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Abstract. The goal of a rational agent is to maximize utility. We con-
sider situations where a rational agent has to choose one of several con-
tenders to enter into a partnership. We assume that the agent has a
model of the likelihood of different outcomes and corresponding utilities
for each such partnership. Given a fixed, finite number of interactions,
the problem is to choose a particular partner to interact with where the
goal is to maximize the sum of utilities received from all the interactions.
We develop a multinomial distribution based mechanism for partner se-
lection and contrast its performance with other well-known approaches
which provide exact solution to this problem for infinite interactions.

1 Introduction

In an open environment, agents have to be extremely cautious about which other
agents to interact or partner with. The goal of a self-interested agent would be
to interact with or enter into partnership with those agents that will produce
maximal local utility for this agent [Tes98]. Obviously, such an agent will also
have to achieve its local goals effectively to maximize its utility. For discussions
in this paper, however, we will concentrate exclusively on utilities received by
interacting with other agents.

We assume that each agent interaction will ultimately generate some utility
for each of the interacting agents. From a single agent X’s point of view, interac-
tion with a collection of agents can be thought of as entering a partnership (also
called coalitions in game theory). We are only interested in the utility received
by the agent X by interacting with a coalition. We will not concern ourselves
with issues of how the coalition generates the revenue and the process by which
the generated revenue is distributed among the partners.

We assume that an agent can get one of several payoffs or utilities for joining
a particular coalition, and that there is a static probability distribution that
governs which of the payoffs is received at any particular interaction. Qur usage of
the term “interaction” needs further clarification: by one interaction of an agent
X with a coalition Y we refer to the entire process of X joining the coalition, the
coalition generating some revenue R, and X receiving some share of that revenue
r}; which, as mentioned above, is determined by a probability distribution. This
probability distribution of different utilities that X can receive from coalition Y



will be referred to as the payoff-structure of Y from X'’s viewpoint, PY . In a later
section, we will discuss a representative scenario that justifies our assumptions.

Some combination of a priori domain models, observation or experience-
based learning schemes as well as word-of-mouth transmissions can be used to
arrive at these payoff-structures. In this paper, however, we will not address
the issue of how these payoff-structures are generated. Rather, we will focus on
how to select a coalition given the payoff-structures for each of the coalitions
an agent can interact with. More precisely, we will consider choosing a single
coalition to interact with repeatedly when the total number of interactions are
known ahead of time. We believe, and our theoretical as well as experimental
results will show, that the particular coalition chosen should vary depending on
the set of payoff- structures for all the coalitions under consideration, and the
total number of interactions. Our goal in this paper is to design such a coalition
or partner selection mechanism that identifies the most beneficial partnership
given a finite number of interactions that the selecting agent is going to partake
in.

A sample problem: Consider a situation where an agent has to select between two
partners for the next n interactions. An interaction with one of these partners,
say A, yields returns of 10 and 20 units with probabilities 0.7 and 0.3 respectively.
On the other hand, each interaction with the other partner, B, yields payoffs of
1000 and 4 units with probabilities 0.01 and 0.99. The expected utility from B
is greater than that from A but if the agent takes into consideration the finite
number of interactions, n, that it intends then A may be more attractive than
B, since it returns higher rewards in both cases than the one that B returns
almost certainly. Our contention is that to make such decisions, an agent must
take into account the number of intended interactions, and when that is done the
consequent decision may (depending on the payoff-structure as in this example)
be quite unlike what risk-aversion dictates.

2 Coalition Formation

There has been a significant amount of work in game theory and multiagent
systems field in the area of coalition formation. Representative work include:

Searching for optimal coalition structure: How should a group of agents
be partitioned into subgroups or coalitions such that the sum of the revenue
generated by all such coalitions is maximized [SLAT99]?

Decision mechanisms for forming coalitions: How should agents decide on
which coalition to join [Ket94,SL97,SK95,5K96,ZR94]?

Payoff division in a coalition: How should the revenue generated in a coali-
tion be divided among the partners [Ket94,LR57]?

Almost all of this body of research ignores, as we do, the issue of how the
coalitions generate their revenues or the nature of problem solving adopted by
individual agents after they form a coalition.



We address a slightly different problem of coalition selection under uncer-
tainty. Perhaps Ketchpel’s work [Ket94] is most related. That work addresses a
process for negotiating who becomes the leader versus the member in a group
based on how much one is willing to pay others to join a group. We, on the other
hand, do not concern ourselves with our agent X building a coalition. Rather,
X is selecting which coalition to join given only summary information of what
payoff it can expect from that coalition. The payoff-structure encoding in the
form of a probability distribution over possible payoffs for joining a coalition is
the summary information on which X must base its decision. Another important
distinction and the key focus of this work is the prior determination of how many
interactions an agent is going to have.

Our basic hypothesis is that the most beneficial partnership to interact with
can change based on how many interactions we will have. For example, consider a
simple scenario of choosing from the two following partnerships. One partnership
always give a steady return whereas the other offers a small return most of
the times and very infrequently returns an astronomical amount. If one is only
going to interact for a few times, it might be prudent to interact with the first
partnership, but if one is going to have a prolonged sequence of interactions,
perhaps it is worthwhile to choose the second partnership expecting that the
“jackpot” is more likely to be hit at least once and will more than compensate
for the smaller returns in the other interactions. Our goal is to go beyond this
informal heuristic and provide a formal and well-founded decision procedure
based on probability theory for this partnership selection problem.

3 Payoff-structures of partnerships

We now present a formal representation for payoff-structure of a partnership or
coalition for an agent X outside the coalition. It can be represented as an n-
tuple - {(u1,p1)(u2,p2) ... (un, pn)} where p; stands for the probability that the
interaction with this partnership will yield a payoff u;, Vi=1...n. X will have
such a tuple for each of the other partnerships it can interact with. We note that
n is not a constant but varies from one partnership to another, i.e., the number
of possible payoffs depends on the particular partnership X is interacting with.

4 Selecting the potentially most beneficial partnership
for limited interactions

We are interested in devising a procedure that, given a pool of possible part-
nerships and the number of interactions (N) that the agent wants to make, will
select a partnership that is most likely to return a maximum total utility over
these N interactions. To this end, we make pairwise comparisons among the
partnerships and select the most profitable one. Let pﬁ}f be the probability that
partnership i returns greater utility than j. If p?jf > p% then we regard partner-
ship 7 to be more beneficial than partnership j. Hence, we define the objective



function for selection between agents ¢ and j, as

S(i,j) = {’ if iy > o3

J otherwise
We note here, that S(i,j) is not transitive ( i.e. if S(i,j) = i and S(j, k) = j
does not imply that S(i, k) = ¢). We will illustrate this non-transitivity with an
example scenario in a later section.

Our proposed decision mechanism first finds S(i,j) values for all possible
partnership pairs (i,7), and chooses the partnership that is returned for the
maximum number of times (i.e. the partnership with the maximum number of
wins against other partnerships). This mechanism trivially selects a partner-
ship if it wins against all other partnerships. If there is a tie among a subset
of these partnerships then we can use arbitration mechanism from the voting
theory [Str80], with pf\; as a relative measure of mandate between i and j, for
each pair (7,7) in that subset. For example, assume that there is a tie among
partnerships i, j, and k. Then the arbitration mechanism gives pﬁ\jf +p% votes to
partnership 1, p% +p§\,’C votes to partnership j, and pkNi +pkNj votes to partnership
k. If there is still a tie, we choose one of these partnerships randomly.

Let the payoff-structures of partnerships ¢ and j be given by sequences
{(ut,pi)} and {(uj,p;)}, and their lengths be n; and n; respectively. We can
divide N into n parts, where each part is 0 or a positive integer. The kth part in
such a division represent the number of times the kth utility value was returned
when interacting with a given partnership. Let any such decomposition be rep-
resented as CN. There are (N; n;l
regard such a decomposition of N interactions as actually arising in exchanges
with partnership ¢, then the utility received as a result, is given by

) such distinct decompositions. If we

cy < N i
Uu," = Zcm(k) * U,
k=1

where C’flv(k) is the kth component of C,]lv Then the value of pf\; is computed
according to the rule for conditional probability, as

N
pY =3 PrlCN] Pr[Uf " > U0
cn
CN
where Pr[U; "* > U;|CX] (i.e. the probability that i returns greater net-utility,
given a particular decomposition of its IV interactions into n; parts), is, in turn,
computed as

CN
Pr[U, ™

(3

> U, |CN] = PrlcY]ney.cl)
CN

with h(CY, C’TZX) being a boolean function to decide whether or not ¢ returns



greater utility, given a pair of decompositions of N interactions into n; and n;
parts respectively, and it is defined as

cN cy

: g i)

h( 711\1707]1\2): 11fUl .>Uj
0 otherwise.

Now, suppose Cé\i = (x1,%9,T3 ... Tp,) With 1 + @9 + x5 + ... 2y, = N. Then

we compute Pr[C}] as

Nt I\T1 ()0 \ T2 i \Zn;
m(m) (p2)** - (Ph,)

i

Pr[C)] =

from the multinomial distribution. It can be shown that the computational
complexity of this scheme for selecting a partner from among A subjects, is
O(A’N?") where n = Max;{n;}. We also note that in general, pjy + pj <1 as

N N

c c,.
there may be some CJ, Cévj for which U; " =U; ™.

An example evaluation: Suppose the payoff-structures of three partnerships i, j
and k are {(1, 0.4) (10, 0.6)}, {(5, 0.5) (5, 0.5)}, and {(11, 0.4) (3, 0.6)}. Here
n; = n; = ny = 2. We choose N=1. For each partnership there are 2 de-
compositions of 1 trial into two parts, viz. (0,1) and (1,0). To compute pg,
we see that case (0,1) for i produces benefit = 10. This is greater than the
benefits for both cases of j ( benefit 5 from both (0,1) and (1,0)). Hence
h({0,1);,(0.1);) = h({0,1);.(1,0);,) = 1. Again for case (1,0) of partnership
1 the benefit is 1, which is lesser than that of j for both of its cases. That means,
h(<17 0>z ’ <0/ 1>]) = h(<17 0>z ’ <1/ 0>]) =0.

Hence
P =Pr[(0,1),] % {Pr[(0,1) ]+ 1+ Pr[(1,0)] + 1}

i 1 J J
+Pr[(1,0),] * {Pr[(0,1),;] 0 + Pr[(1,0),] x 0}

where subscript of any decomposition indicates the respective partnership with
which this case arises. Now,

1!

_ 0 1 _
1!
Pr[(1,0);] = 1'—0|(0.4)1 x(0.6)° = 0.4
It is also immediately seen that
1!
Pr[(0,1);] = W(0'5)0 x (0.5 =05
1!
Pr[(1,0);] = 1'—0,(0.5)1 (0.5 =0.5



Consequently, pf-}] = 0.6 % (0.54+0.5) + 0.4 x (0 + 0) = 0.6. Similarly, we can
compute p% =04, p% = 0.6, pkNj =04, p% = 0.36, p,ivi = 0.64. As a result,

S(i, §) =1,
S(.]7k) =7,
S(ik) = k.

As outlined earlier, at this situation (a non-transitive case) the arbitration by
voting comes into the picture, and ¢ gets 0.96 votes, 5 gets 1.0 votes, and k gets
1.04 votes. Consequently, k is chosen.

It is worthwhile to explore this example further so that we can appreciate the
notion that non-transitivity is the exception rather than the rule. For N = 2, we
have pf}’ = 0.84, p% = 0.16, pé\,i = (.36, p,]cvj = 0.64, piNk = (0.4752, p,ivi =
0.5248. Hence partnership k is the obvious preferred choice, and transitivity
holds. Again, for N = 3, the direct choice is i.

We have come up with this elaborate procedure after exploring various other
alternatives that were computationally simpler, but inadequate nevertheless. The
closest of these is an approximation for pf}’ for all pairs (i, 7), using Hoeffding
Inequality [Vid97]. This approximation is really a crude one, and the problem
called for better bounds. The direct application of Chernoff’s Theorem [Bil86]
provides tighter bounds, but requires “large number of interactions” which de-
feats the very purpose of the problem. Lastly, the mechanism we have presented,
computes pf}’ accurately, using the rules for multinomial distribution of proba-
bility values, and conditional probability.

5 Comparative evaluation with a decision mechanism for
infinite interactions

To compare our decision mechanism with a standard reference we chose the Ez-
pected Utility Maximization Principle (MEU) [LR57]. The MEU principle pre-
scribes interacting with partnership ¢ given by

ng
o J oy
‘= arngPIE?fT(Lers et Uk * P
where Partners is the set of partners the agent can interact with.

This principle is guaranteed to maximize the total utility received by the
agent if the agent interacts infinitely often. In an open environment, agent re-
lationships are often ephemeral, and infinite interactions are impractical. The
obvious question is whether our strategy will be able to outperform a MEU
choice when the assumption of infinite interactions do not hold. In particular,
if we know that an agent is interested in a relationship for a finite, short pe-
riod, a partnership with smaller expected utility may return more net utility
than another partnership with smaller expected utility. It would be interesting
to evaluate if this conjecture is true and if so, for what range of interactions?



At this point we can also observe that the decision mechanism developed by
us have the following properties:

— The strategy reduces to the MEU strategy for infinite interactions.
— It is based solely on the payoff-structure of the partnerships and the number
of interactions to be performed.

6 Evaluation scenario

Decisions of this kind attain significant proportions in any domain where limited
application of acquired knowledge is required with a fair degree of confidence
in the outcomes. We can visualize a computational marketplace, where agents
distribute computational tasks among service-providers (in return of payoffs,
that may be determined by the time taken, quality of the service etc.), through
broker agents. Such a broker has estimates of the payoff-structures for various
service-providers, and is faced with the problem of choosing the potentially-most-
beneficial recipient (the benefit being the portion of the payoff of the recipient,
that the broker charges as the intermediary), for a set of tasks (the number of
such tasks can be a measure of N). The broker and the recipient thus enter a
partnership or collaboration which the broker offers to maintain for sufficient
tasks (or for a sufficient period) that he is confident enough, will produce the
desired payoff.

The procedure outlined in this paper enables the broker to objectively eval-
uate the potential of various prospective recipients, as an explicit function of
the intended number of interactions, and this is where the procedure gains its
capability to suggest an alternative to the MEU-choice.

7 Experimental results

For the purpose of experimentation, we have considered only two partnerships.
Of these, the payoff-structure of the MEU-partnership is M, and that of the
other partnership (non-MEU) is N M. We can imagine, there are other part-
nerships in the marketplace, and the agent’s choices may vary across several of
these partnerships. However, for the purpose of illustration of non-MEU choices
against a given MEU-partnership, only one non-MEU partnership is sufficient.
In the experiments, the payoff structure of the A’M partnership is {(2, 0.1)
(10, 0.3) (12, 0.6)} with an expected utility of 10.4, and we vary the payoff-
structure of the MEU-partnership, such that its maximum possible payoff de-
creases, keeping the expected utility fixed at 10.56. This means that according
to the MEU strategy it is preferable to choose the second partnership. Fig-
ures 1 and 2 shows the comparative performance of the Non-MEU and MEU
partnerships. For a given number of interactions, the actual payoff generation
is simulated, and the percentage of cases out of 1000 simulations, in which the
Non-MEU partnership yields greater payoff than the other is plotted in each
graph. The shaded regions in a plot refer to the values of IV for which, given the
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Fig. 1. Simulation of benefit from N M = {(2, 0.1) (10, 0.3) (12, 0.6)} against M =
{(8,0.97) (90, 0.02) (100, 0.01)}(left) and M = {(8, 0.96) (70, 0.025) (75, 0.015)} (right)



payoff-structure, the function .S selects the MEU-partnership. For all other val-
ues of NV (i.e. the unshaded zones), the choice is the Non-MEU partnership. The
values below the dotted-line signify cases where the MEU-partnership outper-
forms the other in actual simulation. The first 75 interactions have been plotted
in each case.

Figures 1 and 2 show close agreement between the procedural choice with
the results of the simulations. An interesting observation from these figures is
that the choice function S, contrary to intuition, changes its output more than
once. The MEU-partnership appears in multiple distinct regions in the figures 1
and 2. Such change in choice depends on the probability distributions over
the utilities, the multinomial coefficients, and the decomposition-pattern of the
number of interactions. We did not find any regular pattern in these variations
to summarize the choice with a simple heuristic. The summary description we
can provide is that the “bands of dominance” of the MEU strategy increases in
width with more interactions until after a relatively large number of interactions
it becomes totally dominant. The last observation is consistent with the fact that
for large interactions, the MEU strategy is accurate and sufficient to identify
the most desirable partnership. We also note that the sample payoff-structures
assumed in the experiments are representative of the type of payoff-structures
where the efficacy of our procedure is clearly demonstrable. In other types of
payoff-structures the results of our procedure cannot be any worse than the
MEU-strategy.

It can be observed that as the highest payoff from the MEU partnership
increases (and the corresponding probability of receiving that payoff is decreased
to keep the expected utility constant), it takes more interactions before the first
onset of dominance of the MEU partnership. This can be explained by the fact
that if the expected utility of a partnership is based largely on the superlative
payoff from an infrequent event (the jackpot in our earlier example), it would
take more interactions to benefit from the occurrence of that infrequent event.
For a more limited number of interactions, it is advisable to choose a partnership
that returns a consistently high payoff even though its expected utility is less.

Another interesting observation from figure 2(right) is the unusually frequent
variation of the procedural-choice in a short range of N. Because the difference
in the expected utilities of M and N M is already low, the lowering of the
highest utility in M reduces the structural difference between M and N M. As
a result, the choice becomes highly sensitive to /V. This sensitivity, in particular,
is beyond the scope of MEU-strategy.

8 Conclusion

In this paper, we have considered the problem of an agent deciding on which
partnership to interact with given the number of interactions and a model of the
environment in the form of payoff structures of each of these partnerships. We
have developed a probability-theory based procedure for making the selection
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and compared its performance with the well known MEU principle which solves
this problem exactly when the number of interactions is infinite.

The agreement between the performance predicted by our selection proce-
dure and the simulated values show that the procedure is well adapted for the
sensitive differences between the payoff-structures of two coalitions. This proce-
dure effectively captures a broad range of these subtleties and hence, is a more
fine-grained measure of the relative efficacy of coalitions, than the MEU-strategy.

A related and practically important problem is to devise a strategy for inter-
action where the payoff-structure for coalitions is incompletely known. It would
be instructive to compare the performance of Bayesian update schemes versus
model-free reinforcement learning methods on these problems [Mit97]. This, ad-
mittedly more complex, problem is akin to the multi-arm bandit problem [SU95].
A critical issue in this problem is that since learning is on-line, the approxima-
tion of the payoff structure from limited sampling has to be accurate to take
advantage of any non-MEU strategies. Off-line learning of the payoff structure
of partnerships by observing them interacting with other agents can also provide
approximate models. In the latter cases, the present work can be readily used.
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