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Abstract

Multi-Agent Plan Recognition (MAPR) seeks to identify the
dynamic team structures and team behaviors from the obser-
vations of the activity-sequences of a set of intelligent agents,
based on a library of known team-activities (plan library). It
has important applications in analyzing data from automated
monitoring, surveillance, and intelligence analysis in general.
Recently, we have introduced a model for MAPR with a flat
library structure, to study the complexity of basic MAPR, and
also possibly its extensions in the future. Interestingly, this
model makes fewer assumptions than existing models, and
hence is more general. Therefore, as no existing algorithm
would apply to this model, we have developed an hypothe-
sis generation algorithm for this model, and adapted Knuth’s
Algorithm X for branch and bound search in the resulting
hypothesis space. In this paper, we establish the time com-
plexity of hypothesis generation in this model, propose and
evaluate 3 different bounding criteria, and also empirically
study the dependence of runtimes (hypothesis generation, and
search times separately) on the model parameters.

Introduction
Multi-Agent Plan Recognition (MAPR) seeks an explana-
tion of the observed activity-sequences of a set of intelli-
gent agents, in terms of a given library of team-activities,
by identifying the dynamic team structures and team behav-
iors of the agents. MAPR has important applications in an-
alyzing data from automated monitoring, surveillance, and
intelligence analysis in general. In a recent report in New
York Times, it was revealed that in the year 2009, unmanned
aerial vehicles collected about 24 years of video data alone
from theaters of warfare (Drew Jan 10 2010). Clearly, intel-
ligence analysis needs advances in AI now more than ever,
and MAPR constitutes an important subproblem in this ap-
plication.

We have recently introduced a new model of MAPR that
uses a “flat” plan library structure, and established hardness
results in MAPR (Banerjee, Kraemer, and Lyle 2010). In
this paper, we describe and analyze a solution approach in
this model. This approach first generates the hypothesis
space, and then performs a branch and bound search in this
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space. Since the MAPR problem in this model has signifi-
cant similarities to the way that Knuth approaches the Pen-
tominoes puzzle (and some other puzzles) (Knuth 2000), we
adopt this as the first-cut approach. We generate the hy-
pothesis space the same way, but adapt Knuth’s Algorithm
X (with the efficient dancing links representation) (Knuth
2000) for branch and bound search to return the optimal so-
lution instead of all solutions. The main contributions of this
paper are
• Detailed algorithms for hypotheses generation and search;
• Analysis of the time complexity of hypothesis generation;
• Description of three different bounding criteria for the

search;
• Empirical analysis of the relative performances of these

bounding criteria;
• Empirical analysis of the dependence of run-times of hy-

pothesis generation and search on the various model pa-
rameters.
Although the time complexity of hypothesis generation

is shown to be exponential in the number of agents, we
find empirically that it is small relative to the search time.
Furthermore, our experiments uncover interesting aspects of
the dependence of overall run-time (hypothesis generation +
search) on the model parameters.

Related Work
In this paper, we are more interested in symbolic approaches
to plan recognition, and as such do not review the literature
on probabilistic approaches. Plan recognition (or more ap-
propriately keyhole plan recognition (Cohen, Perrault, and
Allen 1981)) has a long and rich history, dating back to the
eighties. The problem admits a natural abductive reasoning
approach, with some of the earliest work (Kautz and Allen
1986; Charniak and Goldman 1993) emphasizing the cen-
tral and inherent role of uncertainty manifested by the dis-
connect between the multiple possible explanations behind
the observations, and the true explanation. Kautz (Kautz and
Allen 1986) reduced the problem to deductive inference of
explanations for the observations using an action taxonomy,
and satisfying a set of simplicity constraints, by performing
a series of circumscriptive minimizations that “closed” (in
the sense of completeness) the interpretation of the action



taxonomy (Kautz and Allen 1986). The formalization by
Kautz and Allen (Kautz and Allen 1986) showed an approx-
imate correspondence to the vertex cover problem in plan
graphs, thus establishing a complexity baseline. Related for-
malization approaches have encouraged a pre-enumeration
of the explanation space before reasoning about observa-
tions (Bui 2003). The first significant attempt at establish-
ing the complexity of plan recognition was by Vilain (Vilain
1990) who transformed Kautz’s plan hierarchies to context-
free grammars and framed the problem as one of parsing the
observation strings (similar approaches were also proposed
before (Sidner 1985), while Pynadath and Wellman (Pyna-
dath and Wellman 2000) proposed probabilistic state de-
pendent grammars to model the recognition of hierarchical
behaviors) using the plan grammar. He showed that plan
recognition with abstraction and partial ordering in the plan
hierarchies is NP-complete, but also identified easier classes
under Kautz’s scheme.

In recent years, the focus has shifted from formalization
to plan execution, whereby issues related to plan execution
such as interleaved execution of multiple goals, multiple in-
stantiations of the same goal (such as in a cyber attack), goal
abandonment (Geib and Goldman 2003), and partially or-
dered plan hierarchies became the natural extensions of the
basic problem (Goldman, Geib, and Miller 1999). A more
recent significant attempt at assessing the complexity of plan
recognition under the new model was made by Geib (Geib
2004), where Hierarchical Task Network (HTN) plans (Erol,
Hendler, and Nau 1994) were used as the appropriate repre-
sentation of plans. This work centered on estimating the
growth in the number of explanations with each new obser-
vation subject to the properties of the plan library, chiefly the
number of unordered leaders (this roughly stands for the ini-
tial action under a goal) and the number of repeated actions.

In contrast to plan recognition, multi-agent plan recog-
nition (MAPR) is a much younger area of research. In
MAPR, observations of the activities of a set of agents are
made over time, and the goal is to identify the dynamic
teams and their activities in the observations by match-
ing with a library of various team activities. The sig-
nificance of considering group actions in order to isolate
team plans, rather than a sequential process of recognizing
plans of the individual agents separately, has been a repeat-
edly emphasized theme (Castelfranchi and Falcone 1995;
Devaney and Ram 1998; Tambe 1995; Huber and Dur-
fee 1992; Avrahami-Zilberbrand and Kaminka 2007). In
the simpler case where all agents are executing a single
plan as one team, the observations can be concatenated
and matched against the library (Intille and Bobick 1999).
But the more realistic cases involve dynamic teams (Tambe
1997), where agents can join and leave teams over the period
of the observations. Some previous work has considered
static social structures to facilitate the formation of hypothe-
ses on teams and their plans (such as YOYO) (Kaminka
and Bowling 2002; Kaminka, Pynadath, and Tambe 2002).
RESCteam (Tambe 1996) is a symbolic MAPR approach that
relaxes the assumption of static social structures, but con-
siders only one coherent hypothesis. Hongeng and Neva-
tia (Hongeng and Nevatia 2001) eschew group plans and in-

stead use action threads of single agents that are related by
temporal constraints generating a muli-agent event graph.
Similarly, Avrahami-Zilberbrand and Kaminka (Avrahami-
Zilberbrand and Kaminka 2007) opt for a library of sin-
gle agent plans instead of team plans, but identify dynamic
teams based on the assumption that all agents in a team ex-
ecute the same plan under the temporal constraints of that
plan. While the idea of renouncing a multi-agent plan li-
brary is attractive in terms of complexity management, the
constraint on the actions of the agents that can form a team
can be severely limiting when team-mates can execute coor-
dinated but different behaviors.

More recently, attempts were made to limit the run-time
of MAPR by imposing structure (such as temporal depen-
dencies and constraints (Geib 2004; Sukthankar and Sycara
2008)) in the library. Although such structure-based heuris-
tics can limit the hypotheses space, little research has fo-
cused on better ways to search this space. For instance, the
STABR algorithm (Sukthankar and Sycara 2006) uses so-
phisticated heuristics to limit the hypothesis space, but uses
brute-force to search it. In this paper, we propose and evalu-
ate a branch and bound algorithm for searching the hypothe-
sis space, produced in a model that is more general than the
existing ones.

Problem Formulation
Let A be a set of n agents, {a1, a2, . . . , an}. We are given a
trace of activities of these agents over T periods of time, in
the form of a matrix, M = [mij ], where mij is the action ex-
ecuted by agent aj at time i, j = 1, . . . , n and i = 1, . . . , T .
The actions are represented by symbols from an alphabet Σ.
We are also given a library (set) of team plans L, where each
team plan, P ∈ L, is in the form of an x× y matrix (where
1 ≤ x ≤ T, 1 ≤ y ≤ n), P = [pij ], where pij is the action
expected from the jth team-member (j = 1, . . . , y) at the ith
(i = 1, . . . , x) step from the start of the plan. The actions in
the team-plans are also represented by symbols from Σ. A
simple example is shown in Figure 1. In this example, the
traces of 4 agents’ activities over 4 steps are available, as is
a library of team plans including at least the 4 plans shown,
L1–L4. L1 for example, says that 3 agents in a team execute
the (coordinated) sequences cca, aab and bcb.
Definition 1. (Occurrence) A team-plan (submatrix) P =
[pij ]x×y is said to occur in a matrix M if x contiguous rows
(t1, . . . , tx, ti = ti−1 +1), and y columns (say k1, . . . , ky , a
y-selection in any order from n agent indices) can be found
in M such that

pij = M(ti, kj), i = 1, . . . , x, j = 1, . . . , y

We say that each M(ti, kj) above is covered by P . We repre-
sent the above occurrence as a tuple (P, k1, k2, . . . , ky, t1).

For instance, in Figure 1, L1 occurs in the trace ma-
trix (left), with (t1, t2, t3) = (2, 3, 4) and (k1, k2, k3) =
(4, 1, 2). The text at the bottom of this figure describes the
occurrences of the other plans. Using these 4 plans (L1–l4),
the following hypothesis can be created: agents 2 and 1 work
in a team during the first time step implementing plan L3 (in



that order), while agents 3 and 4 work individually. At time
step 2, agents 4, 2, and 1 form a team for the rest of the ob-
servation period to implement plan L1 (in that order), while
agent 3 continues to repeat a pattern of activities (plan L2)
over 2 time steps each, on its own. The utility of this hypoth-
esis is v(L1)+2v(L2)+v(L3)+v(L4) for some utility func-
tion v, and the MAPR problem seeks the maximum-utility
hypothesis that explains every observed action uniquely.

Figure 1: An example of the formalized multi-agent plan
recognition problem.

We formalize the above notion of MAPR, parameterized
by the sizes of the trace (i.e., T and n) and the library (|L|),
below:

Definition 2. (MAPR) The multi-agent plan recognition
problem, represented as MAPR(n, T, |L|, k) is defined as
follows:

Instance: Activity matrix M (of size T × n) such that
mij ∈ Σ, a set/library L of submatrices, each contain-
ing of symbols from Σ, and k ∈ Z.

Question: Is there a collection L′ of submatrices from L,
along with their occurrences (Definition 1) such that for
each mij there is exactly one l ∈ L′ that occurs in M and
covers mij , with

∑
l∈L′ v(l) ≥ k?

Notice that a given l ∈ L can be used multiple times, e.g.,
in Figure 1 L2 is used twice.

We have shown in (Banerjee, Kraemer, and Lyle 2010)
that MAPR(n, T, |L|, k) is NP-complete, while it is in P if
n = 1. We have also presented the algorithms for hypothesis
generation and branch and bound search, and given a bound-
ing a criterion for the latter. As unique contributions of this
paper, we describe these algorithms in detail, along with the
complexity of hypothesis generation. We also present 3 dif-
ferent bounding criteria for the search, and experimentally
evaluate them and their dependence on the problem param-
eters, as well as the relative contributions of hypothesis gen-
eration and search to the overall runtimes.

Algorithms
In order to solve MAPR in this new model, we adopt
Knuth’s Algorithm X with the efficient “dancing links”
(DLX) (Knuth 2000) representation, but modify it to per-
form branch and bound search. We first produce a boolean
matrix E that encodes the hypothesis space, such that eij

is 1 if and only if plan i in the library L can cover (in the
sense in Definition 1) element j in the observations (when
the trace matrix is transformed into a linear observation ar-
ray). Of course, according to Definition 1, this also means
that some more eij′ need to be 1 in the vicinity of observa-
tion j to ensure that the entire plan matrix i occurs in the
trace. Once E is produced, Algorithm X is applied to find
a set of rows of E such that for every column of E, there
is exactly one row that contains a 1, by backtracking search
using the efficient dancing links representation (see (Knuth
2000)).

We can convert any instance of MAPR with a trace M and
plan library L to a boolean matrix E as follows. E shall have
Tn columns, and a row for each occurrence (Definition 1)
of each plan in L. We use the notation r(l) to denote the
number of rows in a matrix l and c(l) the number of columns
in it. For a given occurrence of l ∈ L, (l, k1, k2, . . . , kc(l), t),
we can create a row in E as

erow,col =

{ 1 if col = (t + i− 1)n + kj , for some
i ∈ [0, r(l)− 1], j ∈ [1, c(l)]

0 otherwise
(1)

Algorithm 1 describes this process of creating E, by de-
tecting every possible occurrence of every plan in M . For
a plan, P , of size x × y picked in the loop in line 2, it
extracts a part of column c from M , of length x, start-
ing at row r, in line 7. This column, sc is created for
all possible c = 1, . . . , n in the loop of line 6. Line 9
checks if there is any unordered y-selection, (si1 , . . . , siy ),
from (s1, s2, . . . , sn) such that the concatenation of these
columns matches the plan (matrix) P . If so, an occurrence
has been found, and equation 1 is applied (lines 10–13) to
create a new row for E. This new row is then appended to
the current E in line 14. The complexity of this algorithm is
established by the following Lemma.
Lemma 1. The time complexity of Algorithm 1 is
O(nT 2|L|(2e)n/2).
Proof: The key steps that dominate the complexity are in the
loop 9–17. The construction in line 9 requires us to check for
each of the yi columns in the ith plan, which (if any) agent’s
xi steps of activities (starting from row r) matches the plan
column. This costs O(nxiyi) and produces n1, n2, . . . , nyi

agent-clusters for the yi plan columns, such that nj ≥ 0
agents match the jth column of plan, and

∑
nj ≤ n. We

consider two extreme cases:
Case 1: All yi columns of the plan are distinct. Then the

number of occurrences of this plan at step t is given by

n1 · n2 · . . . nyi

≤ (n/yi + 1)yi+1 (since
∑

nj ≤ n)

≤ en/e



Case 2: All yi columns of the plan are identical, i.e., all
team-mates execute the same activity sequence, according
to the plan. In this case, yi is effectively 1, and n1 ≤ n.
Then the number of occurrences at step t can be at most(

n

yi

)
which is upper bounded by (2e)n/2.

Let X represent the above cost. For each such occurrence, a
vector A of length Tn is created. Therefore, the total cost of
steps 9–17 is

(nxiyi + X) Tn

Taking the outer loops of size |L| (line 2) and T − xi +
1 (line 5) into account, we get the overall complexity
O(nT 2|L|(2e)n/2).

Evidently, however, this assessment is grossly overesti-
mated. For instance, we disregard the fact that there can be
no valid occurrence of a plan if any nj = 0, i.e., the jth col-
umn of the ith plan does not match any agent’s activity trace.
Furthermore, we find empirically that the actual runtimes on
large random instances seem to be quite insignificant (see
section “Evaluation”).

Since each row of E corresponds to one occurrence of a
plan, it can be associated with the value of that plan, which
we shall call the value of the row. Once E has been pro-
duced, the rest of the problem is to search (using Algorithm
X) for the maximum-valued set of rows of E such that for
each of the Tn columns of E, say c, there is exactly one
row, r, in this set with er,c = 1. In other words, we apply
Algorithm X to find the best-valued cover of the matrix E.

One important benefit of using Algorithm X to solve
MAPR is that it provides us with search tree which, in turn,
allows us to prune subtrees from our search with branch and
bound. Algorithm 2 shows our modified version of Knuth’s
Algorithm X, adapted for branch and bound, to find the high-
est valued exact cover of the matrix E constructed by Algo-
rithm 1. In order to perform branch and bound we need three
important functions. First, let h(i) be a function which maps
the row i in the matrix E to the plan from which it was gen-
erated. Then, if S is a whole or partial solution (i.e. a list of
rows in E), the value of S is given by

Value(S) = Σs∈S v(h(s))

Most importantly, for branch and bound we need a function
that gives us an upper bound on the value of the remaining
part of any full solution (of which S is a part) that we can
achieve by traversing any given subtree. In Algorithm 2, we
refer to this function as BestPossible. We discuss three
different implementations of this function in the next sec-
tion. Lines 2–5 and 8–10 in Algorithm 2 pertain to branch
and bound, but the rest of the lines come directly from Al-
gorithm X.

The function ChooseColumn returns the next column
that should be covered. It can be defined in a variety of ways,
but (Knuth 2000) reports that choosing the column with the
fewest number of ones reduces the branching factor quite
effectively. In our experiments we have used this heuristic.

Algorithm 1 Build-E(M,L)
Input: A trace matrix M (of size T × n) and a plan library
L. Output: A boolean matrix E.

1: E ← ∅
2: for each plan P ∈ L do
3: x← number of rows of P
4: y ← number of columns of P
5: for r ← 1 . . . T − x + 1 do
6: for c← 1 . . . n do

7: sc ←


mr,c

mr+1,c

...
mr+x−1,c


8: end for
9: for each unordered selection of y indices

(i1, i2, . . . , iy) from the agent set {1, 2, . . . , n}
such that [

si1 si2 . . . siy

]
= P

do
10: A← 01×(Tn)

11: for i′ ← i1 . . . iy do
12: for j′ ← 0 . . . x− 1 do
13: A(j′n + i′)← 1

14: E ←
[

E
A

]
15: end for
16: end for
17: end for
18: end for
19: end for
20: Return E

Another benefit of our approach is that it cleanly sepa-
rates the hypothesis generation (Algorithm 1) and hypothe-
sis search (Algorithm 2). This allows us to study their com-
plexities separately, and also their relative contributions to
the overall runtime.

Bounding Criteria
In Algorithm 2 BestPossible can have a variety of
definitions producing different tightnesses of the upper
bound. We first consider the possibility of calculating
BestPossible in constant time. One possibility is to pre-
calculate the highest valued integer-partition of all j, i =
2, . . . , T · n, efficiently by dynamic programming. If an in-
teger partition of j is I(j) = [s1, s2, . . . , sm] (i.e., sk ∈ Z+

and
∑m

k=1 sk = j), then its value is given by

vIP (I(j)) =
m∑

k=1

max
p|sk=r(p)·c(p)

v(p) (2)

Using this value function, we can find the highest value that
can be obtained by partitioning j in any way, as

v∗IP (j) =
{

max1≤k≤j (vIP ([k]) + v∗IP (j − k)) j > 0
0 j = 0



Algorithm 2 Search(E,S)
1: if E = ∅ then
2: if best solution value < Value(S) then
3: best solution value← Value(S)
4: best solution← S
5: end if
6: Return
7: end if
8: best possible← Value(S) + BestPossible(E)
9: if best solution value > best possible then

10: Return
11: end if
12: C ← ChooseColumn(E)
13: for each row such that E(row, C) = 1 do
14: S ← S ∪ {row}
15: B ← E
16: for each col such that E(row, col) = 1 do
17: Remove col from B.
18: for each r such that E(r, col) = 1 do
19: Remove r from B
20: end for
21: end for
22: Search(B,S)
23: S ← S \ row
24: end for

for all j = 2, . . . , Tn in a bottom-up dynamic program-
ming formulation similar to “rod cutting” (Cormen, Leiser-
son, and Rivest 1990), that runs in time O(T 2n2). We thus
define BestPossible as

BestPossible1(E) = v∗IP (c(E))
which is simply a constant time table look-up during the
search. Since each choice of a row (i) from E made by
branch and bound corresponds to eliminating some columns
from E (those columns j that satisfy E(i, j) = 1, i.e., cov-
ered by row i), and this occurs recursively on E, the re-
cursive process of covering all the columns of E by branch
and bound can be seen as some partitioning of c(E). How-
ever, even the optimal of such partitions cannot be higher
valued than v∗IP (c(E)), since the optimal partition would
have more constraints (from the MAPR problem) than the
ones imposed in equation 2. Therefore the above bounding
criterion is sound.

The above scheme, being based on a pre-computation,
is rather insensitive to the actual plans that correspond to
the rows of E. That is, the optimal partition of j, I∗(j)
(based on equation 2), may use a set of integers that is
very different from the set counterpart of the vector IPE =
〈r(p) · c(p)|p = h(x), x = 1, . . . , r(E)〉 1, corresponding to
the set of the plans, p, actually represented in the (current)
matrix E. Therefore, it is possible to redefine equation 2 as

vIP (I(j)) =
m∑

k=1

max
p|sk=r(p)·c(p) and sk∈IPE

v(p)

1If two plans, p1 and p2 are such that r(p1) · c(p1) = r(p2) ·
c(p2), then they produce two entries in IPE but only one entry in
its set counterpart.

This way we impose more constraints on equation 2, but this
is still a subset of the constraints that MAPR imposes, hence
the soundness of the bounding criterion is preserved. How-
ever, this computation can no longer be performed off-line,
and thus the dynamic programming needs to be performed
at each call to BestPossible. Therefore the new version,
BestPossible2(E) will be O(c2(E)) i.e., O(T 2n2),

A line of attack that is particularly favored by the DLX
implementation, is to define

BestPossible3(E) =
c(E)∑
j=1

max
1≤i≤r(E)

{v(h(i))|E(i, j) = 1}

(3)
This is advantageous because DLX allows us to find
maxi {v(h(i))|E(i, j) = 1} in constant time, thus allow-
ing the bound to be calculated in time O(Tn) since E has
at most Tn columns. The constant time results from the fact
that the rows in E are already sorted by v, so that v(h(1)) ≥
v(h(2)) ≥ . . . ≥ v(h(r(E))), in the hope of finding a high-
valued solution early to be able to bound more solutions
later. It can be seen that since equation 3 covers each column
of (current) E with the highest valued plan that could pos-
sibly cover that column, Value(S)+BestPossible(E)
always exceeds the highest valued solution that could pos-
sibly match S, and is therefore a feasible pruning criterion.
Although the linear complexity of BestPossible3 lies
between those of versions 1 (constant) and 2 (quadratic), it is
not immediately clear which of the three should be preferred
since the relative amounts of pruning achieved by these cri-
teria are unknown. A criterion that is more expensive (per
call) than another may still achieve greater pruning and yield
lower total runtime. However, our experiments are some-
what inconclusive on this aspect since all criteria seem to
only marginally improve on the unpruned version, although
we do see that the overall run-time of BestPossible2 is
often worse than the other two.

Evaluation
We have run the algorithms on a series of random instances
of the MAPR problem, with varying parameters and dif-
ferent pruning criteria. In order to generate each random
instance, we first generate a random trace with dimensions
T ×n, with each element of the trace belonging to the set of
possible actions, Σ. Then, we randomly partition the trace
matrix, adding the submatrices to the plan library L, so that
at least one possible solution exists, and then add z random
new plans to the library. These new plans may (or may not)
yield a better cover than the one initially produced by parti-
tioning the trace.

In (Banerjee, Kraemer, and Lyle 2010) we have shown
that for n agents, MAPR is NP-complete. However, it is un-
known how the overall run-time would depend on the other
parameters, viz., |Σ|, T , and |L|. In this paper, we have
shown that the time complexity of Algorithm 1 depends
polynomially on T and |L|, but its dependence on |Σ| has
not been captured. Moreover, it is unclear how expensive
Algorithm 1 is compared to Algorithm 2. We fill these gaps
through the following experiments. We note that |L| > z,



3.378 3.269
2.097

1.306

3.407 3.29

2.124

1.354

3.39
3.267

2.086

1.253

3.56
3.317

2.102

1.314

2.2

1.91

1.22

0.807

0

2

4

6

8

10

12

14

16

18

14 16 18 20

Lo
g 

tim
e 

(s
ec

s)

Size of the alphabet

buildE

unpruned

BP3

BP2

BP1

Figure 2: Logarithm of run-times for different |Σ|, when
n = 30, T = 60 and z = 50.

and z is easier to control in the data generation, therefore we
consider the parameter z instead of L. We ran the follow-
ing experiments on a microway cluster with 10 nodes and
10 × 4 processors (@ 2.54GHz and 3.86G RAM each), al-
lotting each problem instance to a separate processor.

Through repeated trials, we have found that by setting
n = 30 |Σ| = 20, T = 60, z = 50, not only is the
problem reasonably large, but also we get average run-times
(over 100 random instances) of 20 seconds, which is an ac-
ceptable basis for varying one variable at a time, keeping
the others fixed. In the first experiment, we varied |Σ| from
20 down to 14 in steps of 2, while the other variables were
held fixed at their base values. The logarithm of the average
run-times (over 100 random instances) for different pruning
criteria (including unpruned), as well as the runtime of Al-
gorithm 1 (shown as “Build E”) are shown in Figure 2. Here
(and in other plots) BPi refers to BestPossiblei. The
most interesting finding here is that the overall run-time de-
screases exponentially as |Σ| is increased, keeping the other
parameters fixed at their base values. This is not unexpected,
since a larger number of distinct activities (i.e., larger |Σ|)
tends to make it harder for a randomly generated plan to oc-
cur (see Definition 1) in a randomly generated trace, both
generated by sampling from Σ. This reduces the average
number of occurrences per plan, yielding smaller E, and
consequently lower search times as well. This is further vali-
dated by the exponentially descreasing time for “Build E” to
less than a second in the base setting (|Σ| = 20) in Figure 2.

Figure 2 also shows that the relative time taken by Al-
gorithm 1 is small compared to that of Algorithm 2. Fur-
thermore, both BestPossible1 and BestPossible3

perform slightly faster than unpruned search, whereas
BestPossible2 is slower than unpruned search for
smaller overall run-times, clearly due to its quadratic cost
and reduced scope for pruning. However, the general con-
clusion must be that the pruning techniques are at best
marginally competitive with unpruned search when the run-
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Figure 3: Logarithm of run-times for different T , when
|Σ| = 20, n = 30, and z = 50.

times are upto 104 seconds. In informal experiments we
have found that on instances where unpruned takes signifi-
cantly longer than 104 seconds, the amounts of pruning (by
all criteria) are also significant. But data collection from
such lengthy runs have been painstakingly slow.

Figure 3 shows the result of varying T from 60 to 75 in
steps of 5, with the other parameters held at their base val-
ues. The most interesting finding from this experiment is a
roughly logarithmic trend in the overall log-run-time, sug-
gesting that the run-time varies polynomially with T . Based
on Lemma 1, we expect “Build E” to be polynomial in T ,
which is validated by the logarithmic trend of the “Build E”
bars in Figure 3. Therefore, the major conclusion from this
experiment is that not only Algorithm 1 costs polynomially
in T , but also Algorithm 2 costs polynomially in T . This is a
significant result since T is the one parameter that may need
to grow unboundedly in generating the observation traces for
agents, even when n and |Σ| may conceivably remain fixed
in a given application.

Figure 4 again shows a similar trend as Figure 3, signi-
fying polynomial dependence of the overall run-time on |L|
as well. Interestingly, comparing the two figures, it seems
adding more plans to tbe library has a greater impact on the
search time than on “Build E”. This might be explained as
an insignificant growth in the number of rows in E (which
affects “Build E”), but a significant qualitative impact on the
content of E (which affects search time).

It should be noted that the number of samples on which
the averages are based are not exactly 100 in each plot, and
neither are the samples unbiased. This is because we elim-
inated entire runs (all pruning criteria) if any criterion (un-
pruned or BestPossible2) failed to finish in 10 hours.
We found that even under this restriction, we always had 95
or more complete data points per 100 trials, and given that
the average run-times are (mostly) significantly less than 10
hours, the resulting bias may be interpreted as (partial) out-
lier elimination.
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The variances in the plots were high enough for us to de-
emphasize the differences in the run-times between different
pruning criteria as statistically insignificant, and instead em-
phasize the general trends. The variances are high because
the randomly generated instances behave very differently,
for instance with many smaller sized plans in the library
(one agent one step plans in the worst case) E can be very
large ( thousands of rows). More importantly, the number of
potential solutions in the search space can sometimes be ex-
tremely large ( billions), perhaps due to many independent
subproblems which is more related to the content of E rather
than its size. In summary, it is likely that 100 samples is too
few to establish any strong claims.

Conclusion
We have recently formalized MAPR using a new model and
analyzed its complexity. In this paper we have analyzed the
algorithms for this model mainly empirically.

We found that the overall run-time decreases exponen-
tially with |Σ|, while we know that it increases exponentially
with n. This means there are settings in which MAPR can
be solved efficiently even for a very large number of agents,
provided the activities being monitored have a rich variety
as well. This is an interesting result, that suggests an alter-
native way to factor the problem. An existing approach to
factoring MAPR along the agent dimension is to consider
the social structure of agents (as discussed in related work).
Our finding suggests that it could be more beneficial to fac-
tor the agent dimension by the diversity of activities instead
of a static social structure.

Another important result is that the overall run-time grows
only polynomially in T . This, together with the result dis-
cussed in the previous paragraph, means that in an appli-
cation where a fixed set of agents are being observed, the
solver can afford to continually observe the agents with-
out being concerned about the number of steps accumulated.
Perhaps even 24 years (Drew Jan 10 2010) worth data is not

a challenge after all!
Among less significant results, we found that the pruning

criteria do not afford significant benefits for small problems,
i.e., those that run is 104 seconds or less. Since we have seen
each criterion perform significant pruning on some such in-
stances but nearly no pruning on others (resulting in greater
run-time than the unpruned search on these instances due
to their overhead), it would be interesting to characterize the
problem structures where each criterion performs well. Such
a predictive capability could be applied to exploit the appro-
priate criteria at the appropriate places in the search tree,
although that would also introduce an overhead of its own.

There are many directions for the future. One avenue is
to explore problem factoring, and prediction of prunabil-
ity, based on the observations described above. Moreover,
there is a need to improve the pruning criteria before we ex-
plore more complex models that allow plan abandonment
and interleaving of plan steps. Another avenue is to explore
approximation approaches that produce a maximal packing
i.e., coverage of as much of M as possible with highest
valued plans, with no overlap, while possibly leaving out
some observations unexplained. Since such an approxima-
tion could have a higher total value than the exact cover, it
could offer an interesting tradeoff regarding the choice of
observations that can be left unexplained.
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