
Informed Initial Policies for Learning in Finite Horizon
Dec-POMDPs

Landon Kraemer and Bikramjit Banerjee
School of Computing

University of Southern Mississippi
118 College Dr. #5106

Hattiesburg, MS 39406-0001
landon.kraemer@eagles.usm.edu, bikramjit.banerjee@usm.edu

ABSTRACT
Decentralized partially observable Markov decision processes
(Dec-POMDPs) offer a formal model for planning in coop-
erative multiagent systems where agents operate with noisy
sensors and actuators, and local information. Prevalent Dec-
POMDP solution techniques have mostly been centralized
and have assumed knowledge of the model. In real world
scenarios, however, solving centrally may not be an option
and model parameters may be unknown. To address this,
we propose a distributed, model-free algorithm for learning
Dec-POMDP policies, in which agents take turns learning,
with each agent not currently learning following a static pol-
icy. For agents that have not yet learned a policy, this static
policy must be initialized. We propose a principled method
for learning such initial policies through interaction with the
environment. We show that by using such informed ini-
tial policies, our alternate learning algorithm can find near-
optimal policies for three benchmark problems.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms
Algorithms, Experimentation

Keywords
Reinforcement learning, Decentralized POMDPs

1. INTRODUCTION
Decentralized partially observable Markov decision pro-

cesses (Dec-POMDPs) offer a formal model for planning in
cooperative multiagent systems where agents operate with
noisy sensors and actuators, and local information. While
many techniques have been developed for solving Dec-POMDPs
exactly and approximately, they have been primarily cen-
tralized and reliant on full knowledge of the model parame-
ters. But in real world scenarios, model parameters may not
be known a priori, and centralized solvers fail to decentralize
the policy computation.

Simple distributed reinforcement learning, particularly Q-
learning [15], can address both of the above limitations. Q-
learning agents can learn mappings from their own action-
observation histories (Hi) to their own actions (Ai), via a

quality function (Qi : Hi×Ai 7→ R) that evaluates the long-
term effects of selecting an action after observing an individ-
ual action-observation history. Since agents cannot observe
states or each others’ actions directly, independent learn-
ing [5] is a more reasonable approach than joint learning.
Independent learners ignore the actions and observations of
the other learners and simply learn their own Q-functions
directly.

We investigate two ways of applying independent Q-learning
to solving finite-horizon Dec-POMDP problems: one in which
agents learn concurrently (Q-Conc), and one in which agents
take turns to learn the best responses to each other’s poli-
cies (Q-Alt). In the latter method, each agent that has not
yet taken a turn learning needs an initial policy to follow.
There are simple ways to choose an arbitrary initial policy
in constant time, e.g., choose a policy at random or fol-
low a uniform stochastic policy, but such methods do not
consider the transition, observation, or reward structure of
the Dec-POMDP. As the main contribution of this paper,
we propose a simple and principled approach to building
a finite initial joint policy that is based upon the transi-
tion and reward (but not the observation) functions of a
Dec-POMDP. To lay the groundwork, we first discuss how
this initial joint policy can be computed in a centralized,
model-based fashion. We then discuss how agents can learn
such policies in a distributed, model-free manner, and then
demonstrate for three benchmark problems that Q-Alt ini-
tialized with this informed policy (QIP-Alt) produces bet-
ter joint policies than Q-Conc and Q-Alt initialized with
uniform stochastic policies (QSto-Alt) and Q-Alt initialized
with randomly-chosen pure policies (QRand-Alt).

This work extends the short paper [8], and the informed
policy that we propose has also been used for initialization in
another successful Monte Carlo based approach called MCQ-
Alt [2].

2. BACKGROUND
In this section we introduce the POMDP and the Dec-

POMDP formalisms, both of which will be used in our work.

2.1 POMDPs
We can define a partially-observable Markov decision pro-

cess (POMDP) as a tuple 〈S, A, P, R, Ω, O〉, where:

• S is a finite set of (unobservable) environment states.

• A is a finite set of actions.

• P (s′|s, a) gives the probability of transitioning to state
s′ ∈ S when action a ∈ A is executed in state s ∈ S.

• R(s, a) gives the reward the agent receives upon exe-
cuting action a ∈ A in state s ∈ S.

• Ω is a finite set of observations.

• O(ω|s′, a) gives the probability of observing ω ∈ Ω if
the current state is s′ ∈ S and the previous action was
a ∈ A.

POMDP is an extension of the MDP formalism, where
only certain features of the environment may be directly
observed by an agent. That is, the agent may not directly
know the state and must instead use observations received
from the environment and the transition and observation
probabilities to maintain a belief over the environment states
and act rationally under this uncertainty.

An agent can interact with a POMDP for a finite or in-
finite number of steps, or horizon. At each step, the agent
chooses an action and receives reward based upon the envi-
ronment state and the action executed, and it receives an ob-
servation based upon the action executed and the resulting
state. At a given step, the agent knows all of the actions it
has executed and all of the observations it has received up to
that point, and the goal is then to find a policy which maps
action-observation histories to actions, such that the reward
the agent expects to receive is maximized. More formally,
if the t step history of an agent is ht = 〈a1, ω1, . . . , at, ωt〉,
then its policy must map this action-observation history to
some action that the agent will execute in the next step,
at+1.

For a finite horizon, such a policy can be represented as a
tree where each level of the tree corresponds to a step and
every node is labeled with an action to be performed. If T
represents the horizon, then each node of depth d < T has
|Ω| children, i.e. one child for each observation. An agent
follows a tree policy by executing the action that labels the
root node, and then by following the subtree policy along
the branch corresponding to the observation it receives.

Figure 1 gives an example policy as both an action-observation
history to action mapping (left) and a policy tree (right) for
the single agent tiger problem introduced in [7] with T=3.
In the tiger problem, Ω = {HearLeft(HL), HearRight(HR)}
and A = {Listen(L), OpenLeft(OL), OpenRight(OR)}.
An agent following this policy will always listen twice. If
it hears the tiger behind the same door twice, it will open
the opposite door. If the agent receives mixed observations,
it will not open a door. Note that a single policy may not
be able to map many histories to actions because they do
not partake in the policy, e.g., histories beginning with the
agent opening a door are not a part of the policy in Figure 1.

Figure 1: Two equivalent representations of an ex-
ample policy for the single-agent tiger problem.

2.2 Decentralized POMDPs
The Decentralized POMDP (Dec-POMDP) formalism ex-

tends the POMDP formalism to accommodate multiple agents.
We can define a Dec-POMDP as a tuple 〈n, S, A, P, R, Ω, O〉,
where:

• n is the number of agents playing the game.

• S is a finite set of (unobservable) environment states.

• A = ×iAi is a set of joint actions, where Ai is the set
of individual actions that agent i can perform.

• P (s′|s,~a) gives the probability of transitioning to state
s′ ∈ S when joint action ~a ∈ A is taken in state s ∈ S.

• R(s,~a) gives the immediate reward the agents receive
upon executing action ~a ∈ A in state s ∈ S.

• Ω = ×iΩi is the set of joint observations, where Ωi

is the finite set of individual observations that agent i
can receive from the environment.

• O(~ω|s′,~a) gives the probability of the agents jointly
observing ~ω ∈ Ω if the current state is s′ ∈ S and the
previous joint action was ~a ∈ A.

In Dec-POMDPs, it is generally assumed that agents can-
not communicate their observations and actions to each other.
These constraints are often present in real world scenarios,
where communication may be expensive or unreliable. Con-
sider, for instance, a scenario in which a team of robots must
coordinate to search a disaster area for survivors. In such a
task, robots may need to spread out to efficiently cover the
area and also may need to travel deep underneath rubble,
both of which could interfere with wireless communication.

Assuming agents cannot communicate observations and
actions, each agent must choose actions based only upon his
own actions and observations; however, since the transition,
reward, and observation functions depend on joint actions,
the quality of each agent’s policy is dependent on the policies
played by all agents or the joint policy. The goal of the
Dec-POMDP problem, then, is to find the joint policy that
maximizes the expected reward received by the agents. The
problem of finding this optimal joint policy has been proven
to be NEXP-complete [3].

3. Q-LEARNING FOR DEC-POMDPS
While many Dec-POMDP solution techniques have been

devised, most of the prevalent Dec-POMDP solution tech-
niques have been centralized and have required knowledge of
the model. That is, a central solver determines which joint
policy the agents should follow given P ,R, and Ω, and then
it distributes these policies to the agents. However, in real-
world scenarios, the model may not be available, and it may
not be feasible for the problem to be solved centrally. There
is a need then, for a method by which agents can learn a
Dec-POMDP policy in a distributed manner without prior
knowledge of the model.

Reinforcement learning algorithms have previously been
applied in infinite horizon POMDPs in both model-based
[4, 9, 13] and model-free ways [10]. Model-based methods
first learn a model of the environment, and then compute a
policy based on that model, where model-free methods learn

a policy directly. In Dec-POMDPs, the actions and obser-
vations of the other agents are hidden, which makes model-
based learning complex; therefore, we opt for the model-free
approach. Recently, Zhang and Lesser [17] have applied re-
inforcement learning to a variant of the finite horizon Dec-
POMDP problem, where agents are organized in a network,
and agents’ influences on one another are limited to cliques.
While our goal is similar, we focus on less structured Dec-
POMDPs that are inherently less-scalable.

Reinforcement learning algorithms for finite horizon often
evaluate an action-quality value function Q, given by

Q(s, a, t) = R(s, a) + γ max
π

X

s′

P (s′|s, a)V π(s′, t + 1) (1)

where γ ∈ [0, 1] is a discount factor, R(s, a) is the reward
the agent receives for executing a in state S, and P (s′|s, a)
is the probability of transitioning from state s to state s′ if
action a is executed. V π(s′, t + 1) gives the expected sum
of rewards received when executing policy π starting at step
t + 1 given that the state is s′.

Since state transitions are dependent on joint actions in
Dec-POMDPs, the equivalent Q function would be Q(s,~a, t),
i.e. based upon joint actions; however, since each agent can
only know his own actions and observations, we use an in-
dependent learning [5] approach where each agent is respon-
sible for learning individual action quality values. Since the
states are not visible to the agents, we use a Q function
based upon the policy representation of Dec-POMDPs, i.e.
each agent maps his individual action-observation histories
to actions [17].

Agents can learn these Q-Values concurrently; however,
this can lead to oscillation, and our empirical results show
that allowing the agents to alternate learning can produce
better policies. To elaborate, in alternate learning, the agents
take turns learning, and while an agent is learning, all other
agents play static policies. Nair et. al have previously pro-
posed an algorithm named JESP [11] in which agents alter-
nately compute best responses to each other’s policies us-
ing knowledge of the model; however, as we do not assume
knowledge of the model, we instead learn the best-response
policies.

For the sake of clarity, we will assume only two agents in
notation. Given the policy of the other agent π−, the qual-
ity of learner i’s action at a given level t individual action-
observation history ht is then given by

Q∗(ht, a|π−) = R∗(ht, a|π−) +
X

ω∈Ωi

H∗(ht, a, ht+1|π−) ·

max
a′∈Ai

Q∗(h∗
t+1, a

′) (2)

where ht+1 is a level-t + 1 action-observation history pro-
duced by the concatenation of ht and (a, ω), i.e. ht+1 =
(ht, a, ω). The best response policy of the learner, πl, to the
other agents’ policy is given by

πl(ht) = arg max
a∈Ai

Q∗(ht, a|π−) (3)

The function R∗ and H∗ represent the expected immedi-
ate reward and history transition functions for the learner,
given by

R∗(ht, a|π−) =
X

s,ht

P (s|ht, h−)P (h−|ht, π−)R(s, a) (4)

H∗(ht, a, ht+1|π−) =
X

s,s′,h−

P (s|ht, h−)P (h−|h
t, π−) ·

X

ω−∈Ω−

P (~ω|s′,~a) (5)

where h− is the history of action-observations encountered
by the other agent, and ~ω = 〈ω, ω−〉 and ~a = 〈a, a−〉 are the
joint observation and joint action, respectively.

Since the agents cannot communicate and do not have
prior knowledge of the model, a learning agent will not have
knowledge of π−, h−, and a− and must estimate R∗ and
H∗ (and therefore Q∗) from its own experience of executing
actions and receiving observations and rewards. We denote
the estimation of Q∗ as Q. An agent can learn Q(ht, a) by
applying the following update each time it executes a when
the current history is ht

Q(ht, a) = Q(ht, a) + α

»

r + γ max
a′

Q(ht+1, a
′)−Q(ht, a)

–

(6)
where ω and r are the observation and reward received, re-
spectively, after executing a, and ht+1 = (ht, a, ω).

In our work, we compare both alternating and concur-
rent Q-learning methods, both of which use the Q update
method in equation 6. We refer to these as Q-Alt and Q-
Conc, respectively. For both learning methods, each agent
follows Algorithm 1 during each episode. In Q-Conc, the
learning flag is always true for every agent, but in Q-Alt,
the learning flag can only be true for one agent at a time.

Because the observation and reward functions in Dec-
POMDPs depend on joint actions, step 4 of algorithm 1
represents a synchronization point because an agent cannot
receive r or ω until all agents have executed an action. This
does not, however, imply that agents must execute actions
simultaneously.

Algorithm 1 ExecuteEpisode(learning)

1: h1 ← ∅
2: for t = 1 to T do
3: a← SelectAction(ht, learning)
4: Execute a and receive r, ω.
5: ht+1 ← (ht, a, ω)
6: if learning then
7: Q(ht, a)← Q(ht, a) +
8: α [r + γ maxa′ Q(ht+1, a

′)−Q(ht, a)]
9: end if

10: end for

Algorithm 2 SelectAction(ht, learning) for agent i

1: if learning then
2: if explore then
3: return explored action
4: else
5: return arg maxa∈Ai

Q(ht, a)
6: end if
7: else
8: return π(ht), the current static policy for this agent.
9: end if

Algorithm 2 describes the method by which agents select
actions to execute. If an agent is currently learning it will

either explore (explore and explored action are calculated
by a chosen exploration method) or choose an action based
upon current Q-Values; however, if an agent is not currently
learning - which will only occur in alternate learning - it
will choose an action based upon some policy π. Now, if
the agent has already learned, π will be the policy it learned
previously; however, if the agent has not had a turn learning,
π must be some initial policy.

There are multiple efficient ways to arbitrarily initialize π.
For example, we could let π be a pure policy (i.e. one where
each possible action-observation history maps to exactly one
action) chosen at random (as is done in the JESP algorithm),
or alternatively, we could let π be a uniform stochastic pol-
icy, where the agent always chooses an action at random
from a uniform distribution. We note, however, that such
methods do not consider the behavior of the model. That
is, for problems with identical |A| and |Ω| the policies would
initialized the same way, regardless of how P , R, and Ω are
defined. In the following section, we will present a principled
method for choosing an initial policy that respects both P
and R (but not Ω).

The main motivation for selecting initial policies in a more
informed manner is the hope of getting in the zone of at-
traction of the optimal Nash equilibrium. Our approach of
alternating best response learning can be essentially looked
upon as a form of hill climbing where each step is taken by
a different agent. Since hill climbing can only be guaran-
teed to converge to a local optimum, we expect alternating
best response learning to eventually lead to a locally optimal
Nash equilibrium policy. In order to overcome locality of
the optimum, hill climbing approaches often resort to mul-
tiple (re)starts, which is unrealistic in our case since each
hill climbing step is an entire best response learning phase
with a non-trivial cost. Instead, we devote some effort in
selecting the initial location of the agents in the joint policy
space, hoping that this sets us close enough to the globally
optimal Nash equilibrium so that it becomes the attractor
to the alternating hill climbing trajectory.

4. INFORMED INITIAL POLICIES
In this section, we present a centralized, model-based method

to compute an initial policy which is informed by the model.
The high-level idea is to map a Dec-POMDP problem into a
constrained POMDP problem, solve that POMDP problem,
and then map the resulting optimal POMDP policy back
into the space of Dec-POMDP joint policies.

To ground the intuition on existing literature, consider the
QPOMDP heuristic used in [16], that finds an upper-bound
for a Dec-POMDP by mapping the problem into a POMDP
where the action set is the set of all joint actions and the
observation set is the set of all joint observations.

The QPOMDP relaxation can be formalized as follows.
Given a Dec-POMDP instance D = 〈n, S, A, P, R, Ω, O〉,
create and find the optimal policy value for a POMDP in-
stance D′ = 〈S, A, P, R, Ω, O〉.

Essentially, QPOMDP assumes the agents are allowed to
share their individual observations, which, in turn, elimi-
nates miscoordination because the agents know exactly what
their teammates have observed and executed and can there-
fore choose the best action for each contingency. This is
not the case in Dec-POMDP, where each agent must choose
the best action based only upon its own action-observation
history. In a policy found by QPOMDP , an agent may have

different actions associated with the same action-observation
history, disambiguated by others’ action-observation histo-
ries; however, agents do not have access to the observations
of other agents during Dec-POMDP execution. Thus, the
resulting POMDP policy cannot be (and was not intended
to be) mapped to a Dec-POMDP policy in a meaningful
way.

In this backdrop, we note that if there were only one pos-
sible observation that each agent could receive at each step,
this ambiguity would disappear because the agents would be
able to know the joint observation history at all times.

Unfortunately, most (if not all) Dec-POMDPs of interest
will have more than one observation; however, if the agent
policies ignore observations, a similar effect can be achieved.

Our proposed method is simple. Create and solve a POMDP
where the action set is the set of all joint actions and the
observation set is {δ} (a dummy observation). That is, for a
Dec-POMDP D = 〈n, S, A, P, R, Ω, O〉, create the POMDP
D′ = 〈S, A, P, R, {δ}, O〉. Since δ is the only possible obser-
vation, the optimal POMDP policy can be thought of as a
chain of joint actions πopt = ~a1,~a2, . . . ,~aT , where T is the
horizon. The informed initial Dec-POMDP policy can then
be constructed for each agent i by setting all level t action
nodes to at

i (agent i’s contribution to at). That is, agent i
will always execute at

i at level t, regardless of what it has
previously observed. Figure 2 depicts this process for T = 2.

5. LEARNING INFORMED INITIAL POLI-
CIES

In the previous section, we presented a centralized, model-
based method for calculating an informed initial policy; how-
ever, if we are to use such initial policies for model-free, dis-
tributed algorithms (such as Q-Alt), the method by which
we calculate these policies should be model-free and dis-
tributed as well.

It is generally assumed in Dec-POMDPs that the agents
cannot observe each other’s actions, so without extra as-
sumptions, the agents must learn independently. One sim-
ple approach would be concurrent Q-learning, where each
agent i tries to learn

Q′ : HAi ×Ai 7→ R (7)

for all individual action-only histories hAi
t ∈ HAi and in-

dividual actions a ∈ Ai. To accomplish this, agents use a
modified version of algorithm 1 where the true observation ω
is replaced with the dummy observation γ. Since the agents
learn concurrently, the learning flag will always be true for
each agent.

Independent concurrent learning can lead to oscillation
because each agent is learning in a dynamic environment
(all other agents are treated as part of the environment)
that changes in response to the agent’s behavior.

Suppose, though, that each agent i can announce the ran-
dom seed he will use for exploration and his action set Ai be-
fore learning begins. This would allow each agent to model
the exploration of every other agent. Since observations are
ignored when learning the initial policy and since the agents
all receive identical rewards, if agents can model each other
agent’s exploration, then each agent can learn the function

Q′ : HA ×A 7→ R (8)

directly, where A is the set of joint actions and HA repre-

Figure 2: Conversion of the optimal policy of the constrained POMDP to a valid policy of the original
Dec-POMDP for T=2.

sents the set of joint action-only histories. Note that such
a technique can not be applied to learn Q : H × A 7→ R,
where H is the set of joint action-observation histories be-
cause observations are generated by nature, not the agents,
and hence unsharable by announcing random seeds..

The agents can learn equation 8 by making a few modifica-
tions to algorithms 1 and 2. Specifically, all actions must be
joint actions rather than individual actions, and the Q func-
tion should accept joint action-observation histories rather
than individual histories. As before, ω should be replaced
by the dummy observation γ, and the agents will learn con-
currently (i.e. the learning flag will always be true).

It is important to note that because the set of joint actions
A grows exponentially in the number of agents (i.e. |A| =
O(|Ai∗ |

n), where Ai∗ represents the largest individual action
set), the potential memory requirement (O((|Ai∗ |

n)T ·|Ai∗ |))
for the joint Q’-Value function also grows exponentially in
the number of agents. However, for scenarios where this
memory requirement is intractable, it is likely that the num-
ber of episodes required for convergence of the independent
Q’-Value function is also intractably large.

6. INITIAL POLICIES FOR CONCURRENT
LEARNERS

In allowing the agents to share random seeds for policy
initialization, we are introducing extra information that Q-
Conc is unable to exploit. For comparison purposes, we also
would like to give Q-Conc access to this information as well.
While our learned initial policy is readily usable for alternate
learning where all agents except the currently learning agent
follow static policies, applying our learned initial policy to
concurrent learning where no agent follows a static policy is
less straightforward.

In order to use our informed initial policy for concurrent
learning, we use the Q′-Values learned as per Section 5 to
initialize the agents’ Q-Values as follows. When an agent
i encounters a history ht = (a1, o1, a2, o2, . . . , at, ot) for the
first time, if it learned independent Q′-Values (per equation

7), it will set Q(ht, a) = Q′(hAi
t , a)∀a ∈ Ai, where hAi

t =
(a1, a2, . . . , at).

The process is less straightforward if agents learned joint
Q′-Values (per equation 8). Recall from section 4 that
an informed initial policy can be written as a single chain
of joint actions. Suppose hA

t /ht is the joint action-only
history in which all agents except for i are executing ac-
tions per the informed initial policy and agent i is exe-
cuting (a1, a2, . . . , at). Also, suppose ~at+1/a is the action

corresponding to step t + 1 in the inital policy chain with
agent i’s action replaced with a. Then, agent i will initialize
Q(ht, a) = Q′(hA

t /ht,~at+1/a)∀a ∈ Ai. Essentially, agent i is
assuming that the other agents will continue still follow the
initial policy, even though ht or a may deviate from it.

7. EVALUATION
In this section, we evaluate the performance of the five

different Q-learning settings: QIP-Alt, QIP-Conc, Q-Conc,
QSto-Alt, and QRand-Alt for the BroadcastChannel [6], DecTiger
[11], and MarsRover [1] benchmark problems. Note that we
do not compare against state-of-the-art model-based Dec-
POMDP solvers such as GMAA*-ICE [14] because such
solvers rely on full knowledge of the model, which we do
not assume is available.

7.1 Problem Domains
In the BroadcastChannel domain, two nodes broadcast

messages over a channel that is limited to one message at
a time. The nodes receive a reward for each message they
successfully send; however, if they attempt to send a message
at the same time, a collision occurs. Each node has a buffer
that holds at most one message, and at every step this buffer
becomes full with some probability.

In the Dec-Tiger domain, there are two doors. Behind
one door is treasure, but behind the other door is a tiger.
Opening the door concealing the treasure, yields a reward,
and opening the door concealing the tiger, yields a penalty.
The two agents do not know a priori which door the tiger is
behind; however, they are allowed to listen for clues. Upon
listening, each agent either hears the tiger behind the left
door or the right door. The observations are noisy, however,
and each agent has a fifteen percent chance of hearing the
tiger behind the wrong door. This serves to make coordi-
nation more difficult, as an agent cannot be sure what the
other has heard, and miscoordination is heavily penalized.

In the MarsRover domain, two rovers are tasked with con-
ducting scientific experiments at four different test sites, ar-
ranged in a four-by-four grid. At each step the agents can
choose to move north, south, east, or west, or they can sam-
ple or drill. Two of the sites are intended to be sampled,
and thus drilling them incurs a large negative reward. Two
of the sites must be drilled by both agents simultaneously.
Each agent has full knowledge of his own location as well as
whether or not an experiment has been performed at each
site.

With only two states, two observations, and two actions,
BroadcastChannel is the smallest of the three. It is also os-

tensibly the least complex, as it has been solved for a horizon
of 900 [14]. DecTiger with two states, two observations, and
three actions is larger and has only been solved for a horizon
of six. MarsRover with 256 states, eight observations, and
six actions is the largest of the three, and it has only been
solved for a horizon of four [12].

7.2 Policy Computation and Evaluation
In order to compare the performance of the different set-

tings, we must calculate the value of the policies they pro-
duce. One method for calculating a learned policy value
is simulation-based, that simply allows the agents to inter-
act with the environment for a sufficient number of episodes
and averages the total reward received per episode; however,
since the domains we use are known benchmark problems,
we can exactly calculate the value of a policy using the model
parameters. To evaluate the value of a joint policy ~π, we find

V ~π(~h0) =
X

s∈S

b0(s)V
~π(~h0, s) (9)

where b0 ∈ ∆(S) is the initial state distribution. V ~π(~ht, s)

for a given joint history ~ht and state s is given by

V ~π(~ht, s) = R(s, ~π(~ht)) +
P

s′∈S
P (s′|s, ~π(~ht)) ·

P

~ω∈Ω
O(~ω|s′, ~π(~ht))V

~π((~ht, ~π(~ht), ~ωt), s
′)(10)

where ~π(~ht) = 〈π1(ht,1), . . . , πn(ht,n)〉.

7.3 Experimental Results
For each domain, we chose eleven increasing values k1, . . . , k11

and allowed each setting to learn for an k = k1, . . . , k11

episodes. The k values were rounded to integers, and de-
rived from experiments with another algorithm (reported in
[2]).

k represents the total number of episodes agents are al-
lowed to execute, including episodes required to learn initial
policies and all alternations. Thus, in Q-Conc and QIP-Conc
both agents learn for k episodes (with agents devoting k′ of
those episodes to learning the initial policy in QIP-Conc), in
QSto-Alt and QRand-Alt each agent learns for k

n
episodes

(where n is the number of agents), in QIP-Alt each agent

learns for k′ + k−k′

n
episodes. Note that since QIP-Alt and

QIP-Conc allocate k′ episodes for learning the initial policy,
they are at a relative disadvantage if the initialization is not
helpful because the other settings have k′ extra episodes for
learning.

We used k′ = 20000 for DecTiger and k′ = max(200000, k
20

)
for both BroadcastChannel and MarsRover. For the al-
ternating settings in Dectiger and BroadcastChannel, the

agents were allowed one alternation each with k−k′

n
episodes

per alternation (k′ = 0 for QSto-Alt and QRand-alt), and
in the MarsRover problem each agent was allowed we used
epsilon-greedy exploration with ǫ = .05. two alternations

with k−k′

2n
episodes per alternation. In all runs, we used a

learning rate α = .001, and for our exploration method (lines
2-3 in algorithm 2), we used epsilon-greedy exploration with
ǫ = .05 [15]. All trials were run on an Intel Xeon 3.00 Ghz
processor.

Tables 1, 2, and 3 give the relative error,
|vlearned−vopt|

vopt

(where vopt is the value of the known optimal policy), av-
eraged over 50 runs for each setting, domain, horizon, and

value of k. We have opted to report this data in tables be-
cause the range of values is wide some cases (e.g. [0, 16.494]),
and such a coarse resolution makes it difficult to interpret
relations between smaller values. If an error value reported
in the table is bolded, this indicates that it is greater than
the error for QIP-Alt for the same horizon and k. In ad-
dition to the tables, we report average relative error versus
average runtime for QIP-Alt and Q-Conc for all the three
domains in figures 3, 4, and 5. Note the the horizontal axes
have been scaled logarithmically in these figures.

First note that for each domain and horizon, there exists a
k beyond which QIP-Alt produces lower error than all other
settings. In the case of BroadcastChannel, the advantage of
QIP-Alt is less pronounced; however, since BroadcastChan-
nel is the simplest of our domains, this is not entirely surpris-
ing. For MarsRover and DecTiger, the results are stronger,
however. QIP-Alt is the only algorithm to have average rel-
ative error of zero (implying that all 50 policies found were
optimal). In most cases, the nearest competitor in those two
domains has error > .2 (and often it is much higher). As
noted previously, T=4 is the highest horizon for which the
MarsRover domain has been solved by a centralized algo-
rithm with knowledge of the model. It is encouraging then
that, being distributed and model-free, QIP-Alt is able to
achieve near optimal solutions on average for that horizon.

In the case of QIP-Conc, it is unclear whether or not ini-
tializing the Q-Values as described in section 6 is beneficial.
For Dectiger with T = 3, k ≥ 105.02 and BroadcastChannel
with T = 3, k ≥ 105.73, it is clearly an improvement on Q-
Conc, but for other domain-horizon combinations, it is not
so clearly beneficial, especially in the MarsRover domain.

While these results suggest that the informed policy is
beneficial if optimality is the only goal, they do not speak to
the practicality of it. For instance, while QIP-Alt produces
its lowest error for T=3 in MarsRover at k = 107.48, it takes
on average 60000 seconds to produce that result, whereas
k = 106.42 requires only 3000 seconds on average. In real-
world scenarios, time may be more important than optimal-
ity. To this end, we provide figures 3, 4, and 5, which show
average relative error vs average runtime for QIP-Alt and
QIP-Conc for all three domains. Since these are benchmark
problems, we have no reason to prefer time over optimality
(or vice-versa), so it is difficult to make a qualitative judge-
ment about them; however, had QIP-Alt required days or
months to produce error below that produced by Q-Conc,
the informed policy would likely be of less practical use.

Figure 3: Average relative error vs runtime in
seconds for QIP-Alt and QIP-Conc in the Broad-
castChannel domain. Horizontal axis has been
scaled logarithmically.

k T=3 T=4 T=5
QIP-Alt QIP-Conc Q-Conc QSto-Alt QRand-Alt QIP-Alt QIP-Conc Q-Conc QSto-Alt QRand-Alt QIP-Alt QIP-Conc Q-Conc QSto-Alt QRand-Alt

105.34 0.171 0.175 0.080 0.085 0.112 0.164 0.255 0.111 0.229 0.173 0.201 0.330 0.149 0.231 0.242
105.46 0.200 0.094 0.080 0.089 0.128 0.183 0.141 0.106 0.190 0.166 0.196 0.186 0.134 0.227 0.203
105.73 0.041 0.061 0.065 0.059 0.121 0.097 0.078 0.092 0.145 0.120 0.128 0.117 0.115 0.194 0.205
106.00 0.034 0.053 0.061 0.049 0.112 0.067 0.069 0.061 0.105 0.125 0.079 0.102 0.089 0.165 0.184
106.27 0.026 0.052 0.061 0.041 0.109 0.047 0.067 0.056 0.065 0.122 0.073 0.091 0.068 0.139 0.159
106.57 0.026 0.052 0.061 0.040 0.112 0.037 0.066 0.051 0.050 0.116 0.061 0.087 0.057 0.097 0.153
106.97 0.013 0.036 0.061 0.033 0.107 0.014 0.033 0.050 0.036 0.109 0.025 0.031 0.050 0.075 0.152
107.24 0.015 0.034 0.061 0.034 0.113 0.013 0.035 0.050 0.031 0.123 0.019 0.036 0.049 0.065 0.143
107.60 0.006 0.027 0.061 0.035 0.108 0.013 0.039 0.041 0.028 0.105 0.016 0.038 0.045 0.054 0.146
108.16 0.005 0.026 0.061 0.032 0.114 0.005 0.036 0.041 0.027 0.111 0.004 0.033 0.045 0.031 0.153
108.84 0.004 0.011 0.061 0.032 0.107 0.004 0.047 0.037 0.026 0.111 0.004 0.023 0.030 0.023 0.154

Table 1: Average relative errors (compared to the optimal value) for the BroadcastChannel domain for all
settings and horizons T=3,4,5. Bolded values are less than respective QIP-Alt values.

k T=3 T=4 T=5
QIP-Alt QIP-Conc Q-Conc QSto-Alt QRand-Alt QIP-Alt QIP-Conc Q-Conc QSto-Alt QRand-Alt QIP-Alt QIP-Conc Q-Conc QSto-Alt QRand-Alt

104.40 0.402 2.058 0.734 1.437 6.407 1.014 2.297 0.726 15.439 13.257 1.807 1.885 1.135 17.912 16.494
104.63 0.263 1.425 0.617 1.612 6.194 0.537 1.507 0.704 11.667 10.894 1.221 1.522 1.122 15.293 13.940
104.81 0.084 0.972 0.511 1.065 6.212 0.395 1.071 0.692 6.158 9.511 1.177 1.227 1.089 16.069 12.921
105.02 0.032 0.182 0.286 1.054 6.115 0.197 0.301 0.550 2.031 8.125 1.208 0.802 1.034 12.485 9.844
105.37 0.000 0.042 0.136 1.054 6.019 0.000 0.300 0.357 1.329 7.850 1.156 0.751 0.941 3.340 6.415
105.56 0.000 0.032 0.114 1.065 5.974 0.000 0.288 0.369 1.409 7.998 1.153 0.705 0.816 2.052 6.611
105.74 0.000 0.053 0.104 1.054 6.046 0.005 0.301 0.335 1.322 8.163 1.159 0.691 0.754 1.646 5.817
106.13 0.000 0.031 0.104 1.054 5.912 0.005 0.311 0.391 1.428 7.626 0.078 0.641 0.648 1.215 6.035
106.42 0.011 0.042 0.125 1.054 6.017 0.000 0.299 0.334 1.321 8.266 0.005 0.633 0.575 1.521 5.959
106.82 0.000 0.042 0.125 1.054 6.026 0.005 0.321 0.345 1.329 7.887 0.030 0.586 0.470 1.200 5.842
107.48 0.000 0.053 0.157 1.054 5.863 0.000 0.278 0.356 1.320 7.990 0.029 0.275 0.359 1.201 5.821

Table 2: Average relative errors (compared to the optimal value) for the DecTiger domain for all settings
and horizons T=3,4,5. Bolded values are less than respective QIP-Alt values.

k T=2 T=3 T=4
QIP-Alt QIP-Conc Q-Conc QSto-Alt QRand-Alt QIP-Alt QIP-Conc Q-Conc QSto-Alt QRand-Alt QIP-Alt QIP-Conc Q-Conc QSto-Alt QRand-Alt

105.34 0.426 0.862 0.343 0.529 0.408 0.570 0.682 0.478 0.592 0.509 0.551 0.672 0.445 0.561 0.525
105.46 0.430 0.407 0.343 0.476 0.418 0.589 0.666 0.444 0.601 0.517 0.537 0.664 0.431 0.586 0.506
105.73 0.366 0.381 0.343 0.434 0.298 0.567 0.469 0.411 0.529 0.465 0.517 0.525 0.376 0.537 0.480
106.00 0.274 0.381 0.343 0.415 0.291 0.520 0.433 0.409 0.505 0.461 0.447 0.365 0.340 0.499 0.407
106.27 0.274 0.381 0.343 0.382 0.274 0.435 0.429 0.404 0.461 0.386 0.425 0.336 0.328 0.432 0.354
106.57 0.280 0.381 0.343 0.380 0.274 0.413 0.427 0.401 0.465 0.378 0.387 0.311 0.308 0.376 0.331
106.97 0.076 0.381 0.343 0.377 0.288 0.388 0.426 0.399 0.473 0.374 0.349 0.302 0.287 0.394 0.314
107.24 0.000 0.366 0.343 0.376 0.288 0.202 0.427 0.398 0.451 0.369 0.271 0.301 0.282 0.383 0.327
107.60 0.000 0.381 0.343 0.375 0.301 0.051 0.423 0.398 0.444 0.383 0.095 0.299 0.277 0.366 0.297
108.16 0.000 0.380 0.343 0.374 0.281 0.057 0.422 0.396 0.444 0.358 0.076 0.302 0.272 0.363 0.292
108.84 0.000 0.381 0.343 0.374 0.263 0.002 0.421 0.393 0.436 0.342 0.069 0.297 0.296 0.301 0.270

Table 3: Average relative errors (compared to the optimal value) for the MarsRover domain for all settings
and horizons T=2,3,4. Bolded values are less than respective QIP-Alt values.

Figure 4: Average relative error vs runtime in sec-
onds for QIP-Alt and QIP-Conc in the DecTiger
domain. Horizontal axis has been scaled logarith-
mically.

Figure 5: Average relative error vs runtime in sec-
onds for QIP-Alt and QIP-Conc in the MarsRover
domain. Horizontal axis has been scaled logarithmi-
cally.

8. CONCLUSION
We have presented a simple, principled technique to com-

pute a valid Dec-POMDP policy for use as an initial policy
in conjunction with reinforcement learning. Furthermore,
we have discussed how such policies can be learned in a
model-free manner, and we have shown for three benchmark
problems that using such policies as initial policies (instead
of stochastic policies or pure policies chosen at random) can
improve the outcome of alternating Q-learning.
Acknowledgment: We thank the anonymous reviewers
for helpful feedback. This work was supported in part by
the US Army under grant #W911NF-11-1-0124.

9. REFERENCES
[1] C. Amato and S. Zilberstein. Achieving goals in

decentralized POMDPs. In Proceedings of the Eighth
International Conference on Autonomous Agents and
Multiagent Systems, pages 593–600, Budapest,
Hungary, 2009.

[2] B. Banerjee, J. Lyle, L. Kraemer, and R. Yellamraju.
Sample bounded distributed reinforcement learning for
decentralized pomdps. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial
Intelligence, Toronto, Canada, July 2012. To appear.

[3] D. S. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of decentralized control
of markov decision processes. Mathematics of
Operations Research, 27:819–840, 2002.

[4] L. Chrisman. Reinforcement learning with perceptual
aliasing: The perceptual distinctions approach. In

Proceedings of the Tenth National Conference on
Articial Intelligence, pages 183–188, San Jose, CA,
1992. AAAI Press.

[5] C. Claus and C. Boutilier. The dynamics of
reinforcement learning in cooperative multiagent
systems. In Proceedings of the fifteenth national/tenth
conference on Artificial intelligence/Innovative
applications of artificial intelligence, AAAI ’98/IAAI
’98, pages 746–752, Menlo Park, CA, USA, 1998.
American Association for Artificial Intelligence.

[6] E. A. Hansen, D. S. Bernstein, and S. Zilberstein.
Dynamic programming for partially observable
stochastic games. In Proceedings of the 19th National
Conference on Artifical Intelligence, pages 709–715,
San Jose, CA, 2004.

[7] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra.
Planning and acting in partially observable stochastic
domains. Artifical Intelligence, 101:99–134, 1998.

[8] L. Kraemer and B. Banerjee. Informed initial policies
for learning in dec-pomdps. In Proceedings of the
Twenty-Sixth AAAI Conference on Artificial
Intelligence Student Abstract and Poster Program,
Toronto, Canada, July 2012. To appear.

[9] A. K. McCallum. Reinforcement Learning with
Selective Perception and Hidden State. PhD thesis,
Department of Computer Science, University of
Rochester, 1995.

[10] N. Meuleau, L. Peshkin, K. Kim, and L. Kaelbling.
Learning finite-state controllers for partially
observable environments. In Proc. UAI, pages
427–436, 1999.

[11] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and
S. Marsella. Taming decentralized pomdps: Towards
efficient policy computation for multiagent settings. In
Proceedings of the 18th International Joint Conference
on Artificial Intelligence (IJCAI-03), pages 705–711,
Acapulco, Mexico, 2003.

[12] F. A. Oliehoek, S. Whiteson, and M. T. J. Spaan.
Lossless clustering of histories in decentralized
POMDPs. In Proceedings of the 8th International
Conference on Autonomous Agents and Multiagent
Systems (AAMAS-09), pages 577–584, Budapest,
Hungary, 2009.

[13] G. Shani, R. Brafman, and S. Shimony. Model-based
online learning of POMDPs. In Proceedings of the
European Conference on Machine Learning (ECML),
volume Lecture Notes in Computer Science 3720,
pages 353–364. Springer, 2005.

[14] M. T. J. Spaan, F. A. Oliehoek, and C. Amato.
Scaling up optimal heuristic search in Dec-POMDPs
via incremental expansion. In Proceedings of the
Twenty-Second International Joint Conference on
Artificial Intelligence (IJCAI-11), pages 2027–2032,
Barcelona, Spain, 2011.

[15] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction (Adaptive Computation
and Machine Learning). The MIT Press, Mar. 1998.

[16] D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A
heuristic search algorithm for solving decentralized
POMDPs. In Proceedings of the Twenty-First
Conference on Uncertainty in Artificial Intelligence,
pages 576–583, Edinburgh, Scotland, 2005.

[17] C. Zhang and V. Lesser. Coordinated multi-agent
reinforcement learning in networked distributed
POMDPs. In Proc. AAAI-11, San Francisco, CA,
2011.

