and follows the optimal policy thereafter. Action
quality functions are preferred over value functions, since
the optimal policy can be calculated more easily from the
former. Learning algorithms can be model based or model
free. Model based methods explicitly estimate R(s, a) and
P (s, a, s′) functions, and hence estimate Q(s, a, t). Model
free methods directly learn Q(s, a, t), often by online dy-
namic programming, e.g., Q-learning. In this paper, we use
(semi-) model based learning for Dec-POMDPs which makes
for easier analysis of sample complexity, thus establishing a
baseline for RL in Dec-POMDPs. Model based reinforce-
ment learning algorithms have been analyzed in many do-
mains before, but to the best of our knowledge such anal-
ysis have not been performed for decentralized POMDPs,
where partial observability of the learner’s environment is
compounded by the unobservability of the other agents’ ob-
servations and actions.

4. RL FOR DEC-POMDPS

Solution techniques for Dec-POMDPs have been mostly
centralized [20, 15, 18], in that a single program computes
the optimal joint policy, with the full knowledge of the prob-
lem parameters, viz., P, R, O. While these techniques have
had success in benchmark problems with comprehensively
defined P, R, O, such strict definitions may be difficult and
tedious in real-world problems. In this paper we address this
issue by applying reinforcement learning to the policy com-
putation problem. The main distinguishing characteristics
of our approach are

• Instead of a single program computing the optimal
joint policy, each agent learns its own policy. In this
paper agents learn distributedly, but not concurrently.
That is, they share the task of policy learning, by only
learning their own policies, but do not update poli-
cies concurrently. Concurrent learning will effectively
parallelize Dec-POMDP solution, but it is also chal-
lenging due to potential oscillation. Our experiments
show that concurrent learning is not as efficient as the
proposed distributed learning approach. We leave the
improvement of concurrent learning in Dec-POMDPs
as a future avenue.

• Instead of using knowledge of P, R, O, agents learn on
the basis of sampling these unknown functions. This
allows our approach to be readily applicable in tasks
where these parameters are unknown, or hard to com-
pute. However, for evaluation purposes, we still con-
sider well-defined benchmark problems in this paper.

• Most Dec-POMDP solvers maintain many policies in
memory at any time, partly or wholly. Even memory
bounded techniques [16] maintain multiple policies, al-
though of a bounded total size. Instead, a learner only
needs to effectively maintain sufficient information in
memory to construct one policy. However, for finite
horizon problems, this policy has a size exponential in
T .

Although the agents are unaware of P, R, O, we assume that
the agents know the size of the problem, i.e., |A|, |S|, |Ω|, the
maximum magnitude over all rewards, Rmax, and that they
are capable of signalling to each other so that no two agents
are learning at the same time. With > 2 agents, the order
of learning phases must also be fixed by prior agreement.

Since states are not visible, a reinforcement learning agent
can use the policy representation of finite horizon Dec-POMDPs,
and learn a mapping from histories of its past actions and
observations to actions [21]. For simplicity of notation, we
assume two agents only, and identical action and observation
sets for both agents. Given the policy of the other agent, π,
the quality of a learner’s action a at a given level-t history
ht is given by

Q∗
t (ht, a|π) = R∗

t (ht, a|π) +
X

ω

H∗
t (ht, a, ht+1|π) ·

maxb Q∗
t+1(ht+1, b|π) (2)

where ht+1 is a level-t + 1 history produced by the con-
catenation of ht and (a, ω), i.e., ht+1 = (ht, a, ω). The best
response policy of the learner, πℓ, to the other agent’s policy
π is given by

πℓ(ht) = arg max
a

Q∗
t (ht, a|π). (3)

The functions R∗
t and H∗

t represent level-t reward and his-
tory transition functions for the learner, given by

R∗
t (ht, a|π) =

X

s,h−

P (s|ht, h−)P (h−|ht, π)R(s,~a) (4)

H∗
t (ht, a, ht+1|π) =

X

s,s′,h−

P (s|ht, h−)P (h−|ht, π) ·

P (s′|s,~a)
P

ω−

O(~ω|s′,~a) (5)

where h− is the history of action-observations encountered
by the other agent, ~ω = 〈ω, ω−〉 and ~a = 〈a, π(h−)〉 are the
joint observation and action respectively. A learning agent
is unaware of every factor on the right hand sides of equa-
tions 4, 5, and must estimate R∗ and H∗ solely from its own
experience of executing actions and receiving observations
and rewards. Note that while the learners do use rewards as
“shared observations” in order to estimate the quality val-
ues while learning, they do not rely on such observations
when executing the policy (i.e., equation 3). Therefore, the
crux of a Dec-POMDP is preserved, making our approach
an effective alternative to classical Dec-POMDP solvers.

For brevity, we call the following expression β.

β = |A|

„

(|A||Ω|)T − 1

|A||Ω| − 1

«

. (6)

β gives the maximum number of (h, a) pairs of all lengths
that a learner may encounter. We now give the definition of
a key parameter that appears in the complexity expression
of our algorithm.

Definition 1. The minimum reachability over all feasible
states at level t for a fixed policy of the other agent, π, is
given by

ρt,π = min
s,ht,h−|π

P (s|ht, h−)P (h−|ht, π)

Feasibility excludes unreachable states, and therefore ensures
that always ρt,π > 0.

When a learner takes action a at history ht (with the other
agent executing π(h−)) and the resulting joint observation
is ~w = 〈w, w−〉, then reachability can be propagated as

P (s|ht, h−)P (h−|ht, π)P (s′|s,~a)O(~w|s′,~a)

= P (s′|ht+1, h
′
−)P (h′

−|ht+1, π)

where ht+1 = (ht, a, ω) and h′
− = (h−, π(h−), ω−). Clearly,

the minimum reachability at level t + 1 is

ρt+1,π ≤ ρt,π,

forming a monotonically decreasing sequence with increasing
t. Therefore, we refer to the minimum reachability over all
steps, ρT−1,π, simply as ρ dropping both subscripts when π
is clear from the context.

4.1 The Algorithm: MCQ-Alt

In this paper we present an approach where agents take
turn to learn best response to each others’ policies, using an
R-Max [5] like approach to learn the best response Q-values.
The main algorithm for any learning agent – called Monte
Carlo Q Alternating, or MCQ-Alt–is shown in Algorithm 1,
along with its subroutines in Algorithms 2– 5. The learner
records immediate rewards and history transitions at every

Algorithm 1 MCQ-Alt(N)

1: repeat
2: h← ∅
3: a←SelectAction(h)
4: Execute a and receive r, ω
5: for t← 1 . . . T − 1 do
6: b←Step(h, a, ω, r)
7: h← (h, a, ω)
8: Execute b and receive r, ω
9: a← b

10: end for
11: EndEpisode(h,N)
12: until Known(∅) = True

Algorithm 2 SelectAction(h)

1: if Known(h) = True then
2: a← arg maxb∈A Q(h, b)
3: else
4: a← minb frequency(h, b)
5: end if
6: frequency(h, a)← frequency(h, a) + 1
7: Return a

history encountered, providing samples of R∗ and H∗ given
in equations 4, 5 respectively. These samples are incorpo-
rated into running averages to maintain estimates R̂ and Ĥ
respectively. For histories of length T − 1 (i.e., full length),
hT−1, if the pair (hT−1, a) has been encountered

N = max(|S|2|Ω|T−1, 4/ρ)
(4RmaxT |S|)

2|Ω|T+1

α2
·

ln(16|S|2|Ω|T β/δ) (7)

times, then the learner sets QT−1(hT−1, a) to the average

of the immediate rewards received (i.e., R̂T−1(hT−1, a)), via
Algorithms 4, 5. It then marks (hT−1, a) as “Known”. If
(hT−1, a) is“Known”for every a, then hT−1 is marked“Known”.
For an intermediate length history, ht, if every history, ht+1,
produced by concatenating ht with (a, ω) for all combina-
tions of action-observations encountered is “Known”, then
ht is marked “Known”. For a “Known” intermediate history
ht, Qt(ht, a) is updated for every a as

Qt(ht, a) = R̂t(ht, a) +
X

h′

Ĥt(ht, a, h′) max
b

Qt+1(h
′, b)

The learner’s exploration strategy is shown in Algorithm 2.
For a “Known” history, action selection is greedy, i.e., the
Q-maximizing action is selected. For a history that is not
yet marked “Known”, the least frequently taken action (ties
broken randomly) is executed. The learner freezes its cur-
rent policy when the empty history is marked “Known”, and
signals to the other agent to start learning, while it executes
its current policy without exploration. MCQ-Alt learns
best response directly without modeling the other agents in
the environment, and only modeling the visible parts of the
environment’s dynamics.

The infimum reachability, ρ used in equation 7, may not be
known in many problems. Since it decreases geometrically
with inceasing T , it may even be hard to determine whether
|S|2|Ω|T−1 dominates 4/ρ. In such cases, it may be possible
to ignore it, but this may be inadequate for higher T . For

Algorithm 3 Step(h, a, ω, r)

1: h′ ← (h, a, ω)

2: Ĥ(h, a, h′)← Ĥ(h, a, h′) + 1

3: R̂(h, a)← R̂(h, a) + r
4: Remaining(h)← Remaining(h) ∪ {(a, ω)}
5: Return SelectAction(h′)

Algorithm 4 EndEpisode(h,N)

1: if frequency(h, a) > N, ∀a ∈ A then
2: Known(h)← True
3: Qupdate(h)
4: end if
5: while h 6= ∅ do
6: Let h = (h′, a, ω)
7: Remaining(h′)← Remaining(h′) \ {(a, ω)}
8: if Remaining(h′) = ∅ then
9: Known(h′)← True

10: Qupdate(h′)
11: else
12: break
13: end if
14: h← h′

15: end while

the domains and horizons used for experiments in this paper,
ρ does not appear to be a dominating factor, so our analysis
focuses on the dependence on T instead.

An important feature of MCQ-Alt is its well-defined stop-
ping criterion, viz., when the empty history becomes“Known”,
which is controlled by a single parameter, N . In contrast, Q-
learning is controlled by multiple parameters, and its stop-
ping criterion can be affected by oscillation or non-convergence.

Note that in learning the best reponse, a learner attempts
to cover every (ht, a) encountered equally well, to guarantee
arbitrarily small errors in the value function. However, there
are at least two reasons why the value function may not need
to be accurate to an arbitrary degree: (1) policies usually
converge long before value functions, which we verify in this
paper experimentally, and (2) some less likely paths may
have little impact on the value function and N could be
lowered for these paths; we address this next.

Listen ListenA1

O1 O2

A2

O1 O2

A2A1 A1 A2A1A2 A2 A1

Experience tree

Policy

Figure 1: A learner’s experience tree.

4.2 Adjustment for Rare Histories
Figure 1 shows a learner’s entire possible experience tree

Algorithm 5 Qupdate(h)

1: for a ∈ A do
2: Q(h, a)← R̂(h, a)/frequency(h, a)
3: if h is not full-length history then
4: Q(h, a) ← Q(h, a) +

1
H

P

ω|h′=(h,a,ω) Ĥ(h, a, h′) maxb∈A Q(h′, b)
5: end if
6: end for

in a 2-action, 2-observation, T = 2 scenario. MCQ-Alt

would invest N samples to every leaf node in this experience
tree. However, in cases where some histories are rare, this
becomes a significant liability, since it requires a vast series
of episodes to collect sufficient (i.e., N) samples of such rare
histories. Furthermore, such histories possibly contribute
little to the value function. A valid policy is a (small) part of
the experience tree, as shaded in Figure 1. Clearly, there are
many histories that can be allotted fewer samples because
they do not partake in the optimal policy.

In this paper, we test a simple modification of MCQ-Alt,
called “MCQ-Alt Adjusted for Rare Histories”, or MCQ-

Alt-ARH. This modification estimates the likelihood of a
full length history, hT−1, that has been actually encoun-

tered, as fhT−1
=

Ĥ(hT−2,a,hT−1)
P

a,ω Ĥ(∅,a,(a,ω))
(where hT−1 = (hT−2, a, ω)

for a specific a and ω) and only requires fhT−1
·N samples

for hT−1 instead of N . In the experiments section, we per-
form this modification only for histories whose fhT−1

falls
below a threshold, ǫ, given as an external parameter.

5. ANALYSIS
We focus on sample complexity analysis of MCQ-Alt.

Although the fixed policy of the other agent effectively re-
duces the Dec-POMDP to a POMDP, the fact that the other
agent’s actions and observations are unobservable to the
learner makes the analysis more complex than a POMDP.
In particular, the number of scenarios encountered by the
other agent (referred to as K) becomes a key parameter in
the sample complexity analysis, which would not appear in
comparable POMDP analyses.

First we note that the number of episodes needed for the
empty history to be “Known” is

≥ N |Ω|T−1|A|T

since the number of distinct (hT−1, a) tuples is |Ω|T−1|A|T .
Also, given the backup process of histories becoming“Known”
in our algorithm, when all (hT−1, a) become “Known” the
empty history must also become “Known”, and this takes
N visitations of each tuple. The actual number of episodes
needed is, however, likely to be greater than N |Ω|T−1|A|T ,
because only part of the exploration process is under the
learner’s control, where it can select a but not ω. Thus it
can be led to revisit paths that are already “Known”.

While it is fairly intuitive that the episode complexity
given above should be exponential in T , it is not imme-
diately clear that so could N . This is precisely where the
complexity of Monte Carlo reinforcement learning differs be-
tween POMDPs [6, 12, 9] and Dec-POMDPs. In order to
demonstrate this, we first present a generic sampling pro-
cess, and use the resulting sample complexity expression to
derive N .

5.1 The Basic Sampling Process
Consider the following sampling process, with K classes

of random variables, {Xjl}
K
j=1, such that

Y =

PN1

l=1 X1l +
PN2

l=1 X2l + . . .
PNK

l=1 XKl

N
,

where N =
PK

j Nj . The process generates a sample of some
Xjl at each of the N iterations, where the probability that
the sample belongs to class j ∈ [1, K] is pj . Therefore, all
Xjl as well as all Nj are random variables. Suppose that
E[Xjl] = Mj , ∀l, and that the maximum magnitude of any
Xjl is Xmax > 0. We wish Y to estimate the unknown value
P

j pjMj , therefore we call |Y −
P

pjMj | the estimation er-
ror. We claim the following sufficient condition for bounding
the estimation error, but give the proof in [2] due to lack of
space.

Theorem 1. If the total number of samples is set N ≥
max(Kη, 4η/ minj pj) where

η =
4X2

maxK

ǫ2
ln(8K/δ),

then the estimation error is bounded, i.e., P (|Y −
P

pjMj | >
ǫ) < δ.

5.2 Derivation of N

In our analysis we shall use the max norm function, i.e.,
‖f −g‖ represents maxx |f(x)−g(x)|. We first establish the
dependence of the error in the Q functions on the errors in
our estimates Ĥ and R̂.

Lemma 2. If ‖Ĥτ −H∗
τ ‖ ≤ ǫ1 and ‖R̂τ −R∗

τ‖ ≤ ǫ2 for all
τ , then at any step t

‖Qt −Q∗
t ‖ ≤ (T − t)ǫ2 + (T − t− 1)|Ω|Rmaxǫ1

Proof: By induction. For basis, t = T − 1. Since T is
the last step in an episode, ‖QT−1 − Q∗

T−1‖ = ‖R̂T−1 −
R∗

T−1‖ ≤ ǫ2, hence true. For the inductive case, we see that
|Qt(ht, a)−Q∗

t (ht, a)|

= |R̂t(ht, a) +
P

h′ Ĥt(ht, a, h′) maxb Qt+1(h
′, b)−

R∗
t (ht, a)−

P

h′ H∗
t (ht, a, h′) maxb Q∗

t+1(h
′, b)|

≤ ‖R̂t −R∗
t ‖+ |

P

(Ĥt max Qt+1 −H∗
t max Q∗

t+1)|

= ‖R̂t −R∗
t ‖+ |

P

(Ĥt max Qt+1 − Ĥt max Q∗
t+1

+Ĥt max Q∗
t+1 −H∗

t max Q∗
t+1)|

≤ ǫ2 + |
P

(Ĥt max Qt+1 − Ĥt max Q∗
t+1)|+

|
P

(Ĥt max Q∗
t+1 −H∗

t max Q∗
t+1)|

≤ ǫ2 + max |Qt+1 −Q∗
t+1|+ |

P

(Ĥt −H∗
t)max Q∗

t+1|

In the last expression, the second term is upper bounded
by (T − t − 1)ǫ2 + (T − t − 2)|Ω|Rmaxǫ1, by the induction
hypothesis. In the third term, max Q∗

t+1 ≤ Rmax, and the
sum is taken over all observations. Therefore the third term
is upper bounded by |Ω|Rmaxǫ1. Adding the bounds of the
three terms we get the result.

Lemma 2 implies that the error bound increases for smaller
histories, and therefore is maximum at the empty history.
This is why the learner must continue until Q0 is sufficiently
accurate, i.e., the empty history becomes “Known”. In the

following analysis, we characterize “sufficiently accurate”, to
derive a bound on N used by the algorithm (equation 7).

Theorem 3. To ensure that ‖Q0 −Q∗
0‖ ≤ α w.p. ≥ 1− δ,

it is sufficient to set

N ≥ max(|S|2|Ω|T−1, 4/ρ)
(4RmaxT |S|)

2|Ω|T+1

α2
·

ln(16|S|2|Ω|T β/δ)

in our algorithm, where β is given in equation 6 and ρ results
from Definition 1.

Proof: By Lemma 2,

‖Q0 −Q∗
0‖ ≤ Tǫ2 + (T − 1)|Ω|Rmaxǫ1.

To achieve the α bound on the error, it is sufficient to set
ǫ1 ≤ α/2(T − 1)|Ω|Rmax, and ǫ2 ≤ α/2T .

Now the number of Ĥ and R̂ entries that need to be
learned are |Ω|β and β respectively, where β is given in
equation 6. Therefore, it is sufficient to require both of the
following for any t:

P (‖R̂t −R∗
t ‖ > α/2T) < δ/2β (8)

P (‖Ĥt −H∗
t ‖ > α/2(T − 1)|Ω|Rmax) < δ/2β|Ω|

First consider ‖R̂t−R∗
t ‖ and equation 4. The estimation of

any R̂t in our algorithm matches the description of the sam-
pling process, with E[Xjl] = R(s,~a) and pj = P (s|ht, h−)·
P (h−|ht, δ); the last quantity being the reachability, of which
the infimum is ρ (Definition 1). Note that pj cannot be set to
P

h−

P (s|ht, h−)P (h−|ht, δ), since each sample Xjl received

corresponds to a specific history h− encountered by the other
agent. Therefore in this case, the number of variable classes
in the sampling process is K = |S||Ω|t ≤ |S||Ω|T−1. This is
the maximum possible number of terms in the summation
of equation 4 which corresponds to full length histories that
can be encountered by the other agent, given its (fixed) pol-
icy. Making the substitutions for K, Xmax, and using α/2T
for α and δ/2β for δ in Theorem 1, we see that to ensure
equation 8, it is sufficient to set

N ≥ max(|S||Ω|T−1, 4/ρ)
(4RmaxT)2|S||Ω|T−1

α2
·

ln(16|S||Ω|T−1β/δ)

Similarly, for ‖Ĥt −H∗
t ‖, the sampling process is character-

ized by E[Xjl] = 1 and

pj = P (s|ht, h−)P (h−|ht, δ)P (s′|s,~a)P (~ω|s′,~a).

The last quantity is the propagated reachability, of which
the infimum is also ρ. Since t ≤ T − 2, this yields K =
|S|2|Ω|t+1 ≤ |S|2|Ω|T−1, and we have

N ≥ max(|S|2|Ω|T−1, 4/ρ)
(4Rmax(T − 1)|S|)2|Ω|T+1

α2
·

ln(16|S|2|Ω|T β/δ)

Combining the two, we get the result.
It is interesting to note that N is polynomial in most

problem parameters, except that it is logarithmic in |A|,
and exponential in T . Although Theorem 3 suggests that
N = O(T 3|Ω|2T), our experiments suggest that it does not
require to grow in some domains due to simpler structure.
Even in the domains where it does need to grow, the rate of
growth could be lower.

6. EVALUATION

6.1 Initial Policy
If agents alternate in learning best responses, the agent

that does not learn initially must play some previously spec-
ified fixed policy. Our experiments show that if this policy
is random then the final outcome is unpredictably poor. In-
stead, we simply let the two agents perform concurrent re-
inforcement learning to learn initial policies, on a slightly
simpler Dec-POMDP. This Dec-POMDP reduces the set of
observations to one dummy observation. In other words, the
agents simply ignore the observations, and learn a mapping
from their own past action histories to actions (π(a1, a2, . . . , at) =
a). This policy can be readily translated to the regular pol-
icy language, by setting π(a1, ω1, a2, ω2, . . . at, ωt) = a for all
possible chains of observations (ω1, ω2, . . . ωt). This is the
policy used by the initially non-learning agent. More details
on the generation of this initial policy, and comparison with
alternatives, can be found in [10, 11].

6.2 Policy Computation and Evaluation
Although a learner computes its best response policy as

given in equation 3, its executable policy can be given more
compactly, since not all histories encountered during learn-
ing will be encountered when executing its best response
policy. This executable policy can be constructed by only
considering histories of the form

ht = (ht−1, πℓ(ht−1), ω)

for all possible observations ω, starting at h0 = ∅. If an
observation was never encountered at some (ht−1, πℓ(ht−1)),
then the learner can output a random action. In this case
however, all histories that contains this history as a prefix
will also be unseen, and will constitute an unlearned part of
the policy tree.

In contrast with [21], we use the exact method (instead
of simulation) to evaluate a joint policy, since we limit our
evaluations to precisely defined benchmark problems. For
more practical problems, the simulation approach to policy
evaluation would be the only option. To evaluate a joint
policy ~π, we find

V ~π(~h0) =
X

s∈S

b0(s)V
~π(~h0, s) (9)

where b0 ∈ ∆(S) is the initial state distribution. V ~π(~ht, s)

for a given joint history ~ht and state s is given by

V ~π(~ht, s) = R(s, ~π(~ht)) +
P

s′∈S P (s′|s, ~π(~ht)) ·
P

~ω∈Ω O(~ω|s′, ~π(~ht))V
~π((~ht, ~π(~ht), ~ωt), s

′)

where ~π(~ht) = 〈π1(ht,1), . . . , πn(ht,n)〉.

6.3 Experimental Results
We present experimental results from two benchmark do-

mains: Dec-Tiger [14] and Recycling-Robots [1]. We
used the initial policy learned by concurrent reinforcement
learning (as described above) over 200000 episodes to per-
form alternating Monte-Carlo Q learning as described in this
paper, for values of N ranging from 10 to 1000. There were
2 alternations, i.e., each agent learned best response to the
other’s policy exactly once. In each experiment, the result-
ing joint policy after 2 alternations was evaluated to yield

0

0.2

0.4

0.6

0.8

1

1.2

1.4

10 20 50 100 200 500 1000

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r

N

MCQ-alt (T=3)

MCQ-alt (T=4)

MCQ-alt (T=5)

Q-conc (T=3)

Q-conc (T=4)

Q-conc (T=5)

0

0.1

0.2

0.3

0.4

0.5

0.6

10 20 50 100 200 500 1000

A
v
e

ra
g

e
 r

e
la

ti
v
e

 e
rr

o
r

N

MCQ-alt (T=3)

MCQ-alt (T=4)

MCQ-alt (T=5)

Q-conc (T=3)

Q-conc (T=4)

Q-conc (T=5)

Figure 2: Plots of average relative errors against N in Dec-Tiger (left) and Recycling-Robots (right).

|vjpol − vopt|/|vopt|, i.e., the relative error based on known
optimal values for horizons 3, 4 and 5. The plots in Figure 2
show these relative errors averaged over 50 runs. For com-
parison, we also show the result from concurrent Q-learning
(referred to as “Q-conc”), with α = 0.01, ǫ = 0.005, which
were found to produce best results in the selected settings.
Table 1 also shows the average relative error rates with the
initial policy (derived by concurrent learning), to verify that
MCQ-Alt does indeed improve these policies.

Each setting of N and T makes MCQ-Alt finish in a
certain number of episodes, say eN,T , i.e., until the empty
history becomes “Known” in each alternation. The average
of these numbers of episodes over all agents and all runs is
used to determine the length of the Q-conc runs. The aver-
age relative error of Q-conc for a given N and T is reported
at the end of (average) eN,T episodes.

In Figure 2 (left) for Dec-Tiger, first we note that hori-
zons 3 and 4 are solved accurately with N ≥ 200 and 1000 re-
spectively, by MCQ-alt. Q-conc solves horizon 3 accurately
with a number of episodes corresponding to N = 1000, but is
unable to solve horizon 4. Neither achieves 0 error for hori-
zon 5. MCQ-Alt is also clearly more efficient than Q-conc.
More importantly, we see that for a given N , the relative
error increases with increasing horizon. This is clear with
MCQ-alt, but not so clear with Q-conc with even a hint of
non-convergence (error increases for T = 4). For MCQ-alt,
this implies that N needs to increase to produce the same
error on increasing horizons. This is direct evidence for the
claim made earlier in this paper, although the rate at which
N needs to increase falls short of the O(T 3|Ω|2T) rate es-
tablished in this paper. This is explained by the fact that
O(T 3|Ω|2T) is a sufficient rate for value convergence; it is
not necessary, and policies can converge sooner.

Dec-Tiger Recycling-Robots

T=3 T=4 T=5 T=3 T=4 T=5

Initial policy 2.16 2.67 2.42 0.37 0.39 0.33
relative error
% unreachable 0 0 0 27.9 39.8 47.8
histories

Table 1: Relative errors of initial policies, and the
proportion of unreachable histories.

In Figure 2 (right) for Recycling-Robots, we see some-
thing more interesting. Although MCQ-Alt is still more
efficient that Q-conc, the relative errors now decrease with
increasing horizon, for a given N . This is true with both

MCQ-Alt and Q-conc. This is partly due to the fact that
there are many unreachable histories in this domain. Table 1
shows the increasing proportion of unreachable histories in
Recycling-Robots with increasing T , which suggests that
K (and hence the error) grows much slower than Theorem 3
assumes. As it turns out, N does not need to grow with
increasing horizons for small errors in this domain. Instead,
the increasing values of eN,T even for a fixed N are suffi-
cient to actually reduce the average errors with increasing
T , as seen in Figure 2 (right). However, it must be noted
that alternating best response learning also almost always
converges to local optima in this domain, so 0 average error
was never observed.

Dec-Tiger Recycling-Robots

ǫ T = 3 T = 4 T = 3 T = 4

Episode 0.01 0.975 0.0138 0.44 0.056
ratio 0.02 0.864 0.0039 0.284 0.0069

0.03 0.189 0.0039 0.184 0.0023
0.04 0.055 0.0039 0.11 0.0018
0.05 0.025 0.0039 0.082 0.0017

∆ (relative 0.01 0 2.077 0.01 0
error) 0.02 0 2.17 0.01 0

0.03 0 2.17 0.01 0.01
0.04 0.098 2.17 0.01 0.01
0.05 0.137 2.17 0 0.02

Table 2: Comparison of MCQ-Alt-ARH and MCQ-

Alt.

In Table 2 we show the results from MCQ-Alt-ARH, in
the two domains for T = 3, 4 only. Here “Episode ratio”
stands for the ratio of the average number of episodes (over
all agents and all runs) needed by MCQ-Alt-ARH, to that
needed by MCQ-Alt, both for N = 1000. ∆ (relative error)
stands for the absolute difference between the average rela-
tive errors of the two algorithms for the same settings. As
one would expect, the relative number of episodes needed to
terminate MCQ-Alt-ARH falls with increasing ǫ, while the
error in the policy value increases. Interestingly, the impact
on the quality of policy is mostly small except in Dec-Tiger

with T = 4. In the other settings, it appears that the adjust-
ment for rare histories does indeed lead to significant savings
in learning time with relatively little impact on the policy
quality. More experiments need to be conducted to ascertain
the beneficial impact of MCQ-Alt-ARH on a broad range
of problems, and its relation to domain characteristics.

7. CONCLUSION
We have presented a distributed Monte Carlo based rein-

forcement learning algorithm for solving decentralized POMDPs
approximately. Agents alternate in learning best responses
which, if accurate enough, is guaranteed to lead to a lo-
cally optimal Nash equilibrium. We have derived the sam-
ple complexity that guarantees arbitrarily accurate best re-
sponse policies, and shown empirically that 2 alternations
of best response learning can produce (near) optimal joint
policies in some benchmark problems. A slight modifica-
tion of the algorithm was also proposed to account for rare
histories, and it appears to significantly reduce the learning
time, with relatively little impact on policy quality in most
settings. In the future, more judicious use of samples with
a variable N will be explored, and a more elaborate investi-
gation into the convergence behavior of concurrent learning
will be undertaken. An important future goal is to apply our
approach to real-world Dec-POMDP problems where models
are unavailable, e.g., two inexpensive (limited sensing and
no communication capability) robots carrying an object to-
gether. The main challenge in such an application is the
fact that observations will be continuous valued, for which
naive (discretization) as well as sophisticated (function ap-
proximation) techniques will be investigated.

8. ACKNOWLEDGMENTS
The authors thank the anonymous reviewers for helpful

feedback. This work was supported in part by the U.S. Army
under grant #W911NF-11-1-0124.

9. REFERENCES
[1] C. Amato, D. Bernstein, and S. Zilberstein.

Optimizing memory-bounded controllers for
decentralized POMDPs. In Proc. UAI, 2007.

[2] Anonymous. Blind review. Technical report. Available
at http://tinyurl.com/86um3on.

[3] B. Banerjee, J. Lyle, L. Kraemer, and R. Yellamraju.
Sample bounded distributed reinforcement learning for
decentralized pomdps. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial
Intelligence, Toronto, Canada, July 2012. To appear.

[4] D. S. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control
of markov decision processes. Mathematics of
Operations Research, 27:819–840, 2002.

[5] R. I. Brafman and M. Tennenholtz. R-max - A general
polynomial time algorithm for near-optimal
reinforcement learning. Journal of Machine Learning
Research, 3:213 – 231, 2002.

[6] L. Chrisman. Reinforcement learning with perceptual
aliasing: The perceptual distinctions approach. In
Proceedings of the Tenth National Conference on
Articial Intelligence, pages 183–188, San Jose, CA,
1992. AAAI Press.

[7] C. Claus and C. Boutilier. The dynamics of
reinforcement learning in cooperative multiagent
systems. In Proceedings of the 15th National
Conference on Artificial Intelligence, pages 746–752,
Menlo Park, CA, 1998. AAAI Press/MIT Press.

[8] R. Emery-Montemerlo, G. Gordon, J. Schneider, and
S. Thrun. Approximate solutions for partially

observable stochastic games with common payoffs.
Autonomous Agents and Multiagent Systems,
International Joint Conference on, 1:136–143, 2004.

[9] S. Kakade. On the Sample Complexity of
Reinforcement Learning. PhD thesis, University
College London, 2003.

[10] L. Kraemer and B. Banerjee. Informed initial policies
for learning in dec-pomdps. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial
Intelligence Student Abstract and Poster Program,
Toronto, Canada, July 2012. To appear.

[11] L. Kraemer and B. Banerjee. Informed initial policies
for learning in dec-pomdps. In Proceedings of the
AAMAS-12 Workshop on Adaptive Learning Agents
(ALA-12), Valencia, Spain, June 2012. To appear.

[12] A. K. McCallum. Reinforcement Learning with
Selective Perception and Hidden State. PhD thesis,
Department of Computer Science, University of
Rochester, 1995.

[13] N. Meuleau, L. Peshkin, K. Kim, and L. Kaelbling.
Learning finite-state controllers for partially
observable environments. In Proc. UAI, pages
427–436, 1999.

[14] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and
S. Marsella. Taming decentralized pomdps: Towards
efficient policy computation for multiagent settings. In
Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI-03), pages 705–711,
Acapulco, Mexico, 2003.

[15] F. A. Oliehoek, M. T. J. Spaan, J. S. Dibangoye, and
C. Amato. Heuristic search for identical payoff
bayesian games. In Proceedings of the Ninth
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS-10), pages 1115–1122,
Toronto, Canada, 2010.

[16] S. Seuken. Memory-bounded dynamic programming
for dec-pomdps. In Proceedings of the 20th
International Joint Conference on Artificial
Intelligence (IJCAI-07), pages 2009–2015, Hyderabad,
India, 2007.

[17] G. Shani, R. Brafman, and S. Shimony. Model-based
online learning of POMDPs. In Proceedings of the
European Conference on Machine Learning (ECML),
volume Lecture Notes in Computer Science 3720,
pages 353–364. Springer, 2005.

[18] M. T. J. Spaan, F. A. Oliehoek, and C. Amato.
Scaling up optimal heuristic search in Dec-POMDPs
via incremental expansion. In Proceedings of the
Twenty-Second International Joint Conference on
Artificial Intelligence (IJCAI-11), pages 2027–2032,
Barcelona, Spain, 2011.

[19] R. Sutton and A. G. Barto. Reinforcement Learning:
An Introduction. MIT Press, 1998.

[20] D. Szer and F. Charpillet. Point-based dynamic
programming for dec-pomdps. In Proceedings of the
21st National Conference on Artificial Intelligence,
pages 1233–1238, Boston, MA, 2006.

[21] C. Zhang and V. Lesser. Coordinated multi-agent
reinforcement learning in networked distributed
POMDPs. In Proc. AAAI-11, San Francisco, CA,
2011.

