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Abstract—Cloud computing environments offer malicious 
users the ability to spawn multiple instances of cloud nodes that 
are similar to virtual machines, except that they can have 
separate external IP addresses.  In this paper we demonstrate 
how this ability can be exploited by an attacker to distribute 
his/her attack, in particular SQL injection attacks, in such a way 
that an intrusion detection system (IDS) could fail to identify this 
attack. To demonstrate this, we set up a small private cloud, 
established a vulnerable website in one instance, and placed an 
IDS within the cloud to monitor the network traffic. We found 
that an attacker could quite easily defeat the IDS by periodically 
altering its IP address.  To detect such an attacker, we propose to 
use multi-agent plan recognition, where the multiple source IPs 
are considered as different agents who are mounting a 
collaborative attack. We show that such a formulation of this 
problem yields a more sophisticated approach to detecting SQL 
injection attacks within a cloud computing environment. 

Tracks: Computer Security (Hacking techniques and related 
issues, Intrusion detection systems, Malware analysis, Intrusion 
detection); Security Applications (Cloud computing security) 

Keywords—cloud computing; Distributed Attack; Eucalyptus; 
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I. INTRODUCTION 
Cloud computing offers new opportunities for software 

distribution, resource allocation, convenience, and information 
storage and security for users, but it also creates new 
opportunities for malicious users to penetrate security layers 
and damage, destroy or steal data of other users. One 
advantage that a cloud computing environment offers to 
malicious users is the ability to spawn multiple instances of 
cloud nodes that are similar to virtual machines, except that 
they can have separate external IP addresses. In this paper we 
demonstrate how this ability can be exploited by an attacker to 
distribute his/her attack, in particular SQL injection attacks, in 
such a way that an intrusion detection system (IDS) could fail 
to identify this attack. To demonstrate this, we set up a small 
private cloud using the Eucalyptus [10] cloud environment, 
established a vulnerable website in one instance, and placed an 
IDS (open source OSSIM [11]) within the cloud to monitor 
the network traffic. We found that an attacker, using a freely 

available SQL injection tool (Havij) could quite easily defeat 
OSSIM by periodically altering its IP address, i.e., by hopping 
from one instance to another in the cloud. 
  

To detect such an attacker, we propose to use multi-agent 
plan recognition [1][2][4][5], where the multiple source IPs 
are considered as different agents who are mounting a 
collaborative attack. We show that such a formulation of this 
problem yields a more sophisticated approach to detecting 
SQL injection attacks within a cloud computing environment. 
  

II. RELATED WORK 
In the past, very little work has been done to study security 

issues and strategies in a cloud computing environment. A 
paper titled “Digital Forensics for Eucalyptus” [9] considered 
security vulnerabilities in a Eucalyptus cloud, and our work 
can be considered as an extension or a continuation of that 
work, since we not only address exploitation of some 
vulnerabilities of Eucalyptus cloud, but also how to detect a 
resulting attack, where existing IDS fail. 
 

SQL injection continues to be a threat and is discussed in 
depth in "A classification of SQL-injection attacks and 
countermeasures” [3]. Although multiple methods exist to 
prevent or detect SQL injection attempts, these methods tend 
to focus on single actions.  It can be difficult to differentiate a 
single action of an attack from normal traffic, so Security 
information and event management programs (SIEMs) try to 
correlate multiple activities with the plan of an attacker [6]. 
SIEM directives typically look for a pattern of activity from a 
single user to increase the reliability of an alert, but do not 
consider whether the actions of multiple agents have 
collectively achieved a malicious goal. 
 

Multi-agent plan recognition [1][2][4][5] (MAPR) has been 
formalized and studied recently in abstract and theoretical 
settings, and to the best of our knowledge it has not been 
applied to any realistic cyber-security problem. Hence in this 
respect our work constitutes the first practical application of 
MAPR. 



III. DESCRIPTION OF SETTING 
In this section we describe how the various components of 

our system are set up, and how they operate. In succession, we 
will describe the Eucalyptus cloud setup that we used, the 
Havij SQL injection tool and the network traffic sniffer Snort, 
which is used as a sensor by the security event manager 
OSSIM to generate its alerts. Finally we describe how a 
simple strategy of switching source IP address can defeat 
OSSIM. 

A. Eucalyptus Cloud 

 
Fig. 1. The Eucalyptus Cloud Environment 

The cloud environment on which this work is based is 
shown in Fig. 1. It contains three nodes, the head node – the 
manager of all communication with the external world – and 
two other nodes that offer various computational and storage 
resources to users. The communication between the head node 
and the other nodes are via an ethernet switch.  An IDS 
(OSSIM) sniffs all packets passing through this switch. This 
gives OSSIM a vantage point to monitor any external attack 
on resources within the secondary nodes. In particular, we 
establish a vulnerable website within a VM in node 1. Fig. 1 
also shows users outside the cloud accessing the cloud 
resources through the head node.  Our attack computers were 
located outside the Eucalyptus cloud, but still able to 
compromise the database inside the cloud node. 

B. Havij 
 In order to demonstrate an attack we used a program called 
Havij.  Havij is a freely available SQL injection tool.  SQL 
injection is the process of inserting arbitrary SQL code into a 
form whose input is queried against a SQL database.  The form 
expects a user input, such as a username field on a login page, 
but if the text is not carefully sanitized a malicious user may 
place SQL commands into the field and cause the database to 
execute unintended commands. Havij facilitates this sort of 
activity by discovering the important field names needed for 
many SQL commands: database names, table names, and the 
columns of the tables.  Havij can also reveal the contents of an 
unsecured database.  It does this by first issuing a series of if-
statements that test the length of field names, and then test the 
numerical value of the ascii characters representing individual 
characters of field names. Havij cannot ask the SQL database 

for the values directly, so it uses these comparisons to perform 
a binary search against a table of ascii numerical values.  Each 
comparison will usually return zero immediately if false, but if 
true then an expensive MD5 benchmarking will be performed 
on a given string whose runtime will be reported to Havij. 
Based on this runtime, Havij can detect the binary outcome of 
the comparison. Fig. 2 shows a partial example of this process. 
The statements containing “if (Length” are part of a single 
binary search to determine the length (in this example 5) of the 
name of the database. The subsequent statements containing 
“if (ascii(substring” attempt to  find the 5 characters 
one by one. The last statement of the form “if 
(ascii(substring((database()),x,1))=y,BENC
HMARK…” that contains =y, marks the end of the process of 
finding the xth character. In this example, the 1st character has 
been determined to be “d” – the ascii character with code 100. 
The search for the 2nd character starts next, but is not 
completed in Fig. 2. 

 

Fig. 2. Sample of (partial) tcpdump of a Havij attack formatted to be 
readable 

 Sometimes, perhaps due to delays in processing by the 
database, Havij receives non-zero runtimes for false statements 
that cause the binary search to go out of range or return a 
wrong length or character.  This is usually inconsequential, as 
the search may be run again and comparing two searches 
allows the operator to fill in missing or wrong characters.  In 
order to describe the database, Havij first runs these searches 
for length of the database name.  Next it will perform binary 
search for that number of characters to determine the database 
name.  Once it has the database name it can issue statements to 
determine the number of tables in the database.  From there it 
will find each table name in a similar manner to the way it 
finds the database name, targeting the length of table names 
first and then each character of the table names.  It may then do 



this for column names in each table, and then for data 
contained in the table.  Once the structure of the database is 
known, a hacker may execute arbitrary commands by filling in 
the appropriate values. 

 Fig. 3 shows an attack where Havij has determined the 
length of the database’s name to be 5, and then conducted 5 
separate binary searches for the characters in the database’s 
name, discovering the name “dummy”. Fig. 4 shows an 
advanced stage of this attack where Havij has discovered the 
name of a table (“users”) in the database “dummy”, and used 
it to discover the three field names “user”, “email” and 
“password”. This attack can be manually continued through 
Havij, by selecting the columns in Fig. 4, and clicking 
“GetData”, to reveal the contents of the table, potentially 
compromising sensitive data. 

 

Fig. 3. Havij after finding the name of our database “dummy.” 

C. Snort 
We decided to use the popular packet sniffer Snort to detect 

these attacks [8].  Snort compares the content of packets 
against a library of rules, and upon finding a packet whose 
contents match a rule, may raise an alert, log the packet, drop 
the packet, or perform some user defined function. With 
appropriate rules, Snort easily detects the Havij attack, but the 
functionality of Snort is greatly diminished by the large volume 
of alerts it raises.  For example: our Snort rule library checks 
the packet content for the “BENCHMARK” command that Havij 
issues to check the results of its binary search.  This causes 
Snort to alert hundreds of times for one Havij attack.  This 
problem is worse if valid traffic can contain suspicious content.  
For example, the character “’” is often needed in SQL 
injection commands to end the query that is intended to run and 

allow the arbitrary commands to be inserted, but “’” may also 
be part of valid names like “O’Reilly”. A snort rule that 
checks for “’” in the packet will alert on the name 
“O’Reilly” unless additional conditions are added to the 
rule.  Each additional condition to reduce false positives makes 
the rule easier to defeat. This results in a tradeoff between 
reducing false positives and decreasing detection rate.  Since 
Snort only considers one packet at a time, it is very difficult to 
avoid false positives.  This is where SIEMs come in. 

 

Fig. 4. Havij after identifying each column in the users table. 

 

D. SIEM/OSSIM 
SIEM stands for Security Information and Event 

Management.  A SIEM uses tools like snort to detect various 
low level events, but interprets the results at a higher level 
before making alerts to the operator.  Companies are 
increasingly using SIEM solutions to meet regulations and 
increase security [7]. We used the open source SIEM OSSIM 
for this project.  OSSIM uses what its creators call a 
correlation engine to reduce false positives.  The correlation 
engine relies on user created correlation directives to determine 
when to raise an alert.  A correlation directive takes data from 
one or more sensors, like Snort, and tries to match them to 
patterns of malicious activity by organizing the data into 
correlation levels.  The first level is always a single occurrence 
of a suspicious activity.  Instead of alerting the operator 
immediately, the correlation directive moves to level two 
which will have a set of conditions and a timeout.  If the 
conditions of level two are met before the timeout, the directive 
will elevate to level three and begin trying to meet a new set of 
conditions with a new timeout.  The user defines how reliable 



 

Fig. 5. Snort activations and correlation level 3 

each level is in indicating an attack, and this value along with 
the user assigned value of the assets that the SIEM is 
monitoring determines when an alert is actually raised.  While 
the Havij attack generates hundreds of lower levels alerts, the 
correlation engine raises only one alarm. Fig. 5 shows the 
directive accumulating multiple snort activations while the far 
right column displays the correlation level of 3 where the 
single alert is raised. 

This directive generates an alert at level three.  It is activated 
by Snort detecting the BENCHMARK command in the packet 
content.  Upon initial detection of the command and elevation 
to level two, it looks for fifty activations in 6 seconds between 
the same source and destination IPs that activated level one.  If 
it sees fifty activations before the timeout, an alert will be 
raised and it will elevate to level 3 where it attempts to collect 
1000 activations in the next 10 seconds between the same 
source and destination IPs.  This directive easily picks up on a 
Havij attack, which generates hundreds of BENCHMARK 
commands within a few seconds in order to perform the binary 
searches. The details of the directive appear in Fig. 6. 

 

 

Fig. 6. The OSSIM correlation directive fired upon Havij attack 

E. Simulating a Directive 
Unfortunately, although OSSIM worked expectedly with 

the default conditions of a Havij attack, we had difficulty 
getting it to perform consistently in a distributed attack 
scenario. This has more to do with the setup of OSSIM, rather 
than its operation. Due to limited resources and time, we chose 
to simulate the directive of Fig. 6 with a python script and a 
tcpdump file.  Tcpdump is a utility that captures traffic across a 
network in a widely used format.  We used tcpdump to capture 
traffic from an attack.  We then used a script to create a log of 
all the packets that contained the BENCHMARK command to 
simulate the snort activations. Using this data, our script 
counted up the number of activations before the timeout for 
each IP, elevating to level three in the same way that the 
OSSIM correlation would.  An alert was then raised if enough 
activations were found.  This is shown in the top part of Fig. 8, 
where 150 events were detected within 6 seconds leading to the 
outcome “Attack Confirmed”.  

Next, to simulate a distributed attack, we modified the IP 
addresses in the attack traffic so that after every 20 packets the 
IP would change, and these changes cycle within a set of 6 
distinct IP addresses. This is a realistic simulation of a 
distributed attack, especially in a cloud computing 
environment, where a user can launch multiple instances with 
distinct IP addresses. By contrast, multiple VMs on a single 
machine do not acquire distinct external IP addresses (but they 
do acquire distinct internal addresses). After distributing the 
attack across the 6 distinct IP addresses, the script was still able 
to detect each attack, but since activations for any single IP 
address never exceeded the conditions, each distinct source IP 
remained at level two and raised no alarm. This is shown in the 
middle part of Fig. 8, where each source IP address was 
exonerated as “False Alarm”. However, the total number 
of packets sent by any single IP address is not under 50 (as 
shown in the bottom part of Fig. 8 for the single source 
137.24.100.201), indicating that it is the temporal 
staggering of the packets that defeats level 2 of the directive, 
not a straightforward distribution of the packets among 
multiple sources which would make each source count fall 
under the threshold of 50 packets.  

While a straightforward remedy to the above distributed 
attack scenario is to ignore the source IP addresses (which  



 
Fig. 7. The OSSIM correlation directive shown in Fig. 6 is the only incident/alarm that OSSIM fires upon Havij attack. 

 
entails a simple modification of the directive of Fig. 6), it is 
conceivable that several independent nominal users could 

 

 

Fig. 8. Top: The attack from a single IP source, that raises an alert from the 
correlation angine. Middle: Attack spread across 6 source IP addresses.  
Events are detected but level 2 is not passed for any source, so no alert is 
raised by the correlation engine. Bottom: A single IP source sends more than 
50 packets (210 packets) in all, showing that level 2 was defeated by temporal 
staggering of the packets. 

actually be performing a similar pattern of activities, raising 
the possibility of false alarms. In general, for any directive 
expecting x activations within time t before raising an alarm, n 
activations could be spread over more than (n/x) IP addresses 
such that an IP address is not reused before t, where lowering 
x makes it harder to slip past but more likely to raise false 
alarms.  We propose to delve deeper into the (distributed) 
activities themselves, than most IDSs do, to detect a malicious 
pattern. 

IV. MULTI-AGENT PLAN RECOGNITION 
Multi-agent plan recognition (MAPR) refers to the problem 

of explaining the observed behavior trace of multiple agents 
by identifying the (dynamic) team-structures and the team 
plans (based on a given plan library) being executed, as well 
as predicting their future behavior [1][2]. 
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Fig. 9. Multi-agent blocks world example. 

     We first illustrate MAPR in a multi-agent blocks word 
domain, shown in Fig. 9, Fig. 10, and Fig. 11, using standard 
PDDL operators. In Fig. 9 we see two teams of robotic arms 
assemble (i.e., spell out) the goal words ``TAR'' and ``AXE'' 
from separate stacks, starting from the (not necessarily) same 
initial configuration. Fig. 10 shows the trace of 6 steps of 
activities of the 4 robotic arms available to the (remote) 
recognizer, who is not aware of the team-structure (i.e., the 
mapping of agent-id to stack-id). This assumption partly 
models the realistic incomplete information under which the 
recognizer must operate. While arms 1 and 2 appear to jointly 
assemble ``TAR'', and arms 3 and 4 appear to jointly assemble 
 ``AXE'', arms 2 and 3 seem to assemble ``TAX'' as well, 
creating ambiguity for the recognizer. The key insight is to 
partition the trace into non-overlapping team plans, such that 
invalid teams (such as the supposed team of agents 2 and 3) 
fail to yield a complete partition hypothesis. In this example, 
agents 1 and 4 would be executing illegal plans individually, 



 
Fig. 10. Trace of activities of 4 robotic arms, shown in Fig. 9 

 or building separate stacks as a team, neither of which yields 
a valid partition hypothesis. Fig. 11 shows a (non-unique) plan 
from the library, for start state in Fig. 9 and goal ``TAR'', in 
the form of a plan graph. This is a graph based on the partially 
ordered set of steps needed to achieve a goal from a start state, 
with added constraints for multi-agency: role constraints 
(which steps need to be performed by the same agent) and 
concurrency constraints (which steps need to be executed 
simultaneously; not needed in this illustration). The above 
illustration is adopted from a previous paper by the 
authors[2].

 
Fig. 11.  A plan graph for the blocks world example. 

 

V. APPLICATION OF MAPR FOR DETECTION OF HAVIJ 
ATTACK 

The SQL injection attack of Havij follows a pattern that can 
yield the abstract plan graph shown in Fig. 12. 
 

Find length
(=L, say)

Binary Search
1

Binary Search
2

Binary Search
L…..

 
Fig. 12. Abstract plan graph corresponding to Havij attack 

Here a binary search first finds the length of a certain field, 
say L. Then L binary searches are done in succession, 
followed by a return to the top (abstract) action. Suppose the 
ith binary search returns a character that is used to fill the ith 
character of a string s. Then the string s[1:L] will be a part of 
the query used in the next search, e.g., after the name of a 
database is found this way, the queries to detect the names of 
tables in that database will include the name of the database 
already found. A string that differs by only a few characters 
from the database name used later should still be accepted 
because of the occasional false positives in the BENCHMARK 
command.  This pattern repeats to find the names of tables in 
the database using the database name, and then again to find 
the column names in a table using that table’s name.  
   
     A solution to the problem of limiting false positives while 
still detecting an attack that is spread across multiple agents is 
to use plan recognition. When a user switches IP addresses to 
appear as multiple users, the observable effect is indeed 
equivalent to there being multiple users. Hence, we can indeed 
treat this as a multi-agent plan recognition problem. Rather 
than relying on a single IP generating sufficient suspicious 
activity to raise an alert, a plan recognition algorithm searches 
input from all users to see if steps in a plan have been 
completed. We have developed and tested a simple Python 
script that finds the length command and then identifies the 
search result by finding the last “=” or equivalent symbol.  It 
then looks for that number of binary searches using the 
ascii and substring commands.  If it sees these actions 
it is reasonable to assume that a field name has been found 
whether spread across multiple agents or not. 
 
    We have tested our script on the same tcpdump file that was 
used with our simulation of OSSIM’s correlation directive, 
where we showed successful camouflage of a Havij attack 
before. Fig. 13 shows the output of this script, not only 
detecting the attack despite distributed sources, but also 
revealing what the attacker has learned, viz., the words 
“dummy”, “debug” and “users” that are names of actual 
entities in the database (see Fig. 4). Thus the ideas underlying 



MAPR enable us to detect a SQL injection attack where a 
traditional IDS might fail in a cloud computing environment. 
 
 

 
Fig. 13. Multi-agent plan recognition successfully detects Havij plan of Fig. 
12 in the tcpdump, showing what the attacker has learned. 

VI. CONCLUSIONS 
    In this paper we have argued that cloud computing 
environments offer opportunities for cyber-attackers to 
distribute their attacks, in particular SQL injection attacks, so 
as to defeat a traditional intrusion detection system. In such a 
scenario, we have demonstrated that the application of multi-
agent plan recognition enables us to successfully detect a 
distributed SQL injection attack. Our deployment of MAPR 
toward cloud-computing security is currently limited to Havij-
style SQL injection attacks only. However, the purpose of this 
paper is to demonstrate the feasibility of such a deployment in 
a realistic (instead of an abstract) scenario, rather than 
building a comprehensive suite of cyber-attack detection 
mechanisms. The latter is, in fact, a long term goal of this 
research. 
 
   A major limitation of the MAPR approach in detecting 
attacks is that the attack must follow a plan with multiple 
distinct steps.  A brute force attack, for example, repeats the 
same action of attempting to log in many times until a login is 
guessed.  This would be better handled by the correlation 
directives already in place.  However, when there is a distinct 
plan it becomes easier to determine the validity of the attack, 
how successful the attacker was, and what the attacker is 
likely to do next by using the MAPR approach.  Our 
experiment is also limited by the fact that our testing was 
performed against a simulated version of the OSSIM directive, 
which should perform the same way but this cannot be fully 
guaranteed.  Also, running our test against log files does not 

test whether this method of detection is practical for 
examining larger volumes of traffic in real time. 
 
    In the future we would like to explore other types of 
increasingly complex cyber-attacks in the context of cloud 
computing and apply MAPR and evaluate its effectiveness in 
detecting such attacks. Even SQL injection attacks can be 
done in other (non-Havij) ways. Therefore our goal would 
require building (either manually or data mined from labeled 
data) a plan library for different variants of each kind of 
attack, for a range of different attack types. We plan to 
leverage our current setup to easily collect the required data to 
incrementally build a more comprehensive plan library. 
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