
Advancing the Layered Approach to Agent-based Crowd Simulation

Bikramjit Banerjee, Ahmed Abukmail and Landon Kraemer
School of Computing

The University of Southern Mississippi
118 College Drive #5106

Hattiesburg, MS 39406-0001
{Bikramjit.Banerjee, Ahmed.Abukmail, Landon.Kraemer}@usm.edu

Abstract

We adapt a scalable layered intelligence technique from
the game industry, for agent-based crowd simulation. We
extend this approach for planned movements, pursuance
of assignable goals, and avoidance of dynamically intro-
duced obstacles/threats, while keeping the system scalable
with the number of agents. We exploit parallel processing
for expediting the pre-processing step that generates the
path-plans offline. We demonstrate the various behaviors
in a hall-evacuation scenario, and experimentally establish
the scalability of the frame-rates with increasing number of
agents.

1 Introduction

Crowd behavior simulation has been an active field of
research [5, 15, 8, 2, 3] because of its utility in several ap-
plications such as emergency planning and evacuations, de-
signing and planning pedestrian areas, subway or rail-road
stations, besides in education, training and entertainment.
In agent-based crowd simulations, where each pedestrian is
modeled as an autonomous agent, a tradeoff is commonly
made between the complexity of each agent and the size
of the crowd. This is because, by common wisdom “sim-
ple characters are more efficient to evaluate, but complex
characters can capture more realistic crowd behaviors” [11].
The assumption underlying the above quote is that realistic
crowd behaviors are hard to achieve with simple agent mod-
els. Although we only focus on navigational behaviors in
this paper, we show that it is possible to model complex be-
haviors realistically (such as static obstacle avoidance, sep-
aration, collision avoidance, approaching assignable goals,
and avoidance of dynamically introduced obstacles/threat)
with an extremely simple agent model, leading to a scal-
able simulation system. The main idea is to distribute the
intelligence in the terrain [14] rather than accumulating it

into a complex/bulky model that each agent must follow.
Although this idea of smart terrain is not new, to the best
of our knowledge, this is the first application of this idea
to crowd simulation. More importantly, we advance this
approach to incorporate new behaviors that are specific to
crowd simulation.

In this paper, we focus on crowd movement on a 2D sur-
face. We use the layered AI framework [14] to create an
efficient platform for agent movement, that is also easily
expandable to incorporate more and more complex behav-
iors at will, by simply adding more layers. We first create
a flow-field for basic agent movement, avoiding static ob-
stacles in the world, using the Markov Decision Processes
(MDP) [12] framework. We show that realistic behavior in
this context needs a refinement that Semi-Markov Decision
Processes (SMDP) offer. We also show how the combina-
tion of (S)MDPs and layered AI allows us to easily han-
dle the assignment of different goals to different agents.
This means an agent is not limited to approaching the near-
est goal, but an assigned goal, unlike what the (S)MDP
framework alone offers. We also extend the layered AI
framework to handle the dynamic introduction of new ob-
stacles/threats. One limitation of our approach is the pre-
processing time for creating the initial flow-field. We show
results that this step can be parallelized to reduce the pre-
computation time. Finally, we show the frame-rates result-
ing from our implementation, which clearly establishes the
efficacy of our scalable approach in modern crowd simula-
tion.

2 Layered Intelligence

We consider crowd behavior in an environment created
on a 2-D surface. We divide the surface into square grids,
where each cell has a sufficient area to hold no more than
one person of average size. We have used the concept of
layered AI from the game industry [14] for crowd simula-
tion in this environment. The basic idea is to distribute ter-

(a) (b) (c)

Figure 1. (a) Several informational layers overlay the underlying physical grid, (b) The open-
ness/obstacle layer, (c) The occupancy layer. Black cells are occupied, progressively lighter cells
are more easily walkable. These figures are adapted from [14] to illustrate the layered intelligence
approach.

rain and other navigation-related information into several
layers and have an agent make simple navigation decisions
based on a combination of these layers. For instance, there
could be a single layer called occupancy layer where each
agent enters its current position. When an agent makes a
decision of which cell to move to next, it will need to con-
sult this layer and omit any neighboring cell that is already
occupied by other agents. Once its decision is made, it will
need to update its position on this layer, for other agents to
avoid collision with this agent. Similarly there could be an
obstacle layer, which contains information about all static
obstacles in the environment. When deciding which neigh-
boring cell to move to next, an agent must also consult this
layer to omit cells that are blocked by obstacles. Rather than
binary (blocked or available) values, the layers usually con-
tain values from a continuous range to indicate proximity to
agents/obstacles. The approach is illustrated in Figure 1.

Essentially, each type of information that is relevant to
navigation is captured in a separate layer. In games, in-
formations such as which cells are easily visible and hence
open to enemy fire, which cells have the enemies just
searched and are not likely to search again anytime soon,
etc, are captured in separate layers, called openness layer,
search layer etc. [14]. Normalized values (i.e., in the range
[0, 1]) are stored for each cell in each layer, reflecting its
value from that layer’s perspective. Let layeri(x, y) be
the value of cell (x, y) in layer i, with a total of L layers,
i = 1 . . . L. An agent at location (x, y) needs to simply
look up the values of all cells in the neighborhood of (x, y),
i.e., N(x, y) = {(p, q)|(p, q) = Neighbor(x, y)}, from all
layers and pick the best next-cell as

(p, q)best = arg max
(p,q)∈N(x,y)

L∏
i=1

layeri(p, q) (1)

In this paper, we use simple formulae to compute open-
ness/obstacle and occupancy layers (Figure 1 (b) and (c)).
The obstacle layer is simply binary (0’s occupied by walls,
and 1’s open) in contrast to Figure 1 (b) which shows a

larger range of values (grey levels), while the occupancy
layer is computed as (conforming to Figure 1 (c))

layeroccupancy(x, y) =

 0 if agent at (x, y)
0.5k k = number of agents

in N(x, y)

The above formula for the occupancy layer is actually im-
plemented as a constant-time process per agent, and encour-
ages slight (just one cell-deep) separation among agents (as
shown in Figure 1(c)), unless they are pressed in a conges-
tion. In every new frame, an agent only needs to update the
neighborhood of its new location, and re-adjust the neigh-
borhood of its previous location, besides the two successive
locations.

The complexity of the decision-making process (equa-
tion 1) is O(|N |L). Hence with a fixed sized neighborhood
(say the 9 cells surrounding and including (x, y)), the de-
cision would be constant time. With n agents in the envi-
ronment, the total time complexity for generating the next
frame of agent positions would be O(n), which is the best
possible speed we can hope for in a distributed simulation.
The layered approach to intelligent decision-making abides
by the following principle that game AI developers value for
scalability and efficiency: put the intelligence in the data,
not in the code.

3 Path planning

In this paper, we extend the layered approach to include
path planning to allow planned movements as opposed to re-
active movements. We also allow different destinations for
different agents, and build a path-plan layer for each desti-
nation. An agent will thus consider only the path-plan layer
for its desired destination and ignore the other path-plan lay-
ers. As an illustration consider an agent egressing a building
to approach one of four surrounding parking lots, where he
has actually parked. We can have a path-plan layer for each
of the four parking lots, and have many agents approach

their respective parking lots concurrently by consulting the
appropriate layers. The success of this approach obviously
depends on the number of destinations being small. The ad-
vantage is open design, i.e., we can extend and complexify
the scenarios arbitrarily, simply by building extra layers.

In games, path planning is usually done offline (i.e. pre-
computed) with Floyd-Warshall technique, or online with
A* for dynamic path-finding. In the layered approach, we
are primarily concerned with minimizing run-time process-
ing; hence we completely eliminate the need for A* with
the intent of handling dynamic changes to the optimal path
entirely within the layered framework. Although the Floyd-
Warshall technique would give us path plans for all start-
end cell pairs, the format of the output is not quite con-
ducive to the layered approach. We need a path-planning
technique that will produce a flow-field that tells an agent
which neighboring cell it should move to, given its current
cell location. Furthermore, these decisions should be based
on real numbers that can be meaningfully combined (us-
ing equation 1) with other layers to formulate a more in-
formed movement decision that is also based on occupancy,
static obstacles and possibly dynamic obstacles. Another
major limitation of the Floyd Warshall algorithm is that it
only gives the optimal decision from any cell, but fails to
offer an alternative if that optimal move is impossible to
make (e.g., because another agent is currently occupying
that cell). These limitations force us to look beyond Floyd-
Warshall technique.

3.1 Markov Decision Processes

We view movement on the 2-D grid as a Markov De-
cision Process (MDP). Formally, an MDP is given by the
4-tuple 〈S, A, T,R〉, where S is the set of environmental
states that an agent can be in at any given time, A is the set
of actions it can choose from at any state, R : S×A×S 7→
< is the reward function, i.e., R(s, a, s′) specifies the re-
ward from the environment that the agent gets for exe-
cuting action a ∈ A in state s ∈ S leading to state s′;
T : S × A × S 7→ [0, 1] is the state transition probabil-
ity function specifying the probability of the next state (s′)
in the Markov chain consequential to the agent’s selection
of an action (a) in a state (s). An MDP solver agents goal is
to learn a policy (action decision function) π : S 7→ A that
maximizes the sum of discounted future rewards from any
state s,

V π(s) = ET [R(s, π(s), s′) + γR(s′, π(s′), s′′)
+γ2R(s′′, π(s′′), s′′′) + . . .]

where s, s′, s′′, s′′′, . . . are samplings from the distribution
T following the Markov chain with policy π, and γ ∈ [0, 1)
is the discount factor.

1: Input real ε
2: Initialize V (s)← 0,∀s ∈ S
3: repeat
4: ∆← 0
5: for each cell, s ∈ S do
6: v ← V (s)
7: V (s)← maxa[R(s, a, T (s, a)) + γV (T (s, a))]
8: ∆← max(∆, |v − V (s)|)
9: end for

10: until ∆ < ε

Table 1. The value iteration algorithm
from [12]

In context of the 2-D grid, S is the set of all grid-cells.
The action set A is the set of 9 cells that an agent at lo-
cation (x, y) can move to (including the action of staying
put in cell (x, y)). Some of these neighboring cells may be
blocked by static obstacles, in which case the corresponding
actions are unavailable, and excluded from set A (or equiv-
alently, the corresponding transition probabilities T (., ., .)
are set to zero). We use the information from the static ob-
stacle layer to compute the MDP solution, so that the result-
ing path-plans avoid them in a realistic manner 1. We use
value iteration [12] algorithm to solve the MDP induced by
the 2-D grid with the reward function defined simply as

R(s, a, s′) =
{

1 if s′ is a goal cell
0 otherwise

and transition function (T) is deterministic, meaning an ac-
tion a in state s leads to a unique next-state (s′) everytime.
Therefore for our purpose, we can redefine T as

T : S ×A 7→ S

i.e., T (s, a) = s′ in accordance with the above. The value
iteration algorithm is shown in Table 1. The result (i.e.,
V (s),∀s ∈ S) of this process can be readily used by an
agent to select an appropriate action in any state by

π(s) = arg max
a

V (T (s, a))

If several actions have the same maximum value, then
teh agent can pick one of these at random.

3.2 Semi-Markov Decision Processes

Oftentimes, different actions take different amounts of
time to complete. For instance, when an agent wants to

1This means an agent starts avoiding an obstacle before he actually en-
counters it in his immediate neighborhood, simulating vision-based avoid-
ance, much like A*

(a)

(b)

Figure 2. Crowd behavior without (a) and with
(b) differing digonal cost taken into account

move from cell (x, y) to cell (x + 1, y) (or any of the four
non-diagonal neighboring cells), the distance covered (say
centroid to centroid) is less than if the agent wanted to move
to (x + 1, y + 1) (or any of the diagonal neighboring cells).
In particular, if the former distance is 1 unit, the latter is√

2 = 1.414 units, assuming square grid cells. Hence the
agent would take longer to execute a diagonal step than a
Manhattan step. This discrepency in action times can be
neatly incorporated in the MDP formalism to produce Semi-
Markov Decision Processes , where the step 7 in the algo-
rithm in Table 1 needs to be modified to

V (s)← max
a

[R(s, a, T (s, a)) + γt(a)V (T (s, a))]

where t(a) is the time taken to execute action a. Figure 2(a)
shows the result of ignoring the difference in action exe-
cution times (i.e., t(a) = 1,∀a), while Figure 2(b) shows
the result of taking these differences into account. In this
simulation, 500 agents are placed in a hall with 6 exits, in
a grid-world of size 137 × 137. The 4 corners of the grid-
world are 4 different goals that an agent could go to. Each
agent is colored by the goal that is randomly assigned to it.
This simulation uses 4 path-plan layers (one for each cor-
ner goal) and an occupancy layer, but since we have used
a binary static obstacle layer (in contrast with Figure 1(b)),
this layer can be eliminated after the information needed to
handle static obstacles is captured in the path-plan layers
(e.g., notice that the path-plan layer in Figure 3 contains bi-

nary static obstacle information). In Figure 2(a) the agents
line-up in the direction of their respective goals (which we
believe is an unrealistic artifact), and also fail to use the
middle exits. In Figure 2(b), both of these problems have
been eliminated by using the SMDP formulation. Figure 3
illustrates the difference between the flow fields produced
by the two methods. In this figure, the map has a lower

(a)

(b)

Figure 3. Navigation flow-field produced by
the algorithm in Table 1 (a), and that pro-
duced with the SMDP adjustment (b), for the
path-plan layer with goal at top-right corner

resolution (36 × 36) for the sake of clarity, and the static
obstacles are all one cell deep (unlike in Figure 2), marked
with 0’s. The band of 0’s around the periphery serves to
establish the world’s boundary. The goal cell is shown in
green at the top right. It is worth noting from Figure 3 that
while the raw MDP method pushes the agents away from
the right-hand exits when in their vicinity, the SMDP ad-
justment nudges them toward those exits. This is the main
reason for the agents being able to use the right-middle exit
when in it’s vicinity.

One important limitation in this regard is that the agents
may be unable to use the middle exits if they are far from
them, while the other exits are temporarily congested with
other agents. While the occupancy layer enforces some sep-

aration among agents and as a by-product may be sufficient
(in some cases) to push the agent toward such unused (or
scantily used, hence less crowd producing less separation
force) exits, we would like to solve this problem without
banking on separation. As a first-cut approach, this sce-
nario calls for replanning which is expensive with the lay-
ered technique. One possibility is to treat a congestion as
a dynamically placed obstacle (see next section for how we
handle such obstacles), but the key difference is that while
we may be told where a dynamic obstacle has been placed,
the location of a congestion must be autonomously deter-
mined. This is an important future direction.

4 Dynamically placed obstacles

A second extension to the layered approach that we pro-
pose, is to handle obstacles that are added dynamically. We
use the word “obstacle” in a broader sense, to refer to any-
thing that an agent would want to avoid during navigation.
For instance, rubbles created by an explosion, agents that
died in stampede, a raging fire etc. are all considered obsta-
cles that a user adds after a simulation starts. As mentioned
in the previous section, we would also like to treat a tem-
porary congestion at a desired exit to be an obstacle that
agents (with that exit on their path) must avoid, but a user
will not be expected to locate it. All such obstacles neces-
sitate dynamic changes to the optimal path plans. The lay-
ered framework enables a simple solution to this problem,
albeit in a limited way. The idea is to create a new layer
for a dynamically added obstacle, instead of modifying the
path plan layer. The new layer will create a a trough of val-
ues in and around the location of the obstacle, so that when
combined with the other layers (equation 1), the agents will
avoid bumping into it. In our implementation, for the pur-
pose of simplicity an obstacle is characterized by 5 param-
eters:

• (cx, cy): the coordinates of the center of the obstacle

• ri: inner radius, that is the physical extent of the ob-
stacle. For obstacles that are arbitrarily shaped, this is
the radius of the bounding sphere.

• ro: outer radius (> ri), that is the extent of the in-
fluence of the obstacle. Normally all obstacles extend
their influence as far as visual distance, i.e., an agent
that can see it will repath to avoid it. However, for
some obstacles the influence could extend further; for
instance, the effects of a fire or an explosion can be per-
ceived from locations that are further away, and hence
have larger ro.

• a: avoidance intensity, that specifies how strongly an
agent would want to avoid stepping close to the obsta-
cle. If a = 0, an agent can walk right by the obstacle

(without stepping on it), whereas for higher a, an agent
would want to avoid it from a larger distance, e.g., a
fire.

In this dynamic obstacle layer, the value of a cell (p, q) is
computed as

layer(p, q) =


0 if d ≤ ri(

d−ri

ro−ri

)a

if ri < d < ro

1 if d ≥ ro

(2)

where d is the distance between (p, q) and (cx, cy).

(a)

(b)

Figure 4. Two successive snapshots taken
every 2 seconds after an obstacle is dynami-
cally placed

Figure 4 shows two successive snapshots (a and b,
roughly 2 seconds apart) from placing an obstacle at the
center of the room. We have developed this tool to allow
a user to place a circular obstacle with an adjustable ri, at
an arbitrary location with a mouse-click. All agents located
within this obstacle immediately become immobilized, sim-
ulating dead agents 2 from whatever hazard (explosion, fire
etc) originated the obstacle. In this figure, ro = 4ri, and

2This is implemented quite naturally in the layered framework, since
unless an agent within the obstacle is in the periphery, it will be surrounded
by 0 valued cells, according to equation 2, and hence unable to move.

a = 1. It should be noted that larger values of a enforces
ro more strongly making the agents form a more sharply-
defined circular pattern of avoidance. In contrast, a lower
value (here a = 1) makes the circular outline more diffuse
which we believe is more realistic. It is also noteworthy
that Figure 4(a) is a snapshot roughly 2 seconds (run on
a Lenovo Thinkpad 2.6 Ghz dual core machine with 3GB
RAM) after the obstacle was placed, which includes the
time taken to compute the new dynamic obstacle layer. On
the said machine, the delay from this computation is nearly
imperceptible on a 137× 137 grid.

A major advantage of a separate dynamic obstacle layer
is the ease of handling temporary obstacles. Recall that one
of our future goals is to use this technique to handle tem-
porary congestions at bottlenecks. As such, when a tempo-
rary obstacle disappears (e.g., a fire dies down, or rubbles
are removed by emergency response personnel, or a bottle-
neck crowd dissipates), the agents must resume their origi-
nal path plans. In the layered framework, it amounts to sim-
ply deleting the dynamic obstacle layer, since the original
path-plan is never modified. However, this also leads to a
major limitation of this approach, during the period that the
obstacle exists. Since the path plan is not modified taking
the existing static obstacles (such as walls) into account, it
is possible that even though an agent is on the other side of
a wall relative to the obstacle, it still diverts along a curve
if the avoidance field extends that far. In order to avoid
this undesirable effect, it is necessary to modify equation 2
to take the static obstacles into account. We leave this en-
hancement for future work.

A minor limitation is that when an obstacle disappears,
the (presumed dead) agents located within ri will resume
movement. This can be prevented simply by tagging all
agents immobilized within ri, as dead agents. A dead-
flagged agent will never move at any future time. Another
limitation in case of large maps is the fact that an entire
layer gets created for an obstacle that occupies only a small
area. One possible solution could be to create a sub-layer
for only the area covered by the influence field of an obsta-
cle, and combine it with other layers much like applying a
filter in image processing. We intend to evaluate this ap-
proach in the future.

5 Parallelizing the Pre-Processing Step

The pre-processing step to produce the flow-field for
each goal in a separate layer (i.e., the algorithm in Table 1
applied once for each goal), is computationally intensive
and therefore it can benefit from improvement. In order to
improve the pre-processing time, we have parallelized the
pre-processing step. The parallel algorithm is quite simple,
yet it shows significant improvements, especially as the size
of the map grows. The idea is to allow for the path-plan for

each goal layer to be processed separately on each processor
in the parallel platform, whether a multi-core machine or on
a cluster of machines. The advantage of having multi-core
machines is that communication cost is kept to a minimal
. However, if the implementation is done on a cluster of
machines, communication of the results would be slightly
more expensive. Since we have used four goal layers in

 0

 50

 100

 150

 200

 250

 100 200 300 400 500 600

N
um

be
r

of
 s

ec
on

ds

Number of cells along each map-dimension

parallel time
sequential time

Figure 5. Plot of runtimes for the path-plan
layers for all four corner goals (Figure 2), run
sequentially and in parallel, for various map
sizes

our implementation, we required four separate processors,
each handling a separate goal. The computation for each
of the layers is independent of the others, because the path
plan for one goal is independent of the other goals. With
the availability of quad-core machines and large amounts of
memory, there was no need to use a cluster of computers to
implement our algorithm. We distributed the load equally
among all four CPUs. Since each one of the CPUs can ac-
cess the memory, each CPU was able to write its results to
a its own memory segment. As a result of all processors
being on the same machine, communication cost was ex-
tremely low.

In our implementation, we used a cluster of machines in
our Advanced Visualization lab. However, we only utilized
a single machine, since all we needed was a quad-core ma-
chine. We used an implementation of the Message Passing
Interface (MPI) to implement our parallel algorithm.

Figure 5 shows the number of seconds taken to genener-
ate the four path-path layers, using the parallel and the plain
sequential methods, on varying map sizes. The maps were
of the same form as the previous figures, but the sizes of the
obstacles grew proportionately with the map size. Firstly,

Figure 5 verifies a roughly cubic trend that is expected, be-
cause the loop 5 in Table 1 is O(m2) (m being the num-
ber of cells along each dimension of the map), while the
loop 3 has an average complexity of O(m) 3. We also no-
tice in Figure 5 that the amount of computation required
by each processor was not reduced by 75% (as one might
expect) of the sequential algorithm. This is mainly due to
the O(m3) complexity of the main loop, and also the dom-
inance of the loop overhead. However, the increasing bene-
fit of parallelizing the pre-processing step is apparent from
Figure 5, when the size of the map grows. To put in per-
spective, a 1200 × 1200 map covers approximately a quar-
ter of a square mile according to the proportions used in our
system, which roughly corresponds to the size of a football
stadium. As Figure 5 shows, an area one quarter of that
size (i.e., 600 × 600, or one quarter of a stadium) takes 2.5
minutes pre-processing time which is a compelling factor
in favor of the layered approach, and this is made possible
by parallelization. Sucar [10] discusses how an MDP can
be broken into subtask-MDPs that can be solved in parallel
with limited communication across processors for synchro-
nization. We believe that this technique will improve the
speed-up of the parallel version, since we will be paralleliz-
ing not only the path plans for different goals, but also the
path plan layer for individual goals.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 10000 20000 30000 40000

N
um

be
 r

of
 f

ra
m

es
 p

er
 s

ec
on

d

Number of agents in the crowd

Figure 6. Plot of frame-rate against the crowd
size

3Consequently, the Value Iteration algorithm is no more expensive than
Floyd-Warshall algorithm on average maps, i.e., unless the maps are un-
usual involving O(m2) (or worse) path lengths among various locations.

6 Evaluation

In order to establish the scalability of this approach, we
have run experiments on a fixed grid of size 724 × 724,
populated with varying number of agents. In each case, the
area to be populated was chosen on the same map, and the
density of the crowd was kept roughly fixed to isolate the
effect of separation dynamics on the relative frame-rates.
The resulting number of agents are seldom round figures.
Figure 6 shows the frame-rates as a function of the sizes of
the crowd, run on an HP Pavilion 1.6 Ghz laptop with 2GB
RAM, running XP.

The frame-rates in Figure 6 are without the graphic ren-
dering, i.e., these figures show the number of times the
position update loop completes per second, for the given
number of agents, in the domain of Figure 2. Each crowd-
size was used in 10 independent experiments and the aver-
ages are reported. The standard errors are low in all cases.
Since rendering cuts the frame-rate to roughly half, and 7
frames/sec is an acceptable cutoff for real-time visualiza-
tion, the Figure 6 only shows frame-rates that are at least
14 frames/sec. This means the said machine can handle
crowd-sizes upto roughly 40,000 agents, producing real-
time movements. With more sophisticated hardware, it is
possible to support much larger crowd-sizes in our frame-
work.

7 Related work

In order to face the complex challenges that crowd sim-
ulation poses, primarily three approaches4 have been tra-
ditionally used. One approach assumes that the individu-
als are passive entities that drift in the presence of forces –
the so-called “social forces” model [5] and the associated
variants of gaskinetic model proposed by Helbing. This
model has been extended to include further individual-level
details such as familial ties and altruism [2]. The idea of so-
cial forces is similar to our use of various layers imposing
“forces” and the compund forces guiding each agent. But
our approach is distinctly different from ODE based meth-
ods, is discrete, and relies on the simplicity of the process
of composing forces in a distributed fashion.

The other approach is an agent-based model where in-
dividuals are modeled as intelligent agents with (limited)
perception and decision-making capabilities. Some of the
earliest applications of simple agent-based behaviors were
seen in Reynolds’ flocking model – the “boids” [9]. In this
and related works, each agent is endowed with a mix of sim-
ple steering behaviors, that produce complex macroscopic
(group-level) behaviors as emergent phenomena. The basic

4We do not discuss user-guided or scripted crowd behaviors since we
are interested in autonomous crowd movement

idea of emergent behaviors has been extended to rule-based
systems [15, 8] that offer the added advantages of efficiency
and variety in behaviors. Although our approach is also
agent based, we prefer a thin client where the intelligence
emerges from the interaction of the agents with their envi-
ronment. We do observe emergent group behavior that are
realistic, similar to other agent-based approaches, but our
approach is scalable with the number of agents, in contrast
to most other agent-based systems.

With respect to integrating agents within a distributed
simulation, some work has been done on Multi-Agent Sys-
tems (MAS) using the High Level Architecture (HLA) [16].
As for layered approaches, a layering of the social interac-
tion on environmental simulation was proposed to model
interaction between humans and natural environments [13].
The problem of congestion has also been addressed with re-
spect to amusement parks by using “social coordination” to
reduce the time wasted in congestion [7]. The issue of time
management in MAS was discussed to alleviate some the
problems that exist in the simulation by providing “Seman-
tic Duration Models” to help developers [6].

Cellular automata [3, 1] underlie the third major ap-
proach, with recent improvements [4] for pedestrian room
evacuation, similar to our evaluation domain. In contrast
to this approach, our method does not require the user to
identify “exits”, and involves a much simpler agent model,
leading to computational efficiency.

8 Summary

We have presented an extension of the layered intelli-
gence technique that is popular in the game industry, for
scalable crowd simulation. We have shown how several
navigation behaviors can be implemented efficiently in this
framework. The chief advantage of this framework is ex-
tendability, where new behaviors can be added by adding
separate layers, without affecting the existing layers. We
have empirically shown the frame-rates to be sufficient to
handle large crowds in real-time. We have identified sev-
eral aspects where this simulation system can be improved.
Besides, in the future, we will also extend this framework to
automatically select the maximal set of behaviors that can
be handled at a minimal frame-rate, based on an assessment
of the available computational resources.

9 Acknowledgement

We would like to thank the anonymous reviewers for
helpful comments. This work was supported in part by
startup grants from the University of Southern Mississippi.

References

[1] S. Bandini, M. L. Federici, S. Manzoni, and G. Vizzari.
Parallel Computing Technologies, chapter Pedestrian and
Crowd Dynamics Simulation: Testing SCA on Paradigmatic
Cases of Emerging Coordination in Negative Interaction
Conditions, pages 360–369. Springer, 2007.

[2] A. Braun, S. R. Musse, L. P. L. de Oliveira, and B. E. J.
Bodmann. Modeling individual behaviors in crowd simula-
tion. In Proceedings of the 16th International Conference
on Computer Animation and Social Agents (CASA, pages
143–148, Los Alamitos, CA, USA, 2003. IEEE Computer
Society.

[3] M. Fukui and Y. Ishibashi. self-organized phase transitions
in CA-models for pedestrians. J. Phys. Soc. Japan, pages
2861–2863, 1999.

[4] B. Gudowski and J. Was. Some criteria of making decisions
in pedestrian evacuation algorithms. In Proc. 6th Interna-
tional Conference on Computer Information Systems and In-
dustrial Management Applications (CISIM’07). IEEE, 2007.

[5] D. Helbing and P. Molnar. Social force model for pedestrian
dynamics. Physical Review E, 51:42–82, 1995.

[6] A. Helleboogh, T. Holvoet, D. Weyns, and Y. Berbers. Ex-
tending time management support for multi-agent systems.
In P. Davidsson and et. al., editors, MABS 2004, LNAI 3415,
pages 37–48, 2005.

[7] K. Miyashita. Asap: Agent-based simulator for amusement
park - toward eluding social congestions through ubiquitous
scheduling. In P. Davidsson and et. al., editors, MABS 2004,
LNAI 3415, pages 195–209, 2005.

[8] X. Pan, C. Han, K. Dauber, and K. Law. A multi-agent based
framework for simulating human and social behaviors dur-
ing emergency evacuations. In Social Intelligence Design,
Stanford University, March 2005.

[9] C. Reynolds. Flocks, herds and schools: A distrtibuted be-
havior model. In Proceedings of ACM SIGGRAPH, 1987.

[10] L. E. Sucar. Advances in Probabilistic Graphical Models,
volume 214, chapter Parallel Markov Decision Processes,
pages 295–309. Springer, 2007.

[11] M. Sung, M. Gleicher, and S. Chenney. Scalable behaviors
for crowd simulation. Comput. Graph. Forum, 23(3):519–
528, 2004.

[12] R. Sutton and A. G. Barto. Reinforcement Learning: An
Introduction. MIT Press, 1998.

[13] D. Torii, T. Ishida, S. Bonneaud, and A. Drogoul. Layering
social interaction scenarios on environmental simulations.
In P. Davidsson and et. al., editors, MABS 2004, LNAI 3415,
pages 78–88, 2005.

[14] P. Tozour. AI Game Programming Wisdom, volume 2, chap-
ter Using Spatial Database for Runtime Spatial Analysis,
pages 381–390. Charles River Media, 2004.

[15] B. Ulicny and D. Thalmann. Towards interactive real-time
crowd behavior simulation. Computer Graphics Forum,
21(4), 2002.

[16] F. Wang, S. J. Turner, and L. Wang. Agent communication in
distributed simulations. In P. Davidsson and et. al., editors,
MABS 2004, LNAI 3415, pages 11–24, 2005.

