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ABSTRACT

Inverse reinforcement learning (IRL) is the problem of learning
the preferences of an agent from observing its behavior on a task.
While this problem is witnessing sustained attention, the related
problem of online IRL – where the observations are incrementally
accrued, yet the real-time demands of the application often prohibit
a full rerun of an IRL method – has received much less attention.
We introduce a formal framework for online IRL, called incremental
IRL (I2RL), and a new method that advances maximum entropy
IRL with hidden variables, to this setting. Our analysis shows that
the new method has a monotonically improving performance with
more demonstration data, as well as probabilistically bounded error,
both under full and partial observability. Experiments in a simulated
robotic application, which involves learning under occlusion, show
the significantly improved performance of I2RL as compared to
both batch IRL and an online imitation learning method.
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1 INTRODUCTION

Inverse reinforcement learning (IRL) [13, 17] refers to the problem
of ascertaining an agent’s preferences from observations of its
behavior while executing a task. It inverts RL with its focus on
learning the reward function that explains the input behavior. IRL
lends itself naturally to learning from demonstrations in controlled
environments, and therefore finds application in robot learning
from demonstration by a human teacher [2], imitation learning [14],
and in ad hoc collaborations [19].

Previous methods for IRL [1, 3, 8, 9, 15] typically operate on
large batches of observations and yield an estimate of the expert’s
reward function in a one-shot manner. These methods fill the need
of applications that predominantly center on imitation learning.
Here, the task being performed is observed and must be replicated
subsequently. However, newer applications of IRL are motivating
the need for continuous learning from streaming data or data in
mini-batches. Consider, for example, the task of forecasting a per-
son’s goals in an everyday setting from observing her ongoing
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activities using a body camera [16]. Alternately, a robotic learner
observing continuous patrols from a vantage point is tasked with
penetrating the patrolling and reaching a goal location speedily and
without being spotted [4]. Both these applications offer streaming
observations, and would benefit from progressively learning and
assessing expert’s preferences.

In this paper, we present a formal framework to facilitate inves-
tigations into online IRL. The framework, labeled as incremental
IRL (I2RL), establishes the key components of this problem and
rigorously defines the notion of an incremental variant of IRL. Jin
et al. [12] and Rhinehart et al. [16] introduced IRL methods that
are suited for online IRL, and we cast these in the context provided
by I2RL. Next, we introduce a new method that generalizes recent
pragmatic advances in maximum entropy IRL with partially hid-
den demonstration data [7] to an online setting. Key theoretical
properties of this new method are also established.

Our experiments evaluate the benefit of online IRL on the previ-
ously introduced robotic application of IRL toward penetrating con-
tinuous patrols under occlusion [4]. We comprehensively demon-
strate that the new incremental method achieves a reasonably good
learning performance that is similar to that of the previously in-
troduced batch method in significantly less time. Thus, it suffers
from far fewer timeouts (a timeout occurs when learning and plan-
ning is not completed within an imposed time-limit) and admits a
significantly improved success rate. Given the partially occluded
trajectory data, our method also learned more accurately than a
leading online imitation learning method that uses generative ad-
versarial networks [11]. Consequently, this paper makes important
initial contributions toward the nascent problem of online IRL by
offering both a formal framework, I2RL, and a new general method
that has convergence guarantees and performs well.

2 BACKGROUND ON IRL

Informally, IRL refers to both the problem and method by which
an agent learns preferences of another agent that explain the lat-
ter’s observed behavior [17]. Usually considered an “expert” in
the task that it is performing, the observed agent, say E, is mod-
eled as executing the optimal policy of a standard MDP defined
as ⟨SE ,AE ,TE ,RE ⟩. The learning agent L is assumed to perfectly
know the parameters of the MDP except the reward function. Con-
sequently, the learner’s task may be viewed as finding a reward
function under which the expert’s observed behavior is optimal.

This problem, in general, is ill-posed because for any given be-
havior there are infinitely-many reward functions which align with
the behavior. Ng and Russell [13] first formalized this task as a
linear program in which the reward function that maximizes the
difference in value between the expert’s policy and the next best
policy is sought. Abbeel and Ng [1] present an algorithm that al-
lows the expert E to provide task demonstrations instead of its



policy. The reward function is modeled as a linear combination of
K binary features, ϕk : SE × AE → [0, 1] ,k ∈ {1, 2 . . .K}, each of
which maps a state from the set of states SE and an action from
the set of E’s actions AE to a value in [0,1]. Note that non-binary
feature functions can always be converted into binary feature func-
tions although there will be more of them. Throughout this ar-
ticle, we assume that these features are known to or selected by
the learner. The reward function for expert E is then defined as
RE (s,a) = θ

Tϕ(s,a) =
∑K
k=1 θk · ϕk (s,a), where θk are the weights

in vector θ ; let R = R |SE×AE | be the continuous space of the re-
ward functions. The learner’s task is reduced to finding a vector of
weights that complete the reward function, and subsequently, the
MDP such that the demonstrated behavior is optimal. Let N+ be a
bounded set of natural numbers.
Definition 1 (Set of fixed-length trajectories). The set of
all trajectories of finite length T from an MDP attributed to the ex-
pert E is defined as, XT = {X |X = (⟨s,a⟩1, ⟨s,a⟩2, . . . , ⟨s,a⟩T ),T ∈
N+},∀s ∈ SE ,∀a ∈ AE }.
Then, the set of all trajectories is X = X1 ∪ X2 ∪ . . . ∪ X |N

+ | . A
demonstration is some finite set of trajectories of varying lengths,
X = {XT |XT ∈ XT ,T ∈ N+}, and it includes the empty set. 1
Subsequently, we may define the set of demonstrations.
Definition 2 (Set of demonstrations). The set of demonstrations
is the set of all subsets of the space of trajectories of varying lengths.

Therefore, it is the power set, 2X = 2X
1∪X2∪...∪X|N

+ |
.

In the context of the definitions above, traditional IRL attributes
an MDP without the reward function to the expert, and usually
involves determining an estimate of the expert’s reward function,
R̂E ∈ R, which best explains the observed demonstration, X ∈ 2X.
As such, we may view IRL as a function: ζ (MDP/RE ,X) = R̂E .

To assist in finding the weights, feature expectations for the
expert’s demonstration are empirically estimated and compared to
those of all possible trajectories [22]. Feature expectations of the
expert are estimated as a discounted average over feature values for
all observed trajectories, ϕ̂k = 1

|X |
∑
X ∈X

∑
⟨s ,a ⟩t ∈X γ t ϕk (⟨s,a⟩t ),

whereX is a trajectory in the set of all observed trajectories,X, and
γ ∈ (0, 1) is a discount factor. After learning a set of reward weights,
expert’s MDP is completed and solved optimally to produce πE . The
difference ϕ̂ − ϕπE provides a gradient with respect to the reward
weights for a numerical solver.

2.1 Maximum Entropy IRL

While expected to be valid in some contexts, the max-margin ap-
proach of Abeel and Ng [1] introduces a bias into the learned re-
ward function in general. To address this, Ziebart et al. [22] find
the distribution with maximum entropy over all trajectories that
is constrained to match the observed feature expectations.

max
∆
(−

∑
X ∈X P(X ;θ ) loд P(X ;θ ))

subject to

∑
X ∈X P(X ;θ ) = 1

EX[ϕk ] = ϕ̂k ∀k

(1)

Here, ∆ is the space of all distributions over the space X of all tra-
jectories, and EX[ϕk ] =

∑
X ∈X P(X )

∑
⟨s ,a ⟩t ∈X γ tϕk (⟨s,a⟩t ). As

1Repeated trajectories in a demonstration can usually be excluded for many methods
without impacting the learning.

the distribution P(·) is parameterized by learned weights θ , EX[ϕk ]
represents the feature expectations ϕπEk . The benefit is that distri-
bution P(X ;θ ) makes no further assumptions beyond those which
are needed to match its constraints and is maximally noncommittal
to any one trajectory. As such, it is most generalizable by being the
least wrong most often of all alternative distributions. A disadvan-
tage is that it becomes intractable for long trajectories because the
set of trajectories grows exponentially with length. In this regard,
another formulation defines the maximum entropy distribution
over policies [8], the size of which is also large but fixed.

2.2 IRL under Occlusion

Our motivating application involves a subject robot that must ob-
serve other mobile robots from a fixed vantage point. Its local
sensors allow it a limited observation area; within this area, it can
observe the other robots fully, outside this area it cannot observe
at all. Previous methods [4, 5] denote this special case of partial
observability where certain states are either fully observable or
fully hidden as occlusion. Subsequently, the trajectories gathered by
the learner exhibit missing data associated with time steps where
the expert robot is in one of the occluded states. The empirical
feature expectation of the expert ϕ̂k will thus exclude the occluded
states (and actions in those states).

Bogert and Doshi [4], while maximizing entropy over policies [8],
limited the calculation of feature expectations for policies to observ-
able states only. To ensure that the feature expectation constraint in
IRL accounts for the missing data, a recent approach [6, 7] by same
authors improves on this method by taking an expectation over
the missing data conditioned on the observations. Completing the
missing data in this way allows the use of all states in the constraint
and with it the Lagrangian dual’s gradient as well. The nonlinear
program in (1) is modified to account for the hidden data and its
expectation.

Let Y be the observed portion of a trajectory, Z is one way of
completing the hidden portions of this trajectory, and X = Y ∪ Z .
Now we may treat Z as a latent variable and take the expectation
to arrive at a new definition for the expert’s feature expectations:

ϕ̂
Z |Y
θ ,k ,

1
|Y|

∑
Y ∈Y

∑
Z ∈Z

P(Z |Y ;θ )
∑T

t=1
γ tϕk (⟨s,a⟩t ) (2)

where ⟨s,a⟩t ∈ Y ∪ Z , Y is the set of all observed Y , Z is the set of
all possible hidden Z that can complete a trajectory. The program
in (1) is modified by replacing ϕ̂k with ϕ̂

Z |Y
θ ,k , as we show below.

Notice that in the case of no occlusion Z is empty and X = Y.
Therefore ϕ̂Z |Y

θ ,k = ϕ̂k and this method reduces to (1). Thus, this
method generalizes the previous maximum entropy IRL method.

max
∆
(−

∑
X ∈X P(X ;θ ) loд P(X ;θ ))

subject to

∑
X ∈X P(X ;θ ) = 1

EX[ϕk ] = ϕ̂
Z |Y
θ ,k ∀k

(3)

However, the program in (3) becomes nonconvex due to the pres-
ence of P(Z |Y ). As such, finding its optima by Lagrangian relaxation
is not trivial. Wang et al. [21] suggests a log linear approximation to
cast the problem of finding the parameters of distribution (reward
weights) as likelihood maximization that can be solved within the



schema of expectation-maximization [10]. An application of this ap-
proach to the problem of IRL under occlusion yields the following
two steps (with more details in [7]):
E-step This step involves calculating Eq. 2 to arrive at ϕ̂Z |Y ,(t )

θ ,k , a
conditional expectation of theK feature functions using the parame-
ter θ (t ) from the previous iteration. We may initialize the parameter
vector randomly.
M-step In this step, the modified program (3) is optimized by utiliz-
ing ϕ̂Z |Y ,(t )

θ ,k from the E-step above as the expert’s constant feature
expectations to obtain θ (t+1). Normalized exponentiated gradient
descent [18] solves the program.

As EM may converge to local minima, this process is repeated
with random initial θ and the solution with the maximum entropy
is chosen as the final one.

3 INCREMENTAL IRL (I2RL)
We present our framework labeled I2RL in order to realize IRL in
an online setting. In addition to presenting previous techniques
for online IRL, we introduce a new method that generalizes the
maximum entropy IRL under occlusion.

3.1 Framework

To establish the definition of I2RL, we must first define a session of
I2RL. Let R̂0E be an initial estimate of the expert’s reward function.
Definition 3 (Session). A session ζi (MDP/RE ,Xi , R̂

i−1
E ), i > 0

of I2RL takes as input the expert’s MDP sans the reward function,
the current (i th) demonstration, Xi ∈ 2X, and the reward function
estimated previously. It yields a revised estimate of the expert’s reward
function, R̂iE .

Note that we may replace the reward function estimates with
some parameter sufficiently representing it (e.g.,θ ). Also, for expedi-
ence in formal analysis, we assume that the trajectories in a session
Xi are i.i.d. from the trajectories in previous session. 2 As the tra-
jectories in Xi are i.i.d., the demonstrations {Xi , i ∈ {1, 2, . . .} are
also i.i.d.

We may let the sessions run indefinitely. Alternately, we may
establish some stopping criteria for I2RL, which would allow it to
automatically terminate the sessions once the criterion is satisfied.
Let LL(R̂iE |X1:i ) be the log likelihood of the demonstrations received
up to the ith session given the current estimate of the expert’s
reward function. We may view this likelihood as a measure of how
well the learned reward function explains the observed data. In
the context of I2RL, the log likelihood must be computed without
storing data from previous sessions. Here onwards, X̂ denotes a
sufficient statistic that replaces all input trajectories from previous
sessions in the computation of log likelihood.
Definition 4 (Stopping criterion #1). Terminate the sessions of
I2RL when |LL(R̂iE |Xi , X̂) − LL(R̂i−1E |Xi−1, X̂

′)| 6 ϵ , where ϵ is a
very small positive number.

Definition 4 reflects the fact that additional sessions are not
improving the learning performance significantly. On the other

2The assumption holds when each session starts from the same state. In case of
occlusion, even though inferring the hidden portion Z of a trajectory X ∈ Xi , is
influenced by the visible portion, Y , this does not make the trajectories necessarily
dependent on each other.

hand, a more effective stopping criterion is possible if we know the
expert’s true policy. We utilize the inverse learning error [9] in this
criterion, which gives the loss of value if learner uses the learned
policy on the task instead of the expert’s: ILE(π∗E , πE ) = | |V

π ∗E −

V πE | |1. Here, V π ∗E is the optimal value function of E’s MDP and
V πE is the value function due to utilizing the learned policy πE in
E’s MDP. Notice that when the learned reward function results in an
optimal policy identical to E’s true policy, π∗E = πE , ILE will be zero;
it increases monotonically as the two policies increasingly diverge
in value. Instead of using an absolute difference, our experiments

use a normalized difference, ILE(π∗E , πE ) =
| |V π ∗E −V πE | |1

| |V π ∗E | |1
. Let π iE

be the optimal policy obtained from solving the expert’s MDP with
the reward function R̂iE learned in session i (for simpler notation,
superscript L is dropped).
Definition 5 (Stopping criterion #2). Terminate the sessions of
I2RL when ILE(π∗E , π

i−1
E ) − ILE(π

∗
E , π

i
E ) 6 ϵ , where ϵ is a very small

positive error and is given.
Obviously, prior knowledge of the expert’s policy is not common.

Therefore, we view this criterion as being more useful during the
formative assessments of I2RL methods. Utilizing Defs. 3, 4, and 5,
we formally define I2RL next.
Definition 6 (I2RL). Incremental IRL is a sequence of learning ses-
sions {ζ1(MDP/RE ,X1, R̂0E ), ζ2(MDP/RE ,X2, R̂1E ), ζ3 (MDP/RE ,X3,

R̂2E ), . . . , }, which continue infinitely, or until a stopping criterion
assessing convergence is met (criterion #1 or #2 depending on which
one is chosen a’priori).

While somewhat straightforward, these rigorous definitions for
I2RL allow us to situate the few existing online IRL techniques, and
to introduce online IRL with hidden variables, as we see next.

3.2 Methods

One of our contributions is to facilitate a portfolio of online meth-
ods each with its own appealing properties under the framework
of I2RL. This will enable online IRL in various applications. An
early method for online IRL [12] modifies Ng and Russell’s linear
program [13] to take as input a single trajectory (instead of a policy)
and replaces the linear program with an incremental update of the
reward function. We may easily present this method within the
framework of I2RL. A session of this method ζi (MDP/RE ,Xi , R̂

i−1
E )

is realized as follows: Each Xi is a single state-action pair ⟨s,a⟩ and
initial reward function R̂0E =

1√
|SE |

. For i > 0, R̂iE = R̂i−1E + α · vi ,

where vi is the difference in expected value of the observed action
a at state s and the (predicted) optimal action obtained by solving
the MDP with the reward function R̂i−1E , and α is the learning rate.
While no explicit stopping criterion is specified, the incremental
method terminates when it runs out of observed state-action pairs.
Jin et al. [12] provide the algorithm for this method as well as error
bounds.

A recent method by Rhinehart et al. [16] performs online IRL for
activity forecasting. Casting this method to the framework of I2RL,
a session of this method is ζi (MDP/RE ,Xi ,θ

i−1), which yields θ i .
Input demonstration for the session, Xi , comprises all the activity
trajectories observed since the end of previous goal until the next
goal is reached. The session IRL finds the reward weights θ i that



minimize the margin ϕπ
∗
E − ϕ̂ using gradient descent. Here, the

expert’s policy π∗E is obtained by using soft value iteration for
solving the complete MDP that includes a reward function estimate
obtained using previous weights θ i−1. No stopping criterion is
utilized for the online learning, thereby emphasizing its continuity.

3.2.1 Incremental Latent MaxEnt. We present a new method for
online IRL under the I2RL framework, which modifies the latent
maximum entropy (LME) optimization reviewed in the Background
section. It offers the capability to perform online IRL in contexts
where portions of the observed trajectory may be occluded.

For differentiation, we refer to the original method as the batch
version. Recall the kth feature expectation of the expert computed
in Eq. 2 as part of the E-step. ϕ̂Z |Y ,i

θ i ,k is the expectation of kth feature

for the demonstration obtained in ith session, ϕ̂Z |Y ,1:i
θ i ,k is the expec-

tation computed for all demonstrations obtained till ith session, we
may rewrite Eq. 2 for feature k as:

ϕ̂Z |Y ,1:i
θ i ,k

,
1
|Y1:i |

∑
Y ∈Y1:i

∑
Z ∈Z

P (Z |Y ;θ )
T∑
t=1

γ tϕk (⟨s , a ⟩t )

=
1
|Y1:i |

( ∑
Y ∈Y1:i−1

∑
Z ∈Z

P (Z |Y ;θ )
T∑
t=1

γ tϕk (⟨s , a ⟩t )+

∑
Y ∈Yi

∑
Z ∈Z

P (Z |Y ;θ i )
T∑
t=1

γ tϕk (⟨s , a ⟩t )
)

=
1

|Y1:i−1 | + |Yi |

(
|Y1:i−1 | ϕ̂

Z |Y ,1:i−1
θ i−1 ,k

+ |Yi | ϕ̂
Z |Y ,i
θ i ,k

)
(Using Eq. 2 and |Y1:i | = |Y1:i−1 | + |Yi |) (4)

A session of incremental LME takes as input the expert’s MDP
sans the reward function, the current session’s trajectories, the
number of trajectories observed until previous session, the expert’s
empirical feature expectation and reward weights from previous
session. More concisely, each session is denoted by, ζi (MDP/RE ,

Yi , |Y1:i−1 |, ϕ̂
Z |Y ,1:i−1
θ i−1

,θ i−1). The sufficient statistic X̂ for the ses-

sion comprises (|Y1:i−1 |, ϕ̂
Z |Y ,1:i−1
θ i−1

). In each session, the feature
expectations using that session’s observed trajectories are com-
puted, and the output feature expectations are obtained by includ-
ing these as shown above in Eq. 4; the latter is used in the M-step.
The equation shows how computing sufficient statistic replaces the
need for storing the data input in previous sessions. Of course, each
session may involve several iterations of the E- and M-steps until
the converged reward weights θ i are obtained thereby giving the
corresponding reward function estimate. We refer to this method
as LME I2RL.

Wang et al. [20] shows that if the distribution over the trajecto-
ries in (3) is log linear, then the reward function that maximizes the
entropy of the trajectory distribution also maximizes the log likeli-
hood of the observed portions of the trajectories. Given this linkage
with log likelihood, the stopping criterion #1 as given in Def. 4 can
be utilized. As shown in Algorithm 1, the sessions will terminate
when, |LL(θ i |Yi , |Y1:i−1 |, ϕ̂

Z |Y ,1:i−1
θ i−1

,θ i−1)−LL(θ i−1 |Yi−1, |Y1:i−2 |,

ϕ̂
Z |Y ,1:i−2
θ i−2

,θ i−2)| ≤ ϵ , where θ i fully parameterizes the reward

function estimate for the ith session and ϵ is a given acceptable
difference.

Algorithm 1 Algorithm INCREMENTAL-LME(MDP/RE ,ϕ)

i ← 1; Y1:i−1 ← ∅

ϕ̂
Z |Y ,1:i−1
θ i−1,k ← 0; [θ0]k ∼ uniform(0, 1)

while |LL(Yi , |Yi−1 |, ϕ̂
Z |Y ,1:i−1
θ i−1

,θ i ) − LL(Yi−1, |Yi−2 |,

ϕ̂
Z |Y ,1:i−2
θ i−2

,θ i−1)| ≤ ε do

/* session ζi (M/RE ,Yi , |Y1:i−1 |, ϕ̂
Z |Y ,1:i−1
θ i−1

,θ i−1) */
repeat

/* E-step */

Use MCMC to sample trajectories from P((Y ,Z )|θ i−1), and
compute ϕ̂Z |Y ,i

θ i
for sampled trajectories.

/* Updating feature expectations using

sufficient statistic. */

Use Equation 4 to compute ϕ̂Z |Y ,1:i
θ i ,k for all k .

|Y1:i | ← |Y1:i−1 | + |Yi |

/* M-step */

θ0 ← θ i−1, t ← 1
repeat

Compute π∗E ,(t−1) using θ(t−1) and EX[ϕk ] using trajec-
tories sampled from π∗E ,(t−1).

z(t−1) ← ϕ̂
Z |Y ,1:i
θ i

− EX[ϕ] {gradient}

θt ,k ←
θ(t−1),k exp(−ηz(t−1),k )∑k
i=1 θ(t−1),k exp(−ηz(t−1),k )

t ← t + 1
until |θt | ≈ |θt−1 |

until gradient of likelihood ≈ 0
Compute π̂i using learned reward θ i ← θt .
i ← i + 1

3.3 Convergence Bounds

LME I2RL admits some significant convergence guarantees with
a confidence of meeting the specified error on the demonstration
likelihood.We defer the proofs of these results to the supplementary
file available at https://tinyurl.com/yyywmx9x. To establish the
guarantees of LME I2RL, we first focus on the full observability
setting. For a desired bound ε on the log-likelihood loss (difference
in likelihood w.r.t. expert’s true θE and that w.r.t learned θ i ) for
session i , the confidence is bounded as follows:
Theorem 1 (Confidence for ME I2RL). Given X1:i as the (fully
observed) demonstration till session i , θE ∈ [0, 1]K is the expert’s
weights, and θ i is the converged weight vector for session i for ME
I2RL, we have,

LL(θE |X1:i ) − LL(θ
i |Xi , |Xi−1 |, ϕ̂

1:i−1,θ i−1) 6
2Kε
(1 − γ )

with probability atleastmax(0, 1−δ ), where δ = 2K exp(−2|X1:i |ε2).
Note that sufficient statistic X̂ for full-observability scenario is

(|Xi−1 |, ϕ̂1:i−1). Theorem 1 holds for the online method by Rhine-
hart et al. [16] because it uses incremental (full-observability) maxi-
mum entropy IRL. As the latter implements online learning without

https://tinyurl.com/yyywmx9x


an incremental update of feature expectations of the expert, thus
set ϕ̂1:i = ϕ̂i , an absence of sufficient statistic, set |Xi−1 | = 0, and
set ϕ̂1:i−1k = 0,∀k in Theorem 1. This demonstrates the benefit of
Theorem 1 to relevant methods.

Relaxing the full observability assumption, the following lemma
proves that LME I2RL converges monotonically.
Lemma 1 (Monotonicity). LME I2RL increases the demonstration
likelihood monotonically with each new session, LL(θ i |Yi , |Y1:i−1 |,

ϕ̂
Z |Y ,1:i−1
θ i−1

,θ i−1) − LL(θ i−1 |Yi−1, |Y1:i−2 |, ϕ̂
Z |Y ,1:i−2
θ i−2

, θ i−2) > 0,
when |Y1:i−1 | ≫ |Yi |.

While Lemma 1 suggests that the log likelihood of the demon-
stration can only improve from session to session after learner has
accumulated a significant amount of observations, a stronger result
illuminates the confidence with which LME I2RL approaches, over a
sequence of sessions, the log likelihood of the expert’s true weights
θE . As a step toward such a result, we first consider the error in
approximating the feature expectations of the unobserved portions
of the data, accumulated from the first to the current session of
I2RL. Notice that ϕ̂Z |Y ,1:i

θ i ,k given by Eq. 4 is an approximation of the

full-observability expectation ϕ̂1:ik , computed by sampling the hid-
den Z from P(Z |Y ,θ i−1) [7]. The following lemma relates the error
due to this sampling-based approximation, i.e.,

���ϕ̂1:ik − ϕ̂Z |Y ,1:iθ i ,k

���, to
the difference between feature expectations for learned policy and
that estimated for the expert’s true policy.
Lemma 2 (Constraint Bounds for LME I2RL ). Suppose X1:i
has portions of trajectories in Z1:i = {Z |(Y ,Z ) ∈ X1:i } occluded
from the learner. Let εs be a bound on the error

��ϕ̂1:ik − ϕ̂Z |Y ,1:iθ i ,k

��
1,k ∈

{1, 2 . . .K} after ns samples for approximation. Then, with probabil-
ity at least max(0, 1 − (δ + δs )), the following holds:���EX[ϕk ] − ϕ̂Z |Y ,1:iθ i ,k

���
1
6 ε + εs ,k ∈ {1, 2 . . .K}

where ε, δ are as defined in Theorem 1, and δs = 2K exp( −2nsε2s ).
LME I2RL computes θ i by an optimization process using the

result ϕZ |Y ,i of E step (sampling of occluded data) of current ses-
sion along with other inputs (feature expectations and θ computed
from previous session) which, in turn, depend on sampling pro-
cess in previous sessions. Theorem 1 and Lemma 2 allows us to
probabilistically bound the error in log likelihood for LME I2RL:
Theorem 2 (Confidence for LME I2RL). Let Y1:i = {Y |(Y , Z ) ∈
X1:i } be the observed portions of the demonstration until session i .
ε and εs are inputs as defined in Lemma 2, and θ i is the solution of
session i for LME I2RL. Then

LL(θE |Y1:i ) − LL(θ
i |Yi , |Yi−1 |, ϕ̂

Z |Y ,1:i−1
θ i−1

,θ i−1) ≤
4Kεl
(1 − γ )

with confidence at least max(0, 1 − δl ), where εl =
ε+εs
2 , and δl =

δ + δs .
Given ε, εs ,N and the total number of input partial -trajectories,

|Y1:i |, Theorem 2 gives the confidence 1 − δl for I2RL under occlu-
sion. Equivalently, |Y1:i | can be derived using desired error bounds
and confidence. As a boundary case of LME I2RL, if learner ignores
occluded data (no sampling or ns = 0 for E-step ), the confidence
for convergence becomes zero because δs becomes larger than 1.

4 EXPERIMENTS

We evaluate the benefit of online IRL on the perimeter patrol do-
main, introduced by Bogert and Doshi [4] for evaluating IRL, and
simulated in ROS Player Stage using data and files made publicly
available. It involves a robotic learner observing two patrollers con-
tinuously patrol a hallway as shown in Fig. 1 (left). The learner is
tasked with reaching the cell marked ’G’ (Fig. 1 right) without being
spotted by any of the patrollers. Each guard can see up to 3 grid
cells in front. This domain differs from the usual applications of IRL
toward imitation learning. In particular, the learner must solve its
own distinct decision-making problem (modeled as another MDP)
that is reliant on knowing how the guards patrol, which can be esti-
mated from inferring each guard’s preferences. The grid is broadly
divided into 5 regions and guardMDPs utilized two types of binary
state-action features: does the current action in the current state
make the guard change its grid cell?, is robot turning around in cell
(x,y) in a given region of grid? One movement based feature and
5 turning around features leads to a total of six. The true weight
vector θE for these features is ⟨.57, 0, 0, 0, .43, 0⟩. These weights
assign the highest preference to actions that constantly change the
grid cell, and the next preference to turning in smaller upper and
lower hallways (Fig. 1left), which leads to a reward function that
makes two guards move back and forth constantly.

Figure 1: The map and the corresponding MDP state space

for each patroller [4]. MDP has 3 dimensional state space

(x,y,orientation) with 124 states, and it has 4 actions (move-

forward, turn left, turn right, stop). The color-shaded re-

gions (long hallway, turning points and 3 small divisions

in small hallways on both sides) are the 5 regions defining

movement and turn-around features. S and G are start and

goal locations for the learner. Simulations were run on a

Ubuntu 14 LTS systemwith an Intel i5 2.8GHz CPU core and

8GB RAM. Learner is unaware of where each patroller turns

around or their navigation capabilities.

As the learner’s vantage point limits its observability, this domain
requires IRL under occlusion. To establish the benefit of I2RL, we
compare the performances of both batch and incremental variants
of LME method. These methods are applicable to both finite- and
infinite-horizon MDPs when we interpret horizon as the look ahead.

Theorem 2 allows us to derive an upper bound on the size of the
input needed across all sessions to meet the given log likelihood
error, which signals convergence. Table 1 (a) shows this relation
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(a) Learned behavior accuracy, ILE, and learning duration under a 30% degree of observability.
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(b) Learned behavior accuracy, ILE, and learning duration under a 70% degree of observability.
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(c) Success rates and timeouts under both 30%, 70%, and full observability. The success rate obtained by a random baseline is shown as well. Method
random-policy does not perform IRL and picks a random set of reward weights for computing expert’s policy. Rightmost chart shows the relative
difference computed as (LBA for full observability - LBA under occlusion)/(LBA for full observability) for both 30% and 70% observability.

Figure 2: Various metrics for comparing the performances of batch and incremental LME on Bogert and Doshi’s [4] perimeter

patrolling domain.

εl (ε, εs ) |Y1:i |

0.125 (0.2, 0.05) 60
0.075 (0.1, 0.05) 239
0.05 (0.05, 0.05) 957
0.045 (0.04, 0.05) 1496

(a)

max
|Y1:i | (0, 1 − δl )
115 0
135 0.19
200 0.78
375 0.99

(b)

Table 1: (a) Number of trajectories required for εl conver-

gence in the patrolling domain (K = 6,γ = 0.99) with con-

fidence 1 − δl = 1 − (δ + δs ) = 1 − (0.1 + 0.1) = 0.8. We use

εs = 0.05 for both 30% and 70% observability. (b) Confidence

of convergence increases with more trajectories (frommore

sessions) with εl = 0.075.

between the acceptable error εl , which is a function of ε and εs , and
the number of trajectories for 80% confidence. Furthermore, the
maximum number of MCMC samples required in each E-step are
N = − 1

2ε2s
ln δs

2K = 957. We pick εl = 0.075 for our experiments, and
Table 1(a) shows that at most 239 trajectories would be required.
Table 1(b) shows that, for chosen value of εl , the confidence of
convergence increases with more sessions.

Efficacy of the methods was compared using the following met-
rics: learned behavior accuracy (LBA), which is the proportion of
all states at which the actions prescribed by the inversely learned
policies of both patrollers coincide with their actual actions; ILE,
which was defined previously; and success rate, which is the per-
centage of runs where L reaches the goal state undetected. Note
that when the learned behavior accuracy is high, we expect the ILE
to be low. However, as MDPs admit multiple optimal policies, a low



ILE need not translate into a high behavior accuracy. As such, these
two metrics are not strictly correlated.

We report the LBA, ILE, and the computation time for learning
process (learning duration in seconds) of the inverse learning for
both batch and incremental LME in Figs. 2(a) and 2(b); the for-
mer under a 30% degree of observability and the latter under 70%.
For a fair comparison, we give exactly same data as input to both
methods. Each data point is averaged over 100 trials for a fixed
degree of observability and a fixed number of trajectories in the
demonstration X. While the entire demonstration is given as input
to the batch variant, the Xi for each session of I2RL has one tra-
jectory composed of 5 state-action pairs. As such, the incremental
learning stops when there are no more trajectories remaining to
be processed. To better understand any differentiations in perfor-
mance, we introduce a third variant that implements each session
as, ζi (MDP/RE ,Yi , |Yi :i−1 |, ϕ̂

Z |Y ,1:i−1
θ i

). Notice that this incremen-
tal variant does not utilize the previous session’s reward weights,
instead it initializes them randomly in each session; we label it as
LME I2RL with random weights.

We empirically verify that convergence is indeed achievedwithin
239 sessions (each having one trajectory). As the size of demonstra-
tion increases, both batch and incremental variants exhibit similar
quality of learning although initially the incremental performs
slightly worse. Importantly, LME I2RL achieves these learning accu-
racies in significantly less time compared to batch, with the speed
up ratio increasing to four as |X| grows. On the other hand, the
batch method generally fails to converge in the total time taken
by the incremental variant. Notice that a random initialization
of weights in each session, performed in LME I2RL with random
weights, leads to higher learning durations as we may expect. A
video of a simulation run of the multi-robot patrolling domain is
available at https://youtu.be/B3wA6z111ws.

Is there a benefit due to the reduced learning time? We show the
success rates of the learner when each of the three methods are
utilized for IRL in Fig. 2(c). LME I2RL begins to demonstrate com-
paratively better success rates under 30% observability itself, which
further improves when the observability is at 70%. While the batch
LME’s success rate does not exceed 40%, the incremental variant
succeeds in reaching the goal location undetected in about 65%
of the runs under full observability (the last data point). A deeper
analysis in order to understand these differences in success rates
between batch and incremental generalization of LME reveals that
batch LME suffers from a large percentage of timeouts – more than
50% for low observability, which drops down to 10% for full observ-
ability. A timeout occurs when IRL fails to converge to a reward
estimate in a reasonable amount of time for each run. We compute
the threshold for timeout as the total time taken for perception
of trajectories, learning, and two rounds of patrolling averaged
over many trials, which gives both Batch IRL and I2RL at least two
chances for penetrating the patrol. LME with low observability
requires more time due to the larger portion of the trajectory being
hidden, which requires sampling a larger trajectory for comput-
ing expectation. On the other hand, incremental LME suffers from
very few timeouts. Of course, other factors play secondary roles in
success as well.

We compare the performance of LME I2RL with that of an on-
line version of GAIL [11], a state-of-the-art policy learning method
cast in the schema of generative adversarial networks. We experi-
mented with various simulation settings eventually settling on one
that seemed most appropriate for our domain (500 iterations of
TRPO with an adversary-batch-size of 1,000, 2 hidden-layer [64× 8]
network for both generator and adversary, adversary-epochs = 5,
and generator-batch-size = 150). We obtained a maximum LBA of
52% for the fully observable simulations (note that fully observable
trajectories still may not yield all state-action pairs). This absolute
performance being rather low, we analyzed the relative impact of
occlusion in our scenario on the performance of GAIL. Figure 2
(c) shows that while both LME I2RL and online GAIL demonstrate
the same relative difference initially, the latter method requires
significantly more trajectories before it catches up with its full-
observability performance, for both the 30% and 70% observability
cases. As such, online GAIL appears to be far more impacted by
occlusion that LME I2RL.

Figure 3: A single patroller denoted by the triangle moves

clockwise to the ends of four hallways in the numbered or-

der, and just the shaded area is visible to the learner.

In order to evaluate the scalability of LME I2RL, we compare the
learning durations of batch and incremental methods in a larger
patrolling domain with 192 states. Previous experiments establish
that the success rate is primarily predicated on the learning per-
formance. Therefore, we focus on related metrics. For this domain,
Player Stage simulator has not been used. Instead, we utilize a set
of trajectories obtained by sampling expert’s policy directly. The
grid is divided into 4 regions corresponding to the ends of four
hallways. Patrollers’ reward function utilized four features, each
activating when it switches target from end of one hallway to next
one in a clockwise fashion (Fig. 3). The MDP’s state includes infor-
mation of current location and last visited region. Equal weights are
given to each feature, which makes the patroller move through grid
clockwise to activate them. The learner perceives just 32% of total
states. As shown in Fig. 4, LME I2RL achieves the same accuracy –
measured by LBA and ILE – as batch LME but in significantly less
time.

How well do these results extend to physical robots? We conducted
the perimeter patrol experiment on physical Turtlebots in the actual
hallway shown in Fig. 1 to verify the benefits of I2RL in a real-world
setting (Fig 5). The learner observes less than 30% of the patrols.

https://youtu.be/B3wA6z111ws
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Figure 4: Performances of batch and incremental LME on various metrics for the larger domain.

Figure 5: In counterclockwise direction: patrollers (in pink

and red) in the longer hallway. Learner (green) observing

them from its vantage point in the smaller hallway, and

learner breaching patrol to reach the goal (first door to its

right).
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Figure 6: Success and timeout rates for experiments involv-

ing physical robots at less than 30% observability.

The states of patrollers were recognized via blob detection using the
CMVision ROS package. The threshold for timeout is set the same
as that in simulations. Though degree of observability cannot be
changed here, we vary the number of input trajectories to observe
the change in success and timeout rates. Figure 2 gives a comparison
between LME in batch and online versions for various metrics with
each data point averaged across 5 sets of 10 trials each. While the
overall success rate is not high, LME I2RL continues to penetrate
more patrols successfully than batch and exhibits a much reduced
time out rate.

5 CONCLUDING REMARKS

This paper contributes to the nascent problem of online IRL by
offering a formal framework, I2RL, to help analyze the class of
methods for online IRL. I2RL facilitates comparing various online
IRL techniques and facilitates establishing the theoretical properties
of online methods. In particular, it provides a common ground for
researchers interested in developing techniques for online IRL.

We presented a new method within the I2RL framework that
generalizes recent advances in maximum entropy IRL to online
settings. Casting this method to the context of I2RL allowed us
to establish key theoretical properties of (full-observability) maxi-
mum entropy I2RL and LME I2RL, ensuring the desired monotonic
progress with a given confidence of convergence. Lemma 2 utilizes
user-specified ε and εs to bound the key gradient (ϕ̂ − EX [ϕ]) used
in the likelihood maximization process, and Theorem 2 bounds the
error in log likelihood of the reward parameters due to incremental
learning. As batch IRL can be viewed as a specific case of I2RL
having just one session, the theoretical results trivially hold for
batch LME as well.

Our comprehensive experiments show that the new I2RLmethod
improves over the previous state-of-the-art batch method in time-
limited domains, by approximately reproducing the batch method’s
accuracy but in significantly less time. In particular, we have shown
that given the practical constraints on computation time exhibited
by an online IRL application, the new method is able to solve the
problem with a higher success rate. This IRL generalization also
suffers less from occlusion than methods that directly learn the
policy or behavior. Future avenues for investigation include under-
standing how I2RL can address some of the challenges related to
player Stage simulation of larger domain, as well as I2RL without
prior knowledge of dynamics of the experts.
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