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Abstract

Decentralized partially observable Markov decision
processes (Dec-POMDPs) offer a powerful modeling
technique for realistic multi-agent coordination prob-
lems under uncertainty. Prevalent solution techniques
are centralized and assume prior knowledge of the
model. Recently a Monte Carlo based distributed re-
inforcement learning approach was proposed, where
agents take turns to learn best responses to each other’s
policies. This promotes decentralization of the pol-
icy computation problem, and relaxes reliance on the
full knowledge of the problem parameters. However,
this Monte Carlo approach has a large sample com-
plexity, which we address in this paper. In particular,
we propose and analyze a modified version of the pre-
vious algorithm that adaptively eliminates parts of the
experience tree from further exploration, thus requiring
fewer samples while ensuring unchanged confidence in
the learned value function. Experiments demonstrate
significant reduction in sample complexity – the maxi-
mum reductions ranging from 61% to 91% over differ-
ent benchmark Dec-POMDP problems – with the final
policies being often better due to more focused explo-
ration.

Introduction
Decentralized partially observable Markov decision pro-
cesses (Dec-POMDPs) offer a powerful modeling technique
for realistic multi-agent coordination and decision mak-
ing under uncertainty. Given the computational complex-
ity of Dec-POMDPs (Bernstein et al. 2002), exact solu-
tion techniques for finite horizon problems require signifi-
cant time and memory resources (Szer and Charpillet 2006;
Oliehoek et al. 2010; Spaan, Oliehoek, and Amato 2011).
Additionally, Dec-POMDP solvers are mostlycentralized
(see (Emery-Montemerlo et al. 2004) for an exception) and
assume prior knowledge of themodel. While these tech-
niques have had success in benchmark problems with com-
prehensively defined domain parameters, such strict def-
initions may be difficult and tedious in many real-world
problems. Recently, reinforcement learning techniques have
been applied to decentralized planning (Zhang and Lesser
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2011; Banerjee et al. 2012), that overcome both of these lim-
itations. That is, instead of a single program computing the
optimal joint policy, with the full knowledge of the problem
parameters, each agent learns its own policy, without prior
knowledge of the problem parameters.

Banerjee et. al. (2012) proposed a reinforcement learn-
ing approach – MCQ-ALT –where agents take turns to
learn mutual best responses, and theoretically established
the sample complexity of each best response learning phase.
They also showed experimentally that (near) optimal poli-
cies were learned in two benchmark problems. However,
this approach has a large sample complexity, owing partly
to the fact that a learner devotes equal amounts of resources
to all parts of the policy space. We argue that this is wasteful,
and that a learner can utilize the knowledge acquired so far to
bias its future focus, thus eventually requiring fewer samples
to learn. So we propose a modification –Iterative MCQ-
ALT, or IMCQ-ALT– to perform this biased exploration.
Our approach prunes actions opportunistically from further
exploration. Most importantly, we theoretically establish a
key parameter of the algorithm that leads to pruningwith-
out affecting the confidence in the learned value function,
compared toMCQ-ALT. This means, even though IMCQ-
ALT requires fewer samples, it guarantees the same max-
imum error and minimum confidence as MCQ-ALT. We
evaluate both MCQ-ALT and IMCQ-ALT on 4 benchmark
Dec-POMDP problems and experimentally show that while
IMCQ-ALT often produces smaller errors in output policy
values than MCQ-ALT by virtue of more focused explo-
ration, IMCQ-ALT also uses significantly less samples to
do so. The maximum advantage in sample complexity of
IMCQ-ALT ranges from 61% to 91% over the 4 benchmark
domains studied in our experiments.

Decentralized POMDP

The Decentralized POMDP (Dec-POMDP) formalism is de-
fined as a tuple〈n, S,A, P,R,Ω, O〉, where:

• n is the number of agents.

• S is a finite set of environment states that are not directly
observable.

• A = ×iAi is the (product) set of joint actions, whereAi

is the set of individual actions that agenti can perform.



• P (s′|s,~a) gives the probability of transition to states′ ∈
S when joint action~a ∈ A is executed in states ∈ S.

• R : S × A → R, whereR(s,~a) gives the immediate
reward the agents receive upon executing action~a ∈ A in
states ∈ S.

• Ω = ×iΩi is the (product) set of joint observations, where
Ωi is the finite set of individual observations that agenti
can receive from the environment.

• O(~ω|s′,~a) gives the probability of the agents jointly ob-
serving~ω ∈ Ω if the current state iss′ ∈ S and the previ-
ous joint action was~a ∈ A.

The reward functionR, transition modelP , and obser-
vation modelO are defined over joint actions and/or obser-
vations, which forces the agents to coordinate. Addition-
ally, for finite horizon problems, horizonT is also specified.
The goal of the Dec-POMDP problem is to find a policy
for each agent (i.e., ajoint policy) that maximizes the total
expected reward overT steps of interaction, given that the
agents cannot communicate their observations and actions
to each other. A joint policyΠ is a set of individual policies,
πi, which maps the histories of action-observation pairs of
agenti to actions inAi, i.e.,πi : (Ai × Ωi)

t 7→ Ai.

Reinforcement Learning
Reinforcement learning (RL) problems are modeled as
Markov Decision Processesor MDPs (Sutton and Barto
1998). An MDP is given by the tuple〈S,A,R, P 〉, where
S is the set of environmental states that an agent can be
in at any given time,A is the set of actions it can choose
from at any state,R : S × A 7→ ℜ is the reward function,
i.e., R(s, a) specifies the reward from the environment that
the agent gets for executing actiona ∈ A in states ∈ S;
P : S × A × S 7→ [0, 1] is the state transition probability
function specifying the probability of the next state in the
Markov chain resulting from the agent’s selection of an ac-
tion in a state. In finite horizon problems, the agent’s goal is
to learn anon-stationarypolicy π : S × t 7→ A that maxi-
mizes the sum of current and future rewards from any state
s, given by,

V π(s0, t) = EP [R(s0, π(s0, t)) + R(s1, π(s1, t + 1)) +

. . . + R(sT−t, π(sT−t, T ))]

where s0, s1, . . . sT−t are successive samplings from the
distributionP following the Markov chain with policyπ.

Reinforcement learning algorithms often evaluate an
action-quality value functionQ given by Q(s, a, t) =
R(s, a) + maxπ

∑

s′ P (s, a, s′)V π(s′, t + 1). This qual-
ity value stands for the sum of rewards obtained when the
agent starts from states at stept, executes actiona, and
follows the optimal policy thereafter. Action quality func-
tions are preferred over value functions, since the optimal
policy can be calculated more easily from the former. Learn-
ing algorithms can be model based or model free. Model
based methods explicitly estimateR(s, a) and P (s, a, s′)
functions, and hence estimateQ(s, a, t). Model free meth-
ods directly learnQ(s, a, t), often by sample-based online
dynamic programming, e.g.,Q-learning. In this paper, we

build on a previous algorithm –MCQ-ALT – that is asemi-
model (explained later) based learning algorithm for Dec-
POMDPs.

Turn-taking RL for Dec-POMDPs
Banerjee et. al. (2012) presented a Monte Carlo approach,
called Monte Carlo Q Alternating (MCQ-Alt), where agents
take turns to learn best response to each others’ policies,
using an R-Max (Brafman and Tennenholtz 2002) like ap-
proach to learn the best response Q-values. Although the
agents are unaware of functionsP,R,O, MCQ-ALT as-
sumes that the agents know the size of the problem, i.e.,
|A|, |S|, |Ω|, the maximum magnitude over all rewards,
Rmax, and that they are capable of signalling to each other
so that no two agents are learning at the same time. De-
spite partial observability, the capability of signallingis a
reasonable assumption because this may actually be accom-
plished by a third party present only during learning, but not
during the execution of learned policies. Therefore, agents
must still learn not to rely on communication, otherwise they
will learn policies that cannot be executed in the real Dec-
POMDP.

One reason for our focus on MCQ-ALT is that it has
a well-definedstopping criterion. Since agents alternate
in learning best responses, it is necessary for each agent
to know precisely when it is done learning, so that the
other agent can begin. Alternative best response learning
algorithms, such as straightforwardQ-learning (Sutton and
Barto 1998), or the more recent and highly successful Upper
Confidence bound for Trees (UCT) (Kocsis and Szepesvri
2006) do not have well-defined stopping criteria, making
them unsuitable for turn taking learners. In fact, our pre-
liminary experiments imposing a stopping criterion on UCT
did not yield usable results.

For simplicity of notation, we assume two agents only,
and identical action and observation sets for both agents.
Given the policy of the other agent,π, the quality of a
learner’s actiona at a given level-t historyht is given by

Q∗
t (ht, a|π) = R∗

t (ht, a|π)+
∑

ω H∗
t (ht, a, ht+1|π) ·

maxb Q∗
t+1(ht+1, b|π) (1)

whereht+1 is a level-t + 1 history produced by the con-
catenation ofht and (a, ω), i.e., ht+1 = (ht, a, ω). The
best response policy of the learner,πℓ, to the other agent’s
policy π is given byπℓ(ht) = arg maxa Q∗

t (ht, a|π). The
unknown functionsR∗

t andH∗
t representtrue level-t reward

and history transition functions for the learner, given by

R∗
t (ht, a|π) =

∑

s,h−

P (s|ht, h−)P (h−|ht, π)R(s,~a) (2)

H∗
t (ht, a, ht+1|π) =

∑

s,s′,h−

P (s|ht, h−)P (h−|ht, π) ·

P (s′|s,~a)
∑

ω−

O(~ω|s′,~a) (3)

where h− is the (unobservable) history of action-
observations encountered by the other agent,~ω = 〈ω, ω−〉
and~a = 〈a, π(h−)〉 are the joint observation and action re-
spectively. A learning agent is unaware of every factor on



Algorithm 1 MCQ-ALT(N)

1: repeat
2: h← ∅
3: a←SELECTACTION(h)
4: Executea and receiver, ω
5: for t← 1 . . . T − 1 do
6: b←STEP(h, a, ω, r)
7: h← (h, a, ω)
8: Executeb and receiver, ω
9: a← b

10: end for
11: ENDEPISODE(h,N)
12: until Known(∅) = True

Algorithm 2 SELECTACTION(h)

1: if Known(h) = True then
2: a← arg maxb∈A Q(h, b)
3: else
4: A′ ← A \ {a|∀ω, Known((h, a, ω)) = True}
5: a← arg minb∈A′ frequency(h, b)
6: end if
7: frequency(h, a)← frequency(h, a) + 1
8: Returna

the right hand sides of equations 2, 3, and must estimateR∗

andH∗ (asR̂ andĤ) solely from its own experience of ex-
ecuting actions and receiving observations and rewards.

MCQ-Alt: The Algorithm
An MCQ-ALT learner records immediate rewards and his-
tory transitions at every history encountered, providing sam-
ples of R∗ and H∗ given in equations 2, 3 respectively.
These samples are incorporated into running averages to
maintain estimateŝR andĤ respectively. Since it estimates
intermediate functions,R∗ andH∗, instead of the model pa-
rameters, MCQ-ALT is calledsemi-model based. For his-
tories of lengthT − 1 (i.e., full length),hT−1, if the pair
(hT−1, a) has been encountered

N = max(|S|2|Ω|T−1, 4/ρ)
(4RmaxT |S|)

2|Ω|T+1

α2
·

ln(16|S|2|Ω|T β/∆) (4)

times, then the learner setsQT−1(hT−1, a) to the average
of the immediate rewards received (i.e.,R̂T−1(hT−1, a)),
and marks(hT−1, a) as “Known”. In the above expres-
sion, β measures the amount of memory required by the
learner, andρ measures the likelihood of the rarest history.
Equation 4 ensures that the maximal error in theQ values
on empty history does not exceedα with a probability at
least1 −∆ (Banerjee et al. 2012). The learner proceeds to
check if (hT−1, a) is “Known” for every a, in which case
hT−1 is marked “Known”. For an intermediate length his-
tory, ht, if everyhistory, ht+1, produced by concatenating
ht with (a, ω) for all combinations of action-observations
encountered is “Known”, thenht is marked “Known”. For

Algorithm 3 STEP(h, a, ω, r)

1: h′ ← (h, a, ω)

2: Ĥ(h, a, h′)← Ĥ(h, a, h′) + 1

3: R̂(h, a)← R̂(h, a) + r
4: Remaining(h)← Remaining(h) ∪ {(a, ω)}
5: Return SELECTACTION(h′)

Algorithm 4 ENDEPISODE(h,N)

1: if frequency(h, a) > N, ∀a ∈ A then
2: Known(h)← True
3: QUPDATE(h)
4: end if
5: while h 6= ∅ do
6: Let h = (h′, a, ω)
7: Remaining(h′)← Remaining(h′) \ {(a, ω)}
8: if Remaining(h′) = ∅ then
9: Known(h′)← True

10: QUPDATE(h′)
11: else
12: break
13: end if
14: h← h′

15: end while

a “Known” intermediate historyht, Qt(ht, a) is updated for
everya as

Qt(ht, a) = R̂t(ht, a) +
∑

h′

Ĥt(ht, a, h′)max
b

Qt+1(h
′, b)

The learner’s exploration strategy (Algorithm SELECTAC-
TION) is as follows. For a “Known” history, action selection
is greedy, i.e., theQ-maximizing action is selected. For a
history that is not yet marked “Known”, the least frequently
taken action,a, (ties broken randomly) is executed, such that
(h, a, ω) is not “Known” for at least oneω. The best re-
sponse learning algorithm is shown as Algorithm 1 and its
subroutines (Algorithms 2– 5). The learner freezes its cur-
rent policy when the empty history is marked “Known” (line
12, Algorithm 1), and signals to the other agent to start learn-
ing, while it executes its current policy without exploration.

Iterative MCQ-Alt
In learning the best reponse, an MCQ-ALT learner attempts
to cover every(h, a) encountered equally well, to guarantee
arbitrarily small errors in the value function. Figure 1 shows
a learner’s entire possible experience tree in a 2-action, 2-
observation,T = 2 scenario. MCQ-ALT would investN
samples toeveryleaf node in this experience tree. However,
in cases where some histories are rare, this becomes a sig-
nificant liability, since it requires a vast series of episodes
to collect sufficient (i.e.,N ) samples of such rare histories.
Furthermore, such histories possibly contribute little tothe
value function.

Apart from rare histories, there are at least two other rea-
sons why the value function may not need to be accurate



Algorithm 5 QUPDATE(h)

1: for a ∈ A do
2: Q(h, a)← R̂(h, a)/frequency(h, a)
3: if h is not full-length historythen
4: Q(h, a) ← Q(h, a) +

1
H

∑

ω|h′=(h,a,ω) Ĥ(h, a, h′)maxb∈A Q(h′, b)

5: end if
6: end for

to an arbitrary degree: (1) policies usually converge long
before value functions, and (2) most importantly, most part

Listen ListenA1

O1 O2

A2

O1 O2

A2A1 A1 A2A1A2 A2 A1

Experience tree

Policy

Figure 1: A learner’s experience
tree.

of the learner’s ex-
perience tree does
not appear in its op-
timal policy. In
Figure 1, a part of
the tree that consti-
tutes a valid policy
is shaded. Note that
a policy in this tree
can be constructed
by adopting exactly
one action child un-
der an observation
node, but all obser-
vation children nodes under a selected action node must be
adopted. If the policy in Figure 1 was the optimal policy,
then there would be little benefit to exploring the leaves
outside the shaded area to the extent ofN samples each.
However, without some exploration of such leaves, it is im-
possible to determine that they can be discarded with suf-
ficient confidence. The main idea of Iterative MCQ-ALT
(IMCQ-ALT) is to strike a balance between these conflict-
ing requirements. In particular, we deduce and utilize a cri-
terion that can adaptively discard actions (at different lev-
els of the experience tree) from further exploration,with-
out affecting the confidence in the Q-values that yield the
best response policy. Thus the quality of best response pol-
icy produced by both MCQ-ALT and IMCQ-ALT are the
same, while IMCQ-ALT returns the best response policy
faster than MCQ-ALT.

IMCQ-ALT performsT + 1 passes of MCQ-ALT learn-
ing, where in theτ th pass (τ = T . . . 0) it addsN/(T + 1)
samples, i.e., accumulates a total of(T + 1− τ)N/(T + 1)
samples, for each of the (increasingly selective) leaves inthe
experience tree. In theτ th pass (τ = T . . . 1), IMCQ-ALT
considers the actions at the(τ − 1)th level of a policy tree,
that appear suboptimal by its current estimate, and if an ac-
tion meets a confidence preserving criterion then that action
is removed (lines 5–6, Algorithm 7). This allows actions at
lower levels of the experience tree to be removed with rel-
atively fewer samples accumulated, while requiring that a
larger number of samples be seen at the leaves to remove
actions at a higher level. Removal of an action at a higher
level discards an entire subtree from further exploration and
focuses learning on more fruitful parts of the experience tree.
The last pass (τ = 0) ensures a full collection ofN samples

Algorithm 6 IMCQ-ALT(N)

1: for τ ← T . . . 0 do
2: Nτ ← (1− τ/(T + 1))N
3: ClearRemaining & Known
4: repeat
5: h← ∅
6: a←SELECTACTION(h)
7: Executea and receiver, ω
8: for t← 1 . . . T − 1 do
9: b←STEP(h, a, ω, r)

10: h← (h, a, ω)
11: Executeb and receiver, ω
12: a← b
13: end for
14: ENDEPISODE(h,Nτ , τ)
15: until Known(∅) = True
16: end for

Algorithm 7 IQUPDATE(h, τ)

1: Lines 1–6 from QUPDATE
2: a∗ ← arg maxa∈A(h) Q(h, a)
3: for a ∈ A(h) \ a∗ do
4: ǫ← Q(h, a∗)−Q(h, a)
5: if (ǫ > α(τ)) and (|h| ≥ τ − 1) then
6: A(h)← A(h) \ a
7: end if
8: end for

for each leaf that survives to this step, but performs no prun-
ing. The new learning algorithm, IMCQ-ALT, is shown in
Algorithm 6. All subroutines of MCQ-ALT must also be
modified to use an adaptive set of actions,A(h) for history
h, instead of the fixed action setA. WhileA(h) is initialized
to A for any observedh, actions can be removed later by a
modified version of Algorithm 5, as shown in Algorithm 7.
Algorithm IQUPDATE accepts an extra parameter,τ , to en-
sure that the action it removes is at the proper level (i.e.,
≥ τ − 1). This would have to be passed to it from IMCQ-
ALT, via ENDEPISODE(line 14 in Algorithm 6) which, then,
must also accept this extra parameter.

Another difference between IMCQ-ALT and MCQ-ALT
is that the greedy choice in SELECTACTION (lines 1–3 in
Algorithm 2) is omitted in all but the last pass, in order to
keep collecing samples below un”Known” histories to ben-
efit future passes.

Among related techniques, Monte Carlo Tree Search
(MCTS) algorithms perform similar planning for fully ob-
servable MDPs (Browne et al. 2012), or their multi-agent
variants for games. The prevalent pruning techniques ap-
plied to MCTS are different from ours, and depend on either
domain knowledge or visitation frequencies (Huang et al.
2010).

Analysis
Banerjee et. al. (2012) showed that the sample complexity
of each best response learning phase isO(T 3|A|T |Ω|3T−1)
which is consistent with the size of the belief space of alter-



nate best response as argued in (Nair et al. 2003). The belief
space consists of not only the unobservable state space, but
also the unobservable space of other agents’ policies.

We focus on sample complexity analysis of the best re-
sponse learning process. We denote levels in policy tree as
subscripts and the pass number as superscripts. E.g., an esti-
matedQ value at levelt in the policy tree computed in pass
τ in IMCQ-ALT is Qτ

t .

Derivation of α(τ)

In the following analysis we will use the max norm function,
i.e.,‖f − g‖ to representmaxx |f(x)− g(x)|. In (Banerjee
et al. 2012) the dependence of the error inQ functions on
the errors in estimateŝH and R̂ was established. In our
case, this error depends, additionally, on the pruning error
accumulated on all estimates that eventually back up into a
certainQ value. We first establish this dependence of the
error in theQ functions on the errors in our estimatesĤ and
R̂, as well as on the pruning error. We refer to the maximum
pruning error at levelt at the end of passτ as

ǫτ
A,t ,

{

max
h

| max
a∈A(h)

Q∗

t (h, a) − max
a∈A

Q∗

t (h, a)|, t ≥ τ − 1

0, 0 ≤ t ≤ τ − 2

where|h| = t. Note that passesτ lie in the rangeT . . . 0,
while t (the length of histories) lie in the range0 . . . T −
1. Therefore, in passτ , no pruning could have happened at
levelst ≤ τ − 2.

Lemma 1. Suppose‖Ĥτ
t −H∗

t ‖ ≤ ǫτ
H , and‖R̂τ

t −R∗
t ‖ ≤

ǫτ
R for all t in passτ , then at any step0 ≤ t ≤ τ − 2

‖Qτ
t−Q∗

t ‖ ≤ (T−t)ǫτ
R+(T−t−1)|Ω|Rmaxǫ

τ
H+

T−1
∑

t′=τ−1

ǫτ
A,t′

The most important intuition delivered by Lemma 1 is that
although the number of occurrences of pruning error may
multiply exponentially below a node, the total contribution
of this error is linear bounded (i.e.,

∑T−1
t′=τ−1 ǫτ

A,t′ ). It is also
worth noting that pruning error at a lower level can become
costless if it falls in the subtree under a suboptimal actionat
a higher level. Thus our estimate of the total pruning error is
truly an upper bound. Note that the errorsǫτ

R andǫτ
H can be

reduced with increased sampling, but|maxA(h) Q∗
t (h, .) −

maxA Q∗
t (h, .)| cannot be “reduced” the same way because

it is not directly based on Q estimates. Instead, we seek to
bound thelikelihood of this quantity being non-zero. We
will show that ultimately, this probability can, in fact, be
bounded by errors inQ estimates.

Note that maxA Q∗
t (h, .) − maxA(h) Q∗

t (h, .) ≥ 0,
and the only case when it is non-zero is whena∗ =
arg maxA Q∗

t (h, .) is wrongly removed fromA(h). In other
words,Qτ

t (h, a) − Qτ
t (h, a∗) > α(τ) for somea ∈ A, as

well ast ≥ τ − 1, according to line 5 of Algorithm 7. We
want to ensure that when an actiona∗ is removed by the
above test, it is highly unlikely that it is the optimal action.

We see thatQ∗
t (h, a∗)−Q∗

t (h, a)

= Q∗
t (h, a∗)−Qτ

t (h, a∗) +

Qτ
t (h, a∗)−Qτ

t (h, a) + Qτ
t (h, a)−Q∗

t (h, a)

< (Q∗
t (h, a∗)−Qτ

t (h, a∗))− α(τ) +

(Qτ
t (h, a)−Q∗

t (h, a))

< |Qτ
t (h, a∗)−Q∗

t (h, a∗)| − α(τ) +

|Qτ
t (h, a)−Q∗

τ (h, a)| (5)
Therefore, to limit the likelihood ofQ∗

t (h, a∗)−Q∗
t (h, a) >

0 for an actiona∗ that is being removed, it is sufficient to
limit the following probabilities

P (|Qτ
t (h, a∗)−Q∗

t (h, a∗)|) > α(τ)/2)

P (|Qτ
t (h, a)−Q∗

t (h, a)|) > α(τ)/2)
for t ≥ τ − 1. In general, it is sufficient to require that this
holds for everyQτ

t |t≥τ−1, i.e., the following probability is
limited

P (‖Qτ
t −Q∗

t ‖ > α(τ)/2) for t ≥ τ − 1.

(Banerjee et al. 2012) established equation 4 as a suffi-
cient input to MCQ-ALT to ensureP (‖Q0 − Q∗

0‖ ≤ α) ≥
1 − ∆. We assume that this value ofN is input to IMCQ-
ALT as well. In this paper we establish how to setα(τ) in
IMCQ-ALT such thatP (‖Q0

0 − Q∗
0‖ ≤ α) ≥ 1 − ∆ is

preserved after the final pass (τ = 0). We first define the
function

δ(t, τ) ,

(

τ + γ

γt+1

)

∆ (6)

for some γ > 1. Note thatδ(0, τ) =
(

τ+γ
γ

)

∆ and

δ(0, 0) = ∆. Using this function, we wish to set
P (‖Qτ

t −Q∗
t ‖ > α(τ)/2) < δ(t, τ), (7)

so that ultimately,P (‖Q0
0 −Q∗

0‖ > α) < δ(0, 0) = ∆.
Theorem 2. To ensure thatP (‖Q0

0 −Q∗
0‖ ≤ α) ≥ 1 −∆,

it is sufficient to set

α(τ) = 2α

s

„

T + 1

T + 1 − τ

« „

ln(16|S|2|Ω|T β/δ(0, τ)(1 − λτ ))

ln(16|S|2|Ω|T β/∆)

«

for some0 < λτ < 1, given the choice ofγ in equation 6.
β is the same as defined in (Banerjee et al. 2012).
Proof (sketch): From equation 7,P (‖Qτ

0 − Q∗
0‖ >

α(τ)/2) < δ(0, τ). To achieve thisα(τ)/2 Q-error,
we need to bound the likelihoodsP (‖R̂τ

t − R∗
t ‖ >

α(τ)/4T ), P (‖Ĥτ
t −H∗

t ‖ > α(τ)/4(T − 1)|Ω|Rmax) and
P (

∑T−1
t=τ−1 ǫτ

A,t > 0). Based on equation 5, it can be
shown thatP (ǫτ

A,t > 0) ≤ P (‖Qτ
t − Q∗

t ‖ > α(τ)/2).

Consequently,P (
∑T−1

t=τ−1 ǫτ
A,t > 0) < λτδ(0, τ), where

λτ = 1
γτ−1 −

1
γT . This allows a total probability mass of

(1− λτ )δ(0, τ) to bound the likelihoods of̂R andĤ errors.
Then following the proof strategy in (Banerjee et al. 2012),
the result can be obtained.

Asα(τ) decreases, pruning becomes more likely (line 5 in
Algorithm 7). Therefore, one would expect thatα(τ) should
decrease from one pass to the next, because the next pass
uses a greater number of accumulated samples at the leaves,
and can hence prune with greater confidence. This is borne
out from the expression ofα(τ) in the above theorem.
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Figure 2: Mean relative error plots for DEC-TIGER (left),RECYCLING-ROBOTS(middle) and BOX-PUSHING (right).

Experimental Evaluation
In order to establish the validity and usefulness of the
pruning criterion of IMCQ-ALT, we experimented in 4
benchmark Dec-POMDP tasks, DEC-TIGER (Nair et al.
2003), RECYCLING-ROBOTS (Amato, Bernstein, and Zil-
berstein 2007), BOX-PUSHING (Seuken and Zilberstein
2007) and MARS-ROVERS (Amato and Zilberstein 2009).
As in (Banerjee et al. 2012), we let the agents first learn
initial policies by concurrent reinforcement learning ignor-
ing their observations. Then the agents took turns to learn
best response to the others’ policies using MCQ-ALT and
IMCQ-ALT. Since the same initial policies were used for
both versions, we exclude the number of episodes devoted to
the initial policy learning (≤ 500,000 episodes in all cases)
in the plots.

We usedN = 10, 20, 50, 100, 200, 500. We
noted the number of episodes (≥ N |Ω|T−1|A|T ) taken
by MCQ-ALT and IMCQ-ALT, and the relative value er-
ror compared to the known optimal policies, calculated as
|val(policyoptimal)−val(policylearned)|

|val(policyoptimal)|
for each choice ofN .

We used half of the standard deviation of the rewards as
defined in the respective .dpomdp files as the value ofα,
to calculateα(τ) according to Theorem 2. Finally, all plot
points were averaged over 20 runs each.

Figure 2 (left) shows the result from DEC-TIGER for hori-
zonsT = 3, 4, 5. We see that IMCQ-ALT requires signif-
icantly fewer samples to return policy errors that are com-
parable to MCQ-ALT, verifying the main claim of this pa-
per. The saving in number of episodes ranges from 31% to
84% over allT, N pairs used. These numbers are calcu-
lated as(#episodesMCQ−Alt−#episodesIMCQ−Alt)∗100%

#episodesMCQ−Alt
. Fur-

thermore, the errors in general increase with increasing hori-
zon, as reported in (Banerjee et al. 2012). Interestingly, for
horizon 4 and especially horizon 5 the final error is lower for
IMCQ-ALT which is a benefit of focusing on more promis-
ing parts of the experience tree. We call this the “pruning
bonus”. This bonus would be absent whenever both algo-
rithms converge to the same policy, e.g., forT = 3 both
converge to the optimal policy.

Figure 2 (middle) shows the result from RECYCLING-
ROBOTSfor horizonsT = 3, 4, 5. Again we see significant

pruning, with the number of episodes saved ranging from
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Figure 3: Mean relative error plots
for MARS-ROVERS.

70% to 91%
over all T, N
pairs used. How-
ever, except for
horizon 3, the
“pruning bonus”
is essentially
absent. This is
probably because
in the other cases
there exist subop-
timal equilibria
very close to the
optimal, that at-
tract the alternate
hill climbers. In
other words, the
learners are prob-
ably converging
to suboptimal equilibria, consequently there is no pruning
bonus to be had. Also in this case the plots for the different
horizons are not as well separated as in Figure 2 (left). This
is a difficulty shared with the next two domains as well, and
the reason is small errors across the board.

Figure 2 (right) shows the result from BOX-PUSHING for
horizonsT = 2, 3, 4. Both MCQ-ALT and IMCQ-ALT
achieve 0 error (i.e., converge to the optimal policy) for
T = 2, 3, and we do see a pruning bonus forT = 4. Here
IMCQ-ALT saves between 65% and 78% of episodes com-
pared to MCQ-ALT. Similar results are seen in Figure 3,
where the number of episodes saved by IMCQ-ALT ranges
from 22% to 61%, indicating that MARS-ROVERS is a rela-
tively difficult problem to solve.

Conclusion
In this paper we have proposed an iterative pruning ver-
sion of a recent distributed Monte Carlo based reinforce-
ment learning algorithm for solving decentralized POMDPs,
to yield improved sample complexity without affecting the
confidence in the learned policies. We have theoretically es-
tablished a key parameter of this new algorithm, that guaran-



tees no worse (probabilistic) error rate as the previous algo-
rithm, despite pruning. Experimental results in 4 benchmark
domains show (near) optimal policies are learned with sig-
nificant pruning in most domains, saving upto 91% of the
episodes used by the previous algorithm. In the future, more
judicious use of samples will be explored, particularly ad-
dressing rare histories.
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