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ABSTRACT

We argue that A*, the popular technique for path-finding
for NPCs in games, suffers from three problems that are per-
tinent to game worlds: (a) the grid maps often restrict the
optimality of the paths, (b) A* paths exhibit wall-hugging
behavior, and (c) optimal paths are more predictable. We
present a new algorithm, VRA*, that varies map-resolution
as needed, and repeatedly calls A*. We also present an exten-
sion of an existing post-smoothing technique, and show that
these two techniques together produce more realistic look-
ing paths than A*, that overcome the above problems, while
using significantly less memory and time than A*.

INTRODUCTION

Path-finding for intelligent Non-Playing Characters or
NPCs (henceforth agents) is one of the classic problems in in-
teractive games. Traditionally, the predominant approaches
are either offline precomptuation (e.g., Floyd-Warshall’s all-
pair-shortest paths) or on-line path-finding with A* [5]. In
this paper, we focus on the latter approach, and address some
issues with A*, pertaining to the game community.

There are at least three issues with A*, particularly relevant
to gaming, that have not been addressed adequately, to the
best of our knowledge. These are:

• Although A* paths are theoretically optimal, the under-
lying grid structure of the walkable surface often lim-
its the optimality of the resulting path. For instance,
even if a straight line path exists between the source
and the goal nodes, the A* path may be segmented (see
Figure 1, left & middle). The resulting paths look un-
realistic [8]. The game industry handles this problem
by post-processing the A* path, by techniques such as
rubber-banding and smoothing [1, 9]. Our position on
this approach is that if we are to rely on post-processing,
then it might be sensible to spend less time on the A*
search. Other relevant approaches, such as Theta* [8]
and Field D* [4] solve this problem by propagating in-
formation along the edges of the grid without restricting
the paths to grid edges, but they are no faster than basic
A*, and also suffer from other problems, noted below.

• A* (as well as Theta* and Field D*) produces the so-
called wall-hugging behavior. Shortest paths tend to
skirt walls or other obstacles while passing as close to
them as possible. This leads to agents hugging walls
while navigating around them. See Figure 1 (right)
for an illustration. This problem is typically dealt with
by surrounding obstacles with a pseudo-obstacle band
where agents are not allowed to tread. However, this
solution calls for tedious manual augmentation of the
maps, that we seek to avoid.

• A major consequence of the optimality of A* paths
is that they tend to be unique, and hence predictable.
Game players who can predict the possible paths that
AI agents can take, can find it easy to lay ambushes
or otherwise utilize that predictability to their advan-
tage, ultimately leading to monotonicity and a reduc-
tion in the players’ interest over time. However, if the
AI agents can make their paths less predictable, it can
produce more challenging and interesting game play on
the part of the players.

Figure 1: Some problems with A* in game environments.
Left & Middle: Optimality of A* paths are constrained by
the underlying grid; Right: Wall hugging with A*.

Clearly, less predictable paths are unlikely to be optimal.
We prescribe sacrificing optimality for greater variation in
game-play and longer-lasting player interest. It is noteworthy
that forsaking optimality does not make path-finding trivial.
A game agent still needs to find a realistic looking [8] path
between the start and goal locations. In this paper, our objec-
tive is to prescribe a technique that

• is faster than A* in producing a quick, dirty (but valid)
path,

• employs improved rubber-banding technique to refine
this path into a realistic looking final path,

1



• is highly unlikely to produce wall-hugging behavior,

• can produce paths that are unpredictable to the players.

We introduce the Variable Resolution A* (VRA*) algo-
rithm for 2D grid surfaces. The idea is to gradually raise the
resolution of the map as needed, to do A* searches, instead
of applying A* to the maximum resolution map right-away.
The idea is similar to iterative deepening A* (IDA*) [10], but
instead of increasing cutoff traversal costs, we use increasing
resolution in each iteration. It is likely that a lower resolution
will yield a valid path, and the total number of expansions of
all A* searches up to that resolution may be fewer than a full-
blown A*. The justification comes from existing analysis of
IDA*, where the last iteration is usually almost as expensive
as the total cost. So if VRA* manages to find a path with less
than the full resolution, then the saving should be substantial.
The resultant path may or may not be optimal. For instance,
in Figure 1(a), VRA* will produce a valid path with the low-
est possible resolution (viz. two cells/nodes, one including
the start point, and the other including the goal), and this
path will also be optimal compared to the longer path pro-
duced by applying A* on the highest resolution map. How-
ever, in many cases, the path produced by VRA* could be
longer than A*, and less predictable.

A second contribution of this paper is to extend the rubber-
banding approach from [1] to paths that contain line seg-
ments, rather than paths that are sequences of cells on a grid
map. Due to lack of space in this paper, we handcraft just one
map, that showcases the characteristics of VRA*, and show
that this rubber-banding technique produces a reasonable fi-
nal path.

BACKGROUND: A* SEARCH

A* [5] is one of the most popular path-finding techniques
in interactive games. It is fundamentally an informed search
technique [10], using problem-specific knowledge to find so-
lutions more efficiently than uninformed/blind search. Given
a graph, a source/start node and a goal node, A* attempts
to find a minimal-cost path between the source and the goal
nodes, by using an evaluation function to select the lowest
scoring nodes for expansion, i.e., the nodes that are most
promising to be on the optimal path. Expansion of a node
produces its children (i.e., adjacent nodes), and an accumu-
lation of such nodes that have not been expanded themselves,
is called the “fringe”. Usually the fringe is stored in ascend-
ing score values in a suitable data structure, such as a min-
heap. Heuristic functions (constructed from domain knowl-
edge) are often used as the evaluation functions (h(n) for
node n). They yield the estimated cost of the cheapest path
from a given node to a goal node. An admissible heuris-
tic [10] never overestimates the cost to reach a goal. It as-
sumes the cost of solving a problem is less than it actually
is. Using an admissible heuristic in an informed search al-
gorithm prevents exploration of paths that are costlier than
the optimal path. The total cost (or the evaluation function)
of a node n is given by f(n) = g(n) + h(n), where g(n) is

the actual cost of the path from the start node to n. Simply
put, the cost g(n) takes into consideration moves made up to
the current point, while the heuristic attempts to estimate the
future cost, usually considering the proximity of the current
location to the destination. The heuristic can be calculated in
several different ways, but the commonest in game program-
ming is the Euclidean distance, since it is guaranteed to never
overestimate the actual path length, whether 4-connectivity
or 8-connectivity is considered.

COMPLEXITY REDUCTION OF PATH-FINDING

In path-finding, there are many cases in which a large num-
ber of neighboring nodes in a region do not carry much dis-
tinctive path information; e.g., if the map is such that an NPC
must cross a swamp on the way to its goal, several paths
across the swamp may have only slightly different costs. It
may be wasteful to analyze the swamp at a fine resolution,
but this cannot be avoided in an A* search. Although A*
is a fast and popular method for traversing these types of
spaces, there is still room for improvement. In fact, hierarchi-
cal A* [6] exploits this characteristic to abstract such similar
nodes into larger zones, to reduce the number of nodes, and
consequently, the complexity of A* in a bottom-up fashion.
However, this requires either the prior knowledge, or prior
exploration of the terrain. In contrast, we propose a top-down
approach, called VRA*, that exploits low resolution wher-
ever possible, and only uses higher resolution where neces-
sary (such as in the vicinity of irregular obstacles). VRA*
only acquires enough terrain knowledge to find a valid path.

Similar top-down approaches have been used in the past.
Tozour [11] has used quad-trees for efficient path-finding. In
this approach, the map is divided into four rectangles, and
then each rectangle that includes any obstacle is further sub-
divided into four rectangles, and this process continues un-
til no further subdivision is necessary. Since paths are con-
strained to pass through the centroids of any quad, they of-
ten look unrealistic. One solution to this problem has been
known in robotic navigation. Framed quad-trees [3] impose
high resolution cells along the borders of large quads, but
the resulting improvement in path quality comes at the price
of increased number of search nodes. Moreover, the quad-
tree approach also requires prior analysis of the terrain, much
of which may be unnecessary unless a search looks through
these regions. In contrast, VRA* does not require any prior
analysis. It creates a variable resolution map on the fly, and
only resolves those regions that are pertinent to the path be-
ing searched. On the flip-side, VRA* does suffer from the
same limitation to the path quality as quad-trees, but we pro-
pose an extended rubber-banding approach to mitigate this
problem, instead of increasing the search-cost as in framed
quad-trees.

The basic idea of increasing the search resolution comes
from the Parti-game algorithm [7]. This algorithm exploits
techniques from game theory and computational geometry
to adaptively partition a high dimensional space in variable
resolution, for fast reinforcement learning. To the best of



our knowledge, this idea has never been applied in conjunc-
tion with A*. We exploit a line rasterization technique from
computer graphics for this adaptation, and show that along
with our proposed rubber-banding for post-smoothing, we
can produce reasonable-looking paths at a lower cost than
A*.

VRA*

In this section we present an algorithmic overview of
VRA*. The details of the individual steps are presented in
subsections later. We call the search space that A* would
normally search on, the highest resolution search space (or
HRSS), and it can be of any size. Before running VRA*, as
is customary in A*, a cost table is generated based on the
connectivity of the graph at the highest resolution. By using
connectivity data from the highest resolution as used by A*,
it is ensured that detecting obstacles at lower resolutions will
be consistent between A* and VRA*. After generation of the
cost table, VRA* splits the search space into two nodes: one
containing the origin point, and the other, the goal point. The
area of these cells need not be identical; the important part is
only that there are two cells. This lowest resolution gives the
current resolution search space (or CRSS) at the start.

Following these preprocessing steps, an A* search is per-
formed on the CRSS (i.e., the two node search space). The
cost of traveling between nodes at the CRSS cannot be sim-
ply looked-up as in A*, because the cost table corresponds
to the HRSS, not the CRSS. To solve this problem, we use a
line rasterization approach at the HRSS, to compute the link
costs at the CRSS. If beginning at the start point, the ras-
terized cost starts from that point; otherwise, the rasterized
cost starts from the centroid of the current cell. Similarly,
if aiming for the goal, the rasterized cost ends at that point;
otherwise, the rasterization aims for the centroid of the target
cell.

The rasterization produces both the link costs between
traversable nodes at the CRSS, as well as an indication of
which nodes do not have any link between them (i.e., infinite
cost links). Thus it produces a graph with all link costs at
the CRSS. If A* on this graph fails to return a path, then one
or more cells are split, to produce a revised CRSS. Since the
new CRSS is only slightly different from the previous CRSS,
some rasterized costs that are unchanged can be reused, but
others have to be re-computed. Splitting of selected nodes in
the search space would continue until either a path is found,
or the highest resolution is reached, i.e., CRSS = HRSS. If
no path can be found at the highest resolution, then no path
exists. However, we expect to find a valid path, if it exists,
long before the highest resolution is reached.

Cost Table Generation

Before any code is run related to VRA* or A*, obstacles
must be placed on the HRSS grid, as well as the start and
goal points selected. After this is complete, the HRSS is pro-
cessed into a two-dimensional array that serves as a cost ta-
ble. The array indices corresponds to the (x,y) coordinates of

a tile of the HRSS. A tile is either traversable, or an obsta-
cle tile. Traversing between open tiles carries unit (or user-
defined) cost. Tiles that have obstacles on them are given
infinite cost. Since all the obstacle checks are done in this
preprocessing step, computation time is saved during run-
time because the algorithm need only index into the cost ta-
ble to check for collisions, instead of running an obstacle test
several times.

Generating the Start and Goal Nodes

Start and goal nodes are generated by computing the mid-
point between the start and goal points, and then comparing
the x and y distances between the start and goal points to de-
termine which axis to split on. If the x distance is greater,
then the split line will be generated at the x coordinate of the
midpoint, and likewise if the y distance is greater. This parti-
tions the map into two regions, and creates our initial nodes
in the search space. A* will be run on this CRSS but in all
likelihood, a straight path will not exist between the start and
the goal nodes, unless all obstacles are out of sight between
these nodes.

Rasterized Link Cost

The computation of the rasterized link cost follows the
well-known Bresenham’s line rasterization technique [2], to
find a rasterized path between the centroids of two nodes on
the CRSS. Bresenham’s line algorithm has been popular in
raster graphics, to render a line on the screen pixel by pixel.
In our case, the cells in the HRSS act as the pixels.

The rasterized path is a sequence of cells on the HRSS that
the agent would have to step through, to travel between two
nodes in the CRSS, in an approximately straight line. How-
ever, there could be obstacle cells on this path, but this can
be easily checked with the cost table. If the cost look-up at
any point is infinite, this means we have encountered an ob-
stacle, and the nodes being tested are not connected. The test
returns failure, and the nodes are marked for splitting. If the
cost is not infinite, then the test succeeds, and a path between
the centroids of the two nodes (in the CRSS) exists. The cost
at each cell on the rasterized path, from the HRSS cost-table,
is summed and used as the overall cost of traversal between
the two points.

Splitting Cells for Variable Resolution

As mentioned before, the cell splitting method was inspired
by the work of Moore and Atkeson in their Parti-game algo-
rithm [7]. Their algorithm would start with the lowest pos-
sible resolution of the search space, and increase resolution
of cells when and where necessary, by splitting cells. These
splits would occur around obstacles, or as they described, on
the borders of winning and losing cells. Winning cells were
cells that were traversable, and losing cells were cells of in-
finite cost. Only splits that were needed were performed,
and the algorithm continued on its way until the goal was
reached.



VRA* puts this same logic to use with a little variation: it
only splits one cell. The choice to split just one cell was made
as an optimization because splitting several cells is often un-
necessary in VRA*, because we are performing A* searches
on each search space instead of just continuously navigating
the same search space like Parti-game does. Cells marked
for splitting by the line tests that occurred in the previous A*
search are put into a list. If a path is not found, then before
the next A* search is called, only the first cell on the list is
split. This cell is either a cell along an obstacle, or a cell
containing an obstacle. The cell is split into two, along its
longest axis, and the two new cells are added to the list of
cells to produce the new CRSS for the next A* search. The
centroids of each new cell are computed and stored so the
rasterization test has a target point to start from and aim for,
in its execution. Figure 2 depicts an example of a cell split

Figure 2: Illustration of the cell-splitting process.

before and after an A* search. On the left is the initial VRA*
search space: a start point (in red), a goal point (in green),
and an obstacle (in black). The start and goal have their own
cells (outlined in yellow), and only two cells are present at
this point. Notice that the two cells are not of equal areas,
rather the partition occurs along the middle of the y-distance
between them (because the y-distance is larger than their x-
distance). Since a straight path does not exist between these
two points, both cells will be marked for splitting, but ulti-
mately only one will be split. Assuming that this is the top
cell, on the right, the end result of the split is shown. As ex-
plained above, the non-start and non-goal cells’ centroids are
used as the points of interest for the rasterization test.

Finding Neighbors

In A* on a uniform grid, finding the neighbors of a cell is
simple. In 4-connectivity cases, this calls for simply check-
ing the 4 neighboring directions of the current node. If they
are reachable, then they are linked up to the parent node
as neighbors. The same holds for the 8-connectivity cases,
when incorporating diagonal neighbors. In VRA*, however,
nodes can be of varying sizes, and there may no longer be any
simple relationships at their junctions. For instance, a cell
could have one or many neighbors to its left. So the edges of
nodes must be checked for overlap, to identify neighbor sta-
tus, and then the rasterization test is called afterwards as the

final check on neighbor connectivity. Both checks perform
very fast in our VRA* implementation, and account for very
little in the overall path-finding times reported.

POST-SMOOTHING

The paths produced by VRA* are non-optimal. In most
cases, it is possible to improve the paths through the process
of post-smoothing as applied to A* [1]. We use the basic idea
of this post-smoothing algorithm (which was developed for
the highest resolution grid) and extend it to VRA* where the
final grid may have different resolutions in different regions.
Assuming that VRA* produces the path 〈p1, p2, . . . , pn〉, the
post-smoothing algorithm accepts this path as input and re-
turns an edited path where p1 and pn (i.e., the start and goal
points) are left unchanged, but some intermediate points are
possibly changed or deleted. The main logic is similar to [1],
where if a line-of-sight exists between pi and pi+2 then pi+1

can be eliminated, to produce a shorter path (rubberbanding).
We replace the line-of-sight test with the rasterization test.

If pi+1 cannot be deleted as stated above, then unlike [1],
we try to shift this point as close to pi+2 as possible, us-
ing a binary-search on the line segment (pi+1, pi+2). This
also reduces the path length by the triangle inequality. It is
also possible to search for a replacement of pi+1 on the line
segment (pi, pi+1), or just call the post-smoothing procedure
twice, once with the original path 〈p1, p2, . . . , pn〉, and then
again with the reversed processed path 〈pn, , . . . , p1〉. In the
next section, we show the final path with and without post-
smoothing, to demonstrate its effect.

EXPERIMENTS

We have tested VRA* on several handcrafted maps. We
present the results of applying just A*, VRA* without post-
smoothing, and VRA* with post-smoothing on one of these
maps (due to space constraint), along with the associated
numbers such as total memory used, number of A* searches
invoked by VRA*, total number of all expansions (over all
A* searches) used by VRA* as well as regular A*, total path
build time, and also the rasterization test and splitting times
(including neighbor finding) used by VRA*, for comparison
of A* and VRA*. The difference in the quality of path pro-
duced by VRA*, without and with post-smoothing, testifies
to the efficacy of our extended rubber-banding approach.

In the map shown in Figure 3 (for both A* and VRA*),
the start point is shown in red, the goal point in green, the
obstacles in black, the nodes in the closed list in red, the
nodes in the open list (fringe) in green, and the final path
in blue. In Figure 3, although the A* path is truly optimal,
its wall-hugging behavior is most acute. In part (b), it is
clear that VRA* has gotten rid of the wall-hugging behavior,
but the paths are clearly not realistic-looking for intelligent
agents. However, after applying the post-smoothing steps,
the paths from VRA* (part (c) in the figure) looks more real-
istic. This map highlights that the result of VRA* can be less
predictable than A*, since the path follows the opposite arm
of the ’H’, compared to A*. If a player had laid traps along



(a) (b) (c)

Figure 3: The result of applying A* (a), VRA* without post-smoothing (b), and VRA* with post-smoothing (c).

Table 1: Comparison of figures of merit between A* and VRA*, for Figure 3.

A* VRA*
Memory (bytes) Expansions Total time (sec) Memory (bytes) Expansions Total time (sec)
348192 316 0.141 67428 29 0.01

the expected arm, (s)he would be surprised that the agent has
snuck up behind him/her. We believe this element of sur-
prise can be sufficiently appealing to players, to compensate
for the loss of optimality.

A comparison of the figures of merit for the H-map in Fig-
ure 3, is shown in Table 1. We see that VRA* uses an order
of magnitude less memory than A*, and produces a post-
smoothed path in time that is an order of magnitude lower
than A*. Although not shown in this paper, the result was
similar in many other maps. Note that the number of expan-
sions for VRA* is the total over all calls to A* that it makes.
Also note that the total time under VRA* is the total time it
takes to produce a path, and it includes all of the rasterization
tests, splitting time and the time to compute neighbors in an
irregular, variable resolution map. Moreover, the time differ-
ence between unprocessed and post-smoothed VRA* paths
is minuscule. The key to the time saving with VRA* is the
low number of cells that it has to process.

SUMMARY

In this paper, we have have presented a new algorithm,
VRA*, for path-finding on game maps, exploiting a variable
resolution, in a top-down fashion. We augment this tech-
nique with a post-smoothing approach that extends an ex-
isting approach. Experiments on some hand-crafted maps
show that VRA* uses significantly less time and memory,
and along with the post-processing technique suggested, it
produces realistic-looking paths that overcome some of the
problems with A*. In the future, we intend to study VRA*
more systematically on maps from actual games (such as
Baldur’s Gate), and compare its performance to several vari-
ants of A*.
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