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Abstract

Decentralized partially observable Markov decision pro-
cesses (Dec-POMDPs) offer a powerful modeling technique
for realistic multi-agent coordination problems under uncer-
tainty. Prevalent solution techniques are centralized and as-
sume prior knowledge of the model. We propose a distributed
reinforcement learning approach, where agents take turns to
learn best responses to each other’s policies. This promotes
decentralization of the policy computation problem, and re-
laxes reliance on the full knowledge of the problem parame-
ters. We derive the relation between the sample complexity
of best response learning and error tolerance. Our key con-
tribution is to show that sample complexity could grow expo-
nentially with the problem horizon. We show empirically that
even if the sample requirement is set lower than what theory
demands, our learning approach can produce (near) optimal
policies in some benchmark Dec-POMDP problems.

Introduction
Decentralized partially observable Markov decision pro-
cesses (Dec-POMDPs) offer a powerful modeling technique
for realistic multi-agent coordination and decision making
problems under uncertainty. Because solving Dec-POMDPs
is NEXP-complete (Bernstein et al. 2002), exact solu-
tion techniques for finite horizon problems require signifi-
cant time and memory resources (Szer and Charpillet 2006;
Oliehoek et al. 2010; Spaan, Oliehoek, and Amato 2011).
However, solution techniques for Dec-POMDPs (exact or
approximate) suffer from less acknowledged limitations as
well: that most of them are centralized and assume prior
knowledge of the model. That is, a single program com-
putes the optimal joint policy, with the full knowledge of
the problem parameters. While these techniques have had
success in benchmark problems with comprehensively de-
fined domain parameters, such strict definitions may be dif-
ficult and tedious in many real-world problems. In these
cases, the problem parameters may need to be first esti-
mated from experience and then exact/approximate solvers
may be applied. However, this problem of model estimation
can be complex in POMDPs because states are unobserv-
able (Chrisman 1992), and additionally in Dec-POMDPs
agents are incapable of observing each other’s actions and
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observations. Not surprisingly, model estimation is largely
ignored in the Dec-POMDP literature. Furthermore, the task
of computing optimal policies in Dec-POMDPs has seldom
been decentralized in any meaningful way (e.g., see (Emery-
Montemerlo et al. 2004).)

In this paper we propose a distributed reinforcement
learning approach to solving finite horizon Dec-POMDPs.
When agents learn their own policies, not only is the task of
policy computation distributed, but also the problem param-
eters do not need to be known a priori. In lieu of the knowl-
edge of problem parameters, access to a simulator, or sim-
ply the ability to draw samples from unknown distributions
would be sufficient. Effectively, estimation of the problem
parameters is built into the learning algorithm. Policy learn-
ing in finite horizon tasks is justified due to the same reasons
as finite horizon reinforcement learning, viz., that agents can
learn policies in offline simulations before applying them in
the real domain. Furthermore, unlike many exact and ap-
proximate solution approaches for Dec-POMDPs, the mem-
ory usage of a learning approach is not much larger than the
size of a single policy per agent at any time, which makes it
relatively more memory efficient. Thus we posit distributed
reinforcement learning as a more practical alternative to the
traditional Dec-POMDP solvers.

Our initial experiments with concurrent independent rein-
forcement learning (Claus and Boutilier 1998) in benchmark
Dec-POMDP problems have yielded unsatisfactory results,
some of which are included in the experiments section. In
this paper we propose a non-concurrent independent learn-
ing approach, where agents take turn in learning best re-
sponse policies to each other via a semi-model based Monte
Carlo algorithm, but no agent explicitly attempts to model
the other agent. We show theoretically that Monte Carlo re-
inforcement learning for best response has a complexity of
O(T 3|A|T |Ω|3T−1), where T is the horizon length, |A| and
|Ω| are respectively the number of actions and observations
available to an agent. While it is intuitive that this expres-
sion would be exponential in T , we show that even the time
spent on each trajectory could be exponential in T . Our
analysis shows that this depends on the number of distinct
scenarios that the other (non-learning and invisible) agent
may encounter. We also show empirically that a “few” al-
ternations of best response learning produce (near) optimal
policies in some benchmark problems, although in general
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alternate best response learning can converge to local op-
tima.

Related Work
Reinforcement learning (RL) has been applied in infinite
horizon POMDPs in both model based (Chrisman 1992;
McCallum 1995; Shani, Brafman, and Shimony 2005) and
model free (Meuleau et al. 1999) ways. Model based meth-
ods learn a model (e.g., hidden Markov models or utile suf-
fix memories for POMDPs) of the environment first and then
compute a policy based on the learned model, while model
free methods learn a policy directly. Model learning can be
more complex in Dec-POMDPs because the actions and the
observations of the other agents are unobservable. We use a
semi-model based approach, where we do not attempt to es-
timate the Dec-POMDP parameters directly, owing to their
hidden parts, but instead learn intermediate functions that
capture the visible parts of the dynamics (see equations 3, 4
given later) via Monte Carlo estimation, and compute a pol-
icy based on these functions.

Peshkin et. al. (2000) introduced a gradient ascent based
policy search algorithm for multi-agent reinforcement learn-
ing in Dec-POMDP-like settings, using finite state con-
trollers as the policy language. In this and other RL based
techniques, the agents are assumed to be able to observe
the global rewards, while Dec-POMDP solvers assume that
rewards are unobservable when agents execute the optimal
policy. We reconcile these positions by noting that it is rea-
sonable for agents to observe global rewards in offline sim-
ulations for the purpose of learning only, as long as the ul-
timate execution of the learned policies does not rely on re-
ward observations. This is the position underlying our ap-
proach as well.

Among work using centralized sampling-based tech-
niques for solving Dec-POMDPs, Wu et. al. (2010) is one
of the most recent. They have applied a centralized Monte
Carlo approach to learning finite state controllers for finite
horizon problems, while our approach is more decentral-
ized. More recently, Zhang and Lesser (2011) have applied
distributed reinforcement learning to a variant of the finite
horizon Dec-POMDP problem, where agents are organized
in a network, and agents’ influence on each other are limited
to cliques. This factored structure as well as the known com-
munication structure of the domain is exploited to solve such
problems more scalably than regular Dec-POMDPs. Zhang
and Lesser also exploited the known communication struc-
ture to coordinate the sub-teams via distributed contraint op-
timization, and produced a more efficient learning-based al-
ternative to the regular solvers. While our goal is similar and
we also consider finite horizon problems, we focus on less
structured and unfactored Dec-POMDPs that are inherently
less scalable.

Our work is most closely related to JESP (Nair et al.
2003) which is based on a redefinition of a belief state as
a cross product of the hidden state with the other agents’
policies. JESP uses dynamic programming to compute the
best response policy of one agent holding the others’ poli-
cies fixed, and alternate the computation of best responses
in a hill-climbing fashion. Our approach can be considered

the “learning counterpart” of JESP with sample complex-
ity analysis, although our approach outperforms JESP due
to specialized initialization (Kraemer and Banerjee 2012) as
opposed to random initialization of JESP. We omit these ex-
periments here due to space constraint.

Decentralized POMDP
The Decentralized POMDP (Dec-POMDP) formalism is de-
fined as a tuple 〈n, S,A, P,R,Ω, O〉, where:
• n is the number of agents playing the game.
• S is a finite set of (unobservable) environment states.
• A = ×iAi is a set of joint actions, where Ai is the set of

individual actions that agent i can perform.
• P (s′|s,~a) gives the probability of transitioning to state
s′ ∈ S when joint action ~a ∈ A is taken in state s ∈ S.
• R : S × A → <, where R(s,~a) gives the immediate

reward the agents receive upon executing action ~a ∈ A in
state s ∈ S.
• Ω = ×iΩi is the set of joint observations, where Ωi is

the finite set of individual observations that agent i can
receive from the environment.

• O(~ω|s′,~a) gives the probability of the agents jointly ob-
serving ~ω ∈ Ω if the current state is s′ ∈ S and the previ-
ous joint action was ~a ∈ A.
The reward function R, transition model P , and observa-

tion model O are defined over joint actions and/or observa-
tions, which forces the agents to coordinate. Additionally,
for finite horizon problems, horizon T is also specified. The
goal of the Dec-POMDP problem is to find a policy for each
agent (joint policy) that maximizes the total expected reward
over T steps of interaction, given that the agents cannot com-
municate their observations and actions to each other. A
joint policy Π is a set of individual policies, πi, which maps
the histories of action-observation pairs of agent i to actions
in Ai. The problem of finding an optimal joint policy has
been proven to be NEXP-complete (Bernstein et al. 2002).

Reinforcement Learning
Reinforcement learning problems are modeled as Markov
Decision Processes or MDPs (Sutton and Barto 1998). Con-
ceptually, an MDP is a POMDP where an observation
uniquely identifies the hidden state. It is given by the tu-
ple 〈S,A,R, P 〉, where S is the set of visible environmental
states that an agent can be in at any given time,A is the set of
actions it can choose from at any state,R : S×A 7→ < is the
reward function, i.e., R(s, a) specifies the reward from the
environment that the agent gets for executing action a ∈ A
in state s ∈ S; P : S ×A×S 7→ [0, 1] is the state transition
probability function specifying the probability of the next
state in the Markov chain following the agent’s selection of
an action in a state. In finite horizon problems, the agent’s
goal is to learn a non-stationary policy π : S × t 7→ A that
maximizes the sum of current and future rewards from any
state s, given by,

V π(s0, t) = EP [R(s0, π(s0, t)) +R(s1, π(s1, t+ 1)) +

. . .+R(sT−t, π(sT−t, T ))]
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where s0, s1, . . . sT−t are successive samplings from the
distribution P following the Markov chain with policy π.

Reinforcement learning algorithms often evaluate an
action-quality value function Q given by

Q(s, a, t) = R(s, a) + max
π

γ
∑
s′

P (s, a, s′)V π(s′, t+ 1)

(1)
This quality value stands for the sum of rewards obtained
when the agent starts from state s at step t, executes ac-
tion a, and follows the optimal policy thereafter. Action
quality functions are preferred over value functions, since
the optimal policy can be calculated more easily from the
former. Learning algorithms can be model based or model
free. Model based methods explicitly estimate R(s, a) and
P (s, a, s′) functions, and hence estimate Q(s, a, t). Model
free methods directly learn Q(s, a, t), often by online dy-
namic programming, e.g., Q-learning. In this paper, we use
(semi-) model based learning for Dec-POMDPs with the as-
sociated analysis of sample complexity, thus establishing a
baseline for RL in Dec-POMDPs. Model based reinforce-
ment learning algorithms have been analyzed in many do-
mains before, but to the best of our knowledge such anal-
yses have not been performed for decentralized POMDPs,
where partial observability of the learner’s environment is
compounded by the unobservability of the other agents’ ob-
servations and actions.

RL for Dec-POMDPs
Solution techniques for Dec-POMDPs have been mostly
centralized (Szer and Charpillet 2006; Oliehoek et al. 2010;
Spaan, Oliehoek, and Amato 2011), in that a single program
computes the optimal joint policy, with the full knowledge
of the problem parameters, viz., P,R,O. While these tech-
niques have had success in benchmark problems with com-
prehensively defined P,R,O, such strict definitions may be
difficult and tedious in real-world problems. In this paper
we address this issue by applying reinforcement learning to
the policy computation problem. The main distinguishing
characteristics of our approach are

• Instead of a single program computing the optimal joint
policy, each agent learns its own policy. In this paper
agents learn distributedly, but not concurrently. That is,
they share the task of policy learning, by only learning
their own policies, but do not update policies concur-
rently. Concurrent learning will effectively parallelize
Dec-POMDP solution, but it is also challenging due to
potential oscillation. Our experiments show that concur-
rent learning is not as efficient as the proposed distributed
learning approach. We leave the improvement of concur-
rent learning in Dec-POMDPs as a future avenue.

• Instead of using knowledge of P,R,O, agents learn on
the basis of sampling these unknown functions. This
allows our approach to be readily applicable in tasks
where these parameters are unknown, or hard to compute.
However, for evaluation purposes, we still consider well-
defined benchmark problems in this paper.

• Most Dec-POMDP solvers maintain many policies in
memory at any time, partly or wholly. Even mem-
ory bounded techniques (Seuken 2007) maintain multi-
ple policies, although of a bounded total size. Instead, a
learner only needs to maintain sufficient information in
memory to construct one policy. However, for finite hori-
zon problems, this policy has a size exponential in T .

Although the agents are unaware of P,R,O, we assume that
the agents know the size of the problem, i.e., |A|, |S|, |Ω|,
the maximum magnitude over all rewards, Rmax, and that
they are capable of signalling to each other so that no two
agents are learning at the same time.

Since states are not visible, a reinforcement learning agent
can use the policy representation of finite horizon Dec-
POMDPs, and learn a mapping from histories of its past ac-
tions and observations to actions (Zhang and Lesser 2011).
For simplicity of notation, we assume two agents only, and
identical action and observation sets for both agents. Given
the policy of the other agent, π, the quality of a learner’s
action a at a given level-t history ht is given by

Q∗t (ht, a|π) = R∗t (ht, a|π) +
∑
ω

H∗t (ht, a, ht+1|π) ·

maxbQ
∗
t+1(ht+1, b|π) (2)

where ht+1 is a level-t + 1 history produced by the con-
catenation of ht and (a, ω), i.e., ht+1 = (ht, a, ω). The best
response policy of the learner, π`, to the other agent’s policy
π is given by

π`(ht) = arg max
a

Q∗t (ht, a|π).

The functions R∗t and H∗t represent level-t reward and his-
tory transition functions for the learner, given by

R∗t (ht, a|π) =
∑
s,h−

P (s|ht, h−)P (h−|ht, π)R(s,~a) (3)

H∗t (ht, a, ht+1|π) =
∑

s,s′,h−

P (s|ht, h−)P (h−|ht, π) ·

P (s′|s,~a)
∑
ω−

O(~ω|s′,~a)(4)

where h− is the history of action-observations encountered
by the other agent, ~ω = 〈ω, ω−〉 and ~a = 〈a, π(h−)〉 are the
joint observation and action respectively. A learning agent
is unaware of every factor on the right hand sides of equa-
tions 3, 4, and must estimate R∗ and H∗ solely from its own
experience of executing actions and receiving observations
and rewards.

For brevity, we call the following expression β.

β = |A|
(

(|A||Ω|)T − 1

|A||Ω| − 1

)
. (5)

β gives the maximum number of (h, a) pairs of all lengths
that a learner may encounter. We now give the definition of
a key parameter that appears in the complexity expression of
our algorithm.
Definition 1. The minimum reachability over all feasible
states at level t for a fixed policy of the other agent, π, is
given by

ρt,π = min
s,ht,h−|π

P (s|ht, h−)P (h−|ht, π)
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Feasibility excludes unreachable states, and therefore en-
sures that always ρt,π > 0.

When a learner takes action a at history ht (with the other
agent executing π(h−)) and the resulting joint observation
is ~w = 〈w,w−〉, then reachability can be propagated as

P (s|ht, h−)P (h−|ht, π)P (s′|s,~a)O(~w|s′,~a)

= P (s′|ht+1, h
′
−)P (h′−|ht+1, π)

where ht+1 = (ht, a, ω) and h′− = (h−, π(h−), ω−).
Clearly, the minimum reachability at level t+ 1 is

ρt+1,π ≤ ρt,π,
forming a monotonically decreasing sequence with increas-
ing t. Therefore, we refer to the minimum reachability over
all steps, ρT−1,π , simply as ρ dropping both subscripts when
π is clear from the context.

The Algorithm: MCQ-alt
In this paper we present an approach where agents take turn
to learn best response to each others policies, using an R-
Max (Brafman and Tennenholtz 2002) like approach to learn
the best response Q-values. The learner records immediate
rewards and history transitions at every history encountered,
providing samples of R∗ and H∗ given in equations 3, 4
respectively. These samples are incorporated into running
averages to maintain estimates R̂ and Ĥ respectively. For
histories of length T − 1 (i.e., full length), hT−1, if the pair
(hT−1, a) has been encountered

N = max(|S|2|Ω|T−1, 4/ρ)
(4RmaxT |S|)2|Ω|T+1

α2
·

ln(16|S|2|Ω|Tβ/δ) (6)

times (N is derived in the next section), then the learner sets
QT−1(hT−1, a) to the average of the immediate rewards re-
ceived (i.e., R̂T−1(hT−1, a)). It then marks (hT−1, a) as
“Known”. If (hT−1, a) is “Known” for every a, then hT−1
is marked “Known”. For an intermediate length history,
ht, if every history, ht+1, produced by concatenating ht
with (a, ω) for all combinations of action-observations en-
countered is “Known”, then ht is marked “Known”. For a
“Known” intermediate history ht, Qt(ht, a) is updated for
every a as

Qt(ht, a) = R̂t(ht, a) +
∑
h′

Ĥt(ht, a, h
′) max

b
Qt+1(h′, b)

The learner’s exploration strategy is as follows. For a
“Known” history, action selection is greedy, i.e., the Q-
maximizing action is selected. For a history that is not
yet marked “Known”, the least frequently taken action (ties
broken randomly) is executed. The learner freezes its cur-
rent policy when the empty history is marked “Known”,
and signals to the other agent to start learning, while it ex-
ecutes its current policy without exploration. The above al-
gorithm learns best response directly without modeling the
other agents in the environment, and only modeling the vis-
ible parts of the environment’s dynamics. Due to alternation

of best response learning, and the use of Monte Carlo esti-
mation, we call this algorithm “Monte Carlo Q alternating”,
or “MCQ-alt” in short.

The infimum reachability, ρ used in equation 6, may not
be known in many problems. Since it decreases geomet-
rically with inceasing T , it may even be hard to determine
whether |S|2|Ω|T−1 dominates 4/ρ. In such cases, it may be
possible to ignore it, but this may be inadequate for higher
T . For the domains and horizons used for experiments in
this paper, ρ does not appear to be a dominating factor, so
our analysis focuses on the dependence on T instead.

An important feature of MCQ-alt is its well-defined
stopping criterion, viz., when the empty history becomes
“Known”, which is controlled by a single parameter, N . In
contrast, Q-learning is controlled by multiple parameters,
and its stopping criterion can be affected by oscillation or
non-convergence.

Note that in learning the best reponse, a learner attempts
to cover every (ht, a) encountered equally well, to guaran-
tee arbitrarily small errors in the value function. However,
there are at least two reasons why the value function may not
need to be accurate to an arbitrary degree: (1) policies usu-
ally converge long before value functions, which we verify
in this paper experimentally, and (2) some less likely paths
may have little impact on the value function and N could be
lowered for these paths; we leave this for future work.

Analysis
We focus on sample complexity analysis of the best response
learning process. As in (Nair et al. 2003), the fixed policy
of the other agent effectively reduces the Dec-POMDP to a
POMDP, in which the state space is the cross product of the
hidden states and the other’s policy. Since the other agent’s
actions and observations are unobservable to the learner, the
number of scenarios encountered by the other agent (re-
ferred to asK) becomes a key parameter in the sample com-
plexity analysis, as we demonstrate in this section.

First we note that the number of episodes needed for the
empty history to be “Known” is

≥ N |Ω|T−1|A|T

since the number of distinct (hT−1, a) tuples is |Ω|T−1|A|T .
Also, given the backup process of histories becoming
“Known” in our algorithm, when all (hT−1, a) become
“Known” the empty history must also become “Known”,
and this takes N visitations of each tuple. The actual num-
ber of episodes needed is, however, likely to be greater than
N |Ω|T−1|A|T , because only part of the exploration process
is under the learner’s control, where it can select a but not ω.
Thus it can be led to revisit paths that are already “Known”.

While it is fairly intuitive that the episode complexity
given above should be exponential in T , we will now show
that so couldN . In order to demonstrate this, we first present
a generic sampling process, and use the resulting sample
complexity expression to derive N .

The Basic Sampling Process
Consider the following sampling process, with K classes
of random variables, {Xjl}Kj=1, such that Y =
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∑N1
l=1X1l+

∑N2
l=1X2l+...

∑NK
l=1 XKl

N , where N =
∑K
j Nj . The

process generates a sample of some Xjl at each of the N
iterations, where the probability that the sample belongs to
class j ∈ [1,K] is pj . Therefore, all Xjl as well as all Nj
are random variables. Suppose that E[Xjl] = Mj , ∀l, and
that the maximum magnitude of any Xjl is Xmax > 0. We
wish Y to estimate the unknown value

∑
j pjMj , therefore

we call |Y −
∑
pjMj | the estimation error. We claim the

following sufficient condition for bounding the estimation
error, but omit the proof due to lack of space.
Theorem 1. If the total number of samples is set N ≥
max(Kη, 4η/minj pj) where

η =
4X2

maxK

ε2
ln(8K/δ),

then the estimation error is bounded, i.e.,

P (|Y −
∑

pjMj | > ε) < δ

Derivation of N
In our analysis we shall use the max norm function, i.e., ‖f−
g‖ represents maxx |f(x) − g(x)|. We first establish the
dependence of the error in the Q functions on the errors in
our estimates Ĥ and R̂.
Lemma 2. If ‖Ĥτ −H∗τ ‖ ≤ ε1 and ‖R̂τ −R∗τ‖ ≤ ε2 for all
τ , then at any step t

‖Qt −Q∗t ‖ ≤ (T − t)ε2 + (T − t− 1)|Ω|Rmaxε1

Proof: By induction. For basis, t = T−1. Since T is the last
step in an episode, ‖QT−1−Q∗T−1‖ = ‖R̂T−1−R∗T−1‖ ≤
ε2, hence true.

For the inductive case, we see that |Qt(ht, a)−Q∗t (ht, a)|
= |R̂t(ht, a) +

∑
h′ Ĥt(ht, a, h

′) maxbQt+1(h′, b)−
R∗t (ht, a)−

∑
h′ H

∗
t (ht, a, h

′) maxbQ
∗
t+1(h′, b)|

≤ ‖R̂t −R∗t ‖+ |
∑

(Ĥt maxQt+1 −H∗t maxQ∗t+1)|
= ‖R̂t −R∗t ‖+ |

∑
(Ĥt maxQt+1 − Ĥt maxQ∗t+1

+Ĥt maxQ∗t+1 −H∗t maxQ∗t+1)|
≤ ε2 + |

∑
(Ĥt maxQt+1 − Ĥt maxQ∗t+1)|+

|
∑

(Ĥt maxQ∗t+1 −H∗t maxQ∗t+1)|
≤ ε2 + max |Qt+1 −Q∗t+1|+ |

∑
(Ĥt −H∗t ) maxQ∗t+1|

In the last expression, the second term is upper bounded by
(T − t − 1)ε2 + (T − t − 2)|Ω|Rmaxε1, by the induction
hypothesis. In the third term, maxQ∗t+1 ≤ Rmax, and the
sum is taken over all observations. Therefore the third term
is upper bounded by |Ω|Rmaxε1. Adding the bounds of the
three terms we get the result.

Lemma 2 implies that the error bound increases for
smaller histories, and therefore is maximum at the empty
history. This is why the learner must continue until Q0

is sufficiently accurate, i.e., the empty history becomes
“Known”. In the following analysis, we characterize “suffi-
ciently accurate”, to derive a bound on N used by the algo-
rithm (equation 6).

Theorem 3. To ensure that ‖Q0 −Q∗0‖ ≤ α w.p. ≥ 1 − δ,
it is sufficient to set

N ≥ max(|S|2|Ω|T−1, 4/ρ)
(4RmaxT |S|)2|Ω|T+1

α2
·

ln(16|S|2|Ω|Tβ/δ)
in our algorithm, where β is given in equation 5 and ρ results
from Definition 1.
Proof: By Lemma 2,

‖Q0 −Q∗0‖ ≤ Tε2 + (T − 1)|Ω|Rmaxε1.

To achieve the α bound on the error, it is sufficient to set
ε1 ≤ α/2(T − 1)|Ω|Rmax, and ε2 ≤ α/2T .

Now the number of Ĥ and R̂ entries that need to be
learned are |Ω|β and β respectively, where β is given in
equation 5. Therefore, it is sufficient to require both of the
following for any t:

P (‖R̂t −R∗t ‖ > α/2T ) < δ/2β (7)

P (‖Ĥt −H∗t ‖ > α/2(T − 1)|Ω|Rmax) < δ/2β|Ω|
First consider ‖R̂t − R∗t ‖ and equation 3. The estima-
tion of any R̂t in our algorithm matches the description of
the sampling process, with E[Xjl] = R(s,~a) and pj =
P (s|ht, h−)P (h−|ht, δ); the last quantity being the reacha-
bility, of which the infimum is ρ (Definition 1). Note that pj
cannot be set to

∑
h−
P (s|ht, h−)P (h−|ht, δ), since each

sample Xjl received corresponds to a specific history h−
encountered by the other agent. Therefore in this case,
the number of variable classes in the sampling process is
K = |S||Ω|t ≤ |S||Ω|T−1. This is the maximum possi-
ble number of terms in the summation of equation 3 which
corresponds to full length histories that can be encountered
by the other agent, given its (fixed) policy. Making the ap-
propriate substitutions in Theorem 1, we see that to ensure
equation 7, it is sufficient to set

N ≥ max(|S||Ω|T−1, 4/ρ)
(4RmaxT )2|S||Ω|T−1

α2
·

ln(16|S||Ω|T−1β/δ)

Similarly, for ‖Ĥt − H∗t ‖, the sampling pro-
cess is characterized by E[Xjl] = 1 and pj =
P (s|ht, h−)P (h−|ht, δ)P (s′|s,~a)P (~ω|s′,~a). The
last quantity is the propagated reachability, of which
the infimum is also ρ. Since t ≤ T − 2, this yields
K = |S|2|Ω|t+1 ≤ |S|2|Ω|T−1, and we have

N ≥ max(|S|2|Ω|T−1, 4/ρ)
(4Rmax(T − 1)|S|)2|Ω|T+1

α2
·

ln(16|S|2|Ω|Tβ/δ)

Combining the two, we get the result.
It is interesting to note that N is polynomial in most

problem parameters, except that it is logarithmic in |A|,
and exponential in T . Although Theorem 3 suggests that
N = O(T 3|Ω|2T ), our experiments suggest that it does not
require to grow in some domains due to simpler structure.
Even in the domains where it does need to grow, the rate of
growth could be lower.
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Figure 1: Plots of average relative errors against N in DEC-TIGER (left) and RECYCLING-ROBOTS (right).

Initial Policy
If agents alternate in learning best responses, the agent that
does not learn initially must play some previously speci-
fied fixed policy. Our experiments show that if this pol-
icy is random then the final outcome is unpredictably poor.
Instead, we simply let the two agents perform concur-
rent reinforcement learning to learn initial policies, on a
slightly simpler Dec-POMDP. This Dec-POMDP reduces
the set of observations to one dummy observation. In
other words, the agents simply ignore the observations, and
learn a mapping from their own past action histories to ac-
tions (π(a1, a2, . . . , at) = a). This policy can be read-
ily translated to the regular policy language, by setting
π(a1, ω1, a2, ω2, . . . at, ωt) = a for all possible chains of
observations (ω1, ω2, . . . ωt). This is the policy used by the
initially non-learning agent. See (Kraemer and Banerjee
2012) for more details.

Experimental Results
We present experimental results from two benchmark do-
mains: DEC-TIGER (Nair et al. 2003) and RECYCLING-
ROBOTS (Amato, Bernstein, and Zilberstein 2007). We used
the initial policy learned by concurrent reinforcement learn-
ing (as described above) over 200000 episodes to perform
alternating Monte-Carlo Q learning as described in this pa-
per, for values of N ranging from 10 to 1000. There were
2 alternations, i.e., each agent learned best response to the
other’s policy exactly once. In each experiment, the result-
ing joint policy after 2 alternations was evaluated to yield
|vjpol − vopt|/|vopt|, i.e., the relative error based on known
optimal values for horizons 3, 4 and 5. The plots in Figure 1
show these relative errors averaged over 50 runs. For com-
parison, we also show the result from concurrent Q-learning
(referred to as “Q-conc”), with α = 0.01, ε = 0.005, which
were found to produce best results in the selected settings.
Table 1 also shows the average relative error rates with the
initial policy (derived by concurrent learning), to verify that
MCQ-alt does indeed improve these policies.

Each setting of N and T makes MCQ-alt finish in a cer-
tain number of episodes, say eN,T , i.e., until the empty his-
tory becomes “Known” in each alternation. The average of
these numbers of episodes over all agents and all runs is used
to determine the length of the Q-conc runs. The average rel-
ative error of Q-conc for a given N and T is reported at the

end of (average) eN,T episodes.
In Figure 1 (left) for DEC-TIGER, first we note that hori-

zons 3 and 4 are solved accurately with N ≥ 200 and 1000
respectively, by MCQ-alt. Q-conc solves horizon 3 accu-
rately with a number of episodes corresponding to N =
1000, but is unable to solve horizon 4. Neither achieves 0 er-
ror for horizon 5. MCQ-alt is also clearly more efficient than
Q-conc. More importantly, we see that for a given N , the
relative error increases with increasing horizon. This is clear
with MCQ-alt, but not so clear with Q-conc with even a hint
of non-convergence (error increases for T = 4). For MCQ-
alt, this implies thatN needs to increase to produce the same
error on increasing horizons. This is direct evidence for the
claim made earlier in this paper, although the rate at which
N needs to increase falls short of the O(T 3|Ω|2T ) rate es-
tablished in this paper. This is explained by the fact that
O(T 3|Ω|2T ) is a sufficient rate for value convergence; it is
not necessary, and policies can converge sooner.

DEC-TIGER RECYCLING-ROBOTS

T=3 T=4 T=5 T=3 T=4 T=5
Initial policy 2.16 2.67 2.42 0.37 0.39 0.33
relative error
% unreachable 0 0 0 27.9 39.8 47.8
histories

Table 1: Relative errors of initial policies, and the proportion
of unreachable histories.

In Figure 1 (right) for RECYCLING-ROBOTS, we see
something more interesting. Although MCQ-alt is still more
efficient that Q-conc, the relative errors now decrease with
increasing horizon, for a given N . This is true with both
MCQ-alt and Q-conc. This is partly due to the fact that
there are many unreachable histories in this domain. Ta-
ble 1 shows the increasing proportion of unreachable histo-
ries in RECYCLING-ROBOTS with increasing T , which sug-
gests that K (and hence the error) grows much slower than
Theorem 3 assumes. As it turns out, N does not need to
grow with increasing horizons for small errors in this do-
main. Instead, the increasing values of eN,T even for a fixed
N are sufficient to actually reduce the average errors with
increasing T , as seen in Figure 1 (right). However, it must
be noted that alternating best response learning also almost
always converges to local optima in this domain, so 0 aver-
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age error was never observed.

Conclusion
We have presented a distributed Monte Carlo based re-
inforcement learning algorithm for solving decentralized
POMDPs. We have derived the sample complexity that
guarantees arbitrarily accurate best response policies, and
shown empirically that 2 alternations of best response learn-
ing can produce (near) optimal joint policies in some bench-
mark problems. In the future, more judicious use of samples
with a variable N will be explored, and a more elaborate
investigation into the convergence behavior of concurrent
learning will be undertaken.
Acknowledgments: We thank the anonoymous reviewers
for helpful comments and pointers. This work was sup-
ported in part by the U.S. Army under grant #W911NF-11-
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