
Multi-Agent Plan Recognition: Formalization and Algorithms

Bikramjit Banerjee and Landon Kraemer
School of Computing

University of Southern Mississippi
118 College Dr. # 5106
Hattiesburg, MS 39406

{Bikramjit.Banerjee,Landon.Kraemer}@usm.edu

Jeremy Lyle
Dept of Mathematics

University of Southern Mississippi
118 College Dr. # 5045
Hattiesburg, MS 39406

{Jeremy.Lyle}@usm.edu

Abstract

Multi-Agent Plan Recognition (MAPR) seeks to identify the
dynamic team structures and team behaviors from the obser-
vations of the activity-sequences of a set of intelligent agents,
based on a library of known team-activities (plan library). It
has important applications in analyzing data from automated
monitoring, surveillance, and intelligence analysis in general.
In this paper, we formalize MAPR using a basic model that
explicates the cost of abduction in single agent plan recog-
nition by ”flattening” or decompressing the (usually com-
pact, hierarchical) plan library. We show that single-agent
plan recognition with a decompressed library can be solved
in time polynomial in the input size, while it is known that
with a compressed (by partial ordering constraints) library it
is NP-complete. This leads to an important insight: that al-
though the compactness of the plan library plays an important
role in the hardness of single-agent plan recognition (as rec-
ognized in the existing literature), that is not the case with
multiple agents. We show, for the first time, that MAPR
is NP-complete even when the (multi-agent) plan library is
fully decompressed. As with previous solution approaches,
we break the problem into two stages: hypothesis generation
and hypothesis search. We show that Knuth’s “Algorithm X”
(with the efficient “dancing links” representation) is particu-
larly suited for our model, and can be adapted to perform a
branch and bound search for the second stage, in this model.
We show empirically that this new approach leads to signifi-
cant pruning of the hypothesis space in MAPR.

Introduction

Multi-Agent Plan Recognition (MAPR) seeks an explana-
tion of the observed activity-sequences of a set of intelli-
gent agents, in terms of a given library of team-activities, by
identifying the dynamic team structures and team behaviors
of the agents. MAPR has important applications in analyz-
ing data from automated monitoring, surveillance, and in-
telligence analysis in general. In a recent report in the New
York Times, it was revealed that in the year 2009, unmanned
aerial vehicles collected about 24 years of video data alone
from theaters of warfare (Drew Jan 10 2010). Clearly, intel-
ligence analysis needs advances in AI now more than ever,
and MAPR constitutes an important sub-problem in this ap-
plication.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we formalize MAPR using a basic model
that explicates the cost of abduction in single agent plan
recognition by ”flattening” or decompressing the (usually
compact, hierarchical) plan library. We show that single-
agent plan recognition with a decompressed library can be
solved in time polynomial in the input size (particularly,
the size of the library), while it is known that with a com-
pressed (by partial ordering constraints) library it is NP-
complete (Vilain 1990). This shows that the size of the li-
brary plays an important role in the hardness of single-agent
plan recognition (as recognized before). Interestingly, how-
ever, that is not the case with multiple agents. We show,
for the first time, that MAPR is NP-complete even when
the (multi-agent) plan library is fully decompressed. Con-
sequently, we seek a branch and bound solution.

As with previous solution approaches, we break the
MAPR problem into two stages: hypothesis generation and
hypothesis search. We show that Knuth’s “Algorithm X”
(with the efficient “dancing links” representation) is partic-
ularly suited for our model, and can be adapted to perform a
branch and bound search for the second stage. We show em-
pirically that this new approach leads to significant pruning
of the hypothesis space in MAPR.

Related Work

In this paper, we are more interested in symbolic approaches
to plan recognition, and as such do not review the literature
on probabilistic approaches. Plan recognition (or more ap-
propriately keyhole plan recognition (Cohen, Perrault, and
Allen 1981)) has a long and rich history, dating back to the
eighties. The problem admits a natural abductive reason-
ing approach, with some of the earliest work (Kautz and
Allen 1986; Charniak and Goldman 1993) emphasizing the
central and inherent role of uncertainty manifested by the
disconnect between the multiple possible explanations be-
hind the observations, and the true explanation. Kautz and
Allen (1986) reduced the problem to deductive inference of
explanations for the observations using an action taxonomy,
and satisfying a set of simplicity constraints. This formal-
ization showed an approximate correspondence to the vertex
cover problem in plan graphs, thus establishing a complex-
ity baseline. Related formalization approaches have encour-
aged a pre-enumeration of the explanation space before rea-
soning about observations (Bui 2003). The first significant

1059

Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10)

attempt at establishing the complexity of plan recognition
was by Vilain (1990) who transformed Kautz’s plan hierar-
chies to context-free grammars and framed the problem as
one of parsing the observation strings (similar approaches
were also proposed before (Sidner 1985), while Pynadath
and Wellman (2000) proposed probabilistic state dependent
grammars to model the recognition of hierarchical behav-
iors) using the plan grammar. He showed that plan recogni-
tion with abstraction and partial ordering in the plan hierar-
chies is NP-complete, but also identified easier classes un-
der Kautz’s scheme. Geib (2004) performed a more recent
significant assessment of the complexity of plan recognition
under a new model that accommodated issues such as inter-
leaved execution of multiple goals, multiple instantiations of
the same goal (such as in a cyber attack), goal abandonment,
and partially ordered plan hierarchies (Goldman, Geib, and
Miller 1999).

In contrast to plan recognition, multi-agent plan recog-
nition (MAPR) is a much younger area of research. In
particular, the hardness of MAPR has not been investi-
gated, which is a major motivation of this work. The sig-
nificance of considering group actions in order to isolate
team plans, rather than a sequential process of recognizing
plans of the individual agents separately, has been a repeat-
edly emphasized theme (Castelfranchi and Falcone 1995;
Devaney and Ram 1998; Huber and Durfee 1992; Avrahami-
Zilberbrand and Kaminka 2007). In the simpler case where
all agents are executing a single plan as one team, the ob-
servations can be concatenated and matched against the li-
brary (Intille and Bobick 1999). But the more realistic cases
involve dynamic teams (Tambe 1997), where agents can
join and leave teams over the period of the observations.
Some previous work has considered static social struc-
tures to facilitate the formation of hypotheses on teams and
their plans (such as YOYO) (Kaminka and Bowling 2002;
Kaminka, Pynadath, and Tambe 2002). Hongeng and Neva-
tia (2001) eschew group plans and instead use action threads
of single agents that are related by temporal constraints gen-
erating a multi-agent event graph. Similarly, Avrahami-
Zilberbrand and Kaminka (2007) opt for a library of sin-
gle agent plans instead of team plans, but identify dynamic
teams based on the assumption that all agents in a team ex-
ecute the same plan under the temporal constraints of that
plan. While the idea of renouncing a multi-agent plan li-
brary is attractive in terms of complexity management, the
constraint on the actions of the agents that can form a team
can be severely limiting when team-mates can execute coor-
dinated but different behaviors.

More recently, attempts were made to limit the run-time
of MAPR by imposing structure (such as temporal depen-
dencies and constraints (Geib 2004; Sukthankar and Sycara
2008)) in the library. Although such structure-based heuris-
tics can limit the hypotheses space, little research has fo-
cused on better ways to search this space. For instance, the
STABR algorithm (Sukthankar and Sycara 2006) uses so-
phisticated heuristics to limit the hypothesis space, but uses
brute-force to search it. In this paper, we not only estab-
lish some hardness results of the basic model of MAPR, but
also propose and evaluate a branch and bound algorithm for

searching the hypothesis space.

Problem Formulation

Let A be a set of n agents, {a1, a2, . . . , an}. We are given a
trace of activities of these agents over T periods of time, in
the form of a matrix, M = [mij], where mij is the action ex-
ecuted by agent aj at time i, j = 1, . . . , n and i = 1, . . . , T .
The actions are represented by symbols from an alphabet Σ.
We are also given a library (set) of team plans L, where each
team plan, P ∈ L, is in the form of an x × y matrix (where
1 ≤ x ≤ T, 1 ≤ y ≤ n), P = [pij], where pij is the action
expected from the jth team-member (j = 1, . . . , y) at the ith
(i = 1, . . . , x) step from the start of the plan. The actions in
the team-plans are also represented by symbols from Σ. A
simple example is shown in Figure 1. In this example, the
traces of 4 agents’ activities over 4 steps are available, as is
a library of team plans including at least the 4 plans shown,
L1–L4. L1 for example, says that 3 agents in a team execute
the (coordinated) sequences cca, aab and bcb.

Definition 1. (Occurrence) A team-plan (sub-matrix) P =
[pij]x×y is said to occur in a matrix M if x contiguous rows
(t1, . . . , tx, ti = ti−1 +1), and y columns (say k1, . . . , ky , a
y-selection in any order from n agent indices) can be found
in M such that

pij = M(ti, kj), i = 1, . . . , x, j = 1, . . . , y

We say that each M(ti, kj) above is covered by P .

For instance, in Figure 1, L1 occurs in the trace ma-
trix (left), with (t1, t2, t3) = (2, 3, 4) and (k1, k2, k3) =
(4, 1, 2). The text at the bottom of this figure describes the
occurrences of the other plans. Using these 4 plans (L1–l4),
the following hypothesis can be created: agents 2 and 1 work
in a team during the first time step implementing plan L3 (in
that order), while agents 3 and 4 work individually. At time
step 2, agents 4, 2, and 1 form a team for the rest of the ob-
servation period to implement plan L1 (in that order), while
agent 3 continues to repeat a pattern of activities (plan L2)
over 2 time steps each, on its own. The utility of this hypoth-
esis is v(L1)+2v(L2)+v(L3)+v(L4) for some utility func-
tion v, and the MAPR problem seeks the maximum-utility
hypothesis that explains every observed action uniquely.

We formalize the above notion of MAPR, parametrized
by the sizes of the trace (i.e., T and n) and the library (|L|),
below:

Definition 2. (MAPR) The multi-agent plan recognition
problem, represented as MAPR(n, T, |L|, k) is defined as
follows:

Instance: Activity matrix M (of size T × n) such that
M(i, j) = mij ∈ Σ, a set/library L of sub-matrices, each
containing of symbols from Σ, and an integer k.

Question: Is there a collection L′ of sub-matrices from L,
along with their occurrences (Definition 1) such that for
each mij there is exactly one l ∈ L′ that occurs in M and
covers mij , with

∑
l∈L′ v(l) ≥ k?

Notice that a given l ∈ L can be used multiple times, e.g.,
in Figure 1 L2 is used twice.

1060

Figure 1: An example of the formalized multi-agent plan
recognition problem.

It is worthwhile to note that despite the superficial re-
semblance between MAPR and TILING (Garey and John-
son 1979) (which is known to be NEXP-complete when the
floor-size is expressed compactly), MAPR is computation-
ally easier than TILING. This is because the floor (n × n
matrix) in the TILING problem does not include any infor-
mation, unlike the T × n activity trace matrix M in MAPR,
and hence its size (n) can be represented compactly in log2 n
bits, but such sub-linear compaction is generally impossi-
ble for the M matrix in MAPR. Therefore, an instance of
MAPR is exponentially larger compared to TILING and, as
we establish in this paper, is only NP-complete.

Hardness of MAPR

In order to establish the hardness of MAPR, we first present
the definitions of a known hard problem, viz., exact cover
(EC) (Garey and Johnson 1979).

Definition 3. (EC) The Exact Cover problem is defined as
follows:

Instance: Set X , and a collection of its subsets, C.

Question: Is there a sub-collection C′ ⊆ C such that every
element of X occurs in exactly one member of C′?

Lemma 1. For all n, T, |L|, MAPR(n, T, |L|, k) ∈ NP .

Proof: A proposed solution to MAPR (Definition 2) is spec-
ified as a set of tuples {(l, k1, k2, . . . , ky, t)} where l ∈ L′

is a plan of size x× y. Each tuple represents the plan instan-
tiation, complete with its occurrence (Definition 1), i.e., the
agent indices k1, . . . , ky , and the starting time t in the traces.
Verifying a certificate requires checking that

• for each tuple (l, k1, k2, . . . , ky, t), l(i + 1, j) = M(t +
i, kj) ∀i = 0, . . . x − 1, j = 1, . . . , y.

• the above mapping covers all elements in M , uniquely.
This can be determined simply by maintaining counts.

•
∑

l∈L′ v(l) ≥ k

These steps can be performed in time polynomial in
n, T, |L′|.

First, we show that plan recognition with a single agent –
according to the formulation in Definition 2 – can be solved
in polynomial time.

Lemma 2. MAPR(1, T, |L|, k), i.e., MAPR with just one
agent, can be solved in time polynomial in T and |L|.

Proof (sketch): For plan recognition with just a single
agent, the plans in the library must pertain to a single agent.
Therefore, the plan library consists of a set of sub-strings,
and the activity trace of the lone agent is a single string that
needs to be partitioned using the sub-string library. In this
case, construct a graph by creating a vertex for each instan-
tiation of any plan (sub-string) in the activity trace. Any
two instantiations of plans that have a conflict (i.e., possess
an overlapping occurrence, according to Definition 1) will
be adjacent in this graph. As each instantiation of a plan
can be associated with the interval in time for which it oc-
curs, these graphs belong to the well-known class of interval
graphs (Fulkerson and Gross 1965), with each plan instanti-
ation (sub-string) representing some interval (possibly null)
on the activity string. Appropriate weights (details omitted
due to lack of space) can be associated to the nodes (plans)
based on the plan-values, such that a weighted independent
set in this graph will correspond to a valid partition of the
trace string. Clearly, this reduction cannot be worse than
polynomial in T or |L|, and produces an interval graph with
input size O(|L|2). It is known that a maximum weight inde-
pendent set can be found in an interval graph, in time poly-
nomial in its input size (Hsiao, Tang, and Chang 1992).

It is important to note that the above result does not nec-
essarily contradict the fact that single agent plan recogni-
tion is known to be NP-complete (Vilain 1990). The key
to this reconciliation is the fact that previous work in plan
recognition assumes that the library of plans is presented
in a compact form, usually in hierarchical form (Goldman,
Geib, and Miller 1999; Geib 2004; Avrahami-Zilberbrand
and Kaminka 2007; Sukthankar and Sycara 2008), such as
Hierarchical Task networks (Erol, Hendler, and Nau 1994).
In contrast, our formulation of MAPR in Definition 2 uses a
flat (matrix) representation of plans. There is a strong jus-
tification for using hierarchical models, viz., that we need
to identify the higher level semantics behind the ground ac-
tions to understand what it is that the agent(s) is/are trying
to accomplish, and also, possibly, to predict the goal.

Our justification behind using a flat representation for the
purpose of formalization comes from the fact that hierarchi-
cal representations can always be “flattened”, which expli-
cates the worst-case cost of abduction. Hence the flat repre-
sentation used in Definition 2 is sufficient for formalization,
though not necessarily appropriate for solution approaches
(except in the worst-case). For instance, Figure 2 (left)
shows a hierarchical task network plan in the form of an
AND/OR graph (an arc underneath indicates that that node
is an AND node meaning all of its successors must be exe-
cuted, while nodes without arcs underneath are OR nodes),
with (partial) ordering constraints (arrows). This model has
been extensively used in the past (Avrahami-Zilberbrand and

1061

Figure 2: An illustration of the transformation of an HTN
plan into 4 symbolic plan strings in the “flat” representation.

Kaminka 2007; Sukthankar and Sycara 2008). The right part
of Figure 2 shows the corresponding symbol strings that re-
sult from flattening it, and constitute the plan library for a
single agent. It is clear from Figure 2 that flattening results
in an exponential increase in the size of the plan library,
more so with fewer ordering constraints. Thus |L| in our
formulation is potentially intractably sized, compared to the
(compact) hierarchical representation.

The above discussion explicates how important a role |L|
plays in determining the hardness of single agent plan recog-
nition problems, and this has been recognized in the exist-
ing literature (Vilain 1990; Geib 2004). However, as we now
show in our main result below, this is not the case with multi-
ple agents. General MAPR is hard irrespective of how com-
pactly L is represented.

Theorem 3. Even with the flat representation of plans,
MAPR(n, T, |L|, k) as given in Definition 2 is NP-complete.

Proof (sketch): To prove that MAPR is NP-hard, a general
instance of EC (with S and C) from Definition 3 can be
polynomially reduced to a special case of MAPR where n =
|S| and T is such that T < n but |Σ|T ≥ n. Then for
each element of S we create a distinct string of length T by
sampling with replacement from Σ. This produces n strings
of length T each, and these together produce the trace matrix
M . These strings can then be used to create a matrix of size
T × |c| for each c ∈ C, thus producing the plan library, L
of size |L| = |C|. It can be shown that a solution to this
instance of MAPR exists if and only if a solution exists to
EC. Together with Lemma 1, this completes the proof.

The results below follow from the properties of the EC

problem:

Corollary 4. MAPR as given in Definition 2 remains NP-
complete

• even if all plans in L describe the behaviors of only 3-
agent teams;

• even if no string of activities of any agent is present in
more than 3 plans in L.

Algorithms

We now turn to solving MAPR in the decompressed model.
Since we have shown reducibility of EC to MAPR, we ex-
ploit a known approach to EC, viz., Knuth’s Algorithm X

with the efficient “dancing links” (DLX) (Knuth 2000) rep-
resentation. It solves EC for any instance EC(X, C) rep-
resented as a Boolean matrix E = [eij], where eij is 1 iff
ci ∈ C contains Xj for i = 1, . . . , |C| and j = 1, . . . , |X |.
Algorithm X finds a set of rows of E such that for every
column of E, there is exactly one row that contains a 1, by
backtracking search using the efficient dancing links repre-
sentation (see (Knuth 2000); details omitted due to lack of
space).

We can convert any instance of MAPR with a trace M
and plan library L to a Boolean matrix E as follows. E
shall have Tn columns, and a row for each occurrence (Def-
inition 1) of each plan in L. We use the notation r(l) to
denote the number of rows in a matrix l and c(l) the num-
ber of columns in it. For a given occurrence of l ∈ L,
(l, k1, k2, . . . , kc(l), t), we can create a row in E as

erow,col =

{
1 if col = (t + i − 1)n + kj , for some

i ∈ [0, r(l) − 1], j ∈ [1, c(l)]
0 otherwise

Algorithm 1 describes this process of creating E in greater
detail, and the small example shown in Figure 3 illustrates
it, where each plan Li in the library yields exactly one oc-
currence corresponding to the ith row in E.

Figure 3: An illustration of the transformation of a MAPR
instance into the matrix E, by Algorithm 1.

One important benefit of using Algorithm X to solve
MAPR is that it provides us with search tree which, in turn,
allows us to prune sub-trees from our search with branch
and bound. Algorithm 2 shows our modified version of
Knuth’s Algorithm X, adapted for branch and bound, to find
an exact cover of the matrix E constructed by Algorithm 1.
In order to perform branch and bound we need three impor-
tant functions. First, let h(i) be a function which maps a
row in the matrix E to the plan from which it was generated.
Then, if S is a whole or partial solution (i.e. a list of rows in
E), the value of S is given by

Value(S) = Σs∈S v(h(s))

Most importantly, for branch and bound we need a func-
tion that gives us an upper bound on the value of the re-
maining part of any full solution (of which S is a part) that
we can achieve by traversing any given sub-tree. In Al-
gorithm 2, we refer to this function as BestPossible.
BestPossible can have a variety of definitions produc-
ing different tightnesses of the upper bound; however, in our
experiments, we specifically used

BestPossible(E) =

c(E)∑
j=1

max
i∈r(E)

{v(h(i))|E(i, j) = 1}

1062

Algorithm 1 Build-E(M, L)

Input: A trace matrix M (of size T×n) and a plan library L.
Output: A Boolean matrix E.

E ← ∅
for each plan P ∈ L do

x ← number of rows of P , i.e., r(P)
y ← number of columns of P , i.e., c(P)
for r ← 1 . . . T − x + 1 do

for c ← 1 . . . n do

μc ←

⎡
⎢⎢⎣

mr,c

mr+1,c

...
mr+x−1,c

⎤
⎥⎥⎦

end for
for each unordered selection of y indices
(i1, i2, . . . , iy) from the agent set {1, 2, . . . , n}
such that

[
μi1 μi2 . . . μiy

]
= P (based on

μc’s computed in the previous step) do
A ← 01×(Tn)

for i′ ← i1 . . . iy do
for j′ ← 0 . . . x − 1 do

A(j′n + i′) ← 1

E ←

[
E
A

]
end for

end for
end for

end for
end for
Return E

because DLX allows us to find maxi{v(h(i))|E(i, j) =
1} in constant time. This is because the rows in E
are already sorted by v, so that v(h(1)) ≥ v(h(2)) ≥
. . . ≥ v(h(r(E))), in the hope of finding a high-
valued solution early to be able to bound more so-
lutions later. It can be shown (proof omitted) that
Value(S)+BestPossible(E) always exceeds the high-
est utility solution that could possibly match S, and is there-
fore a feasible pruning criterion.

The function ChooseColumn returns the next column
that should be covered. It can be defined in variety of ways,
but (Knuth 2000) reports that choosing the column with the
fewest number of ones reduces the branching factor quite
effectively. In our experiments we have used this heuristic.

Evaluation

In order to evaluate the effectiveness of our pruning method,
we have run our algorithms on a series of random instances
of MAPR problems. In generating each random instance, we
first generate a random trace with dimensions T × n, with
each element of the trace belonging to the set of possible
actions, Σ. Then, we randomly partition the trace matrix,
adding the sub-matrices to the plan library L, so that at least
one possible solution exists, and then add z random new plan
templates to the library. In our experiments, we have gener-

Algorithm 2 Search(E, S)

if E = ∅ then
if best solution value < Value(S) then

best solution value ← Value(S)
best solution ← S

end if
Return

end if
best possible ← Value(S) + BestPossible(E)
if best solution value > best possible then

Return
end if
C ← ChooseColumn(E)
for each row such that E(row, C) = 1 do

S ← S ∪ {row}
B ← E
for each col such that E(row, col) = 1 do

Remove col from B.
for each r such that E(r, col) = 1 do

Remove r from B
end for

end for
Search(B, S)
S ← S \ row

end for

ated 2400 such instances with T = 100, n = 20, |Σ| = 10,
and z = 50.

As a metric for the amount of work done in finding so-
lutions, we use Knuth’s concept of updates (Knuth 2000),
where an update is the removal and reinstatement of an ob-
ject in his DLX implementation.

Let the sequence of solutions found by the unpruned
search be represented as S = {s1, s2, . . . , sj} , then the se-
quence of solutions found by the pruned search, SP , must
be a sub-sequence of S. Then let WPsi

and Wsi
represent

the work required to find the solution si with and without
pruning, respectively. Since, pruned and unpruned search
traverse the search tree in the same manner, then WPsi

and
Wsi

are directly comparable for si ∈ SP .

In our experiments, for each randomly generated MAPR
instance we take the sequence SP and partition it into sub-
sequences SP0

, SP1
, . . . , SP�log10sj�

such that si ∈ SPl
⇒

�log10i + .5� = l. Note that SPl
might be empty. Now let

s∗l = si ∈ SPl
|sj ∈ SPl

⇒ j ≤ i. Figure 4 shows the

average of

(
WP

s∗
l

Ws∗
l

)
over 2400 runs, with 95% confidence

intervals, for 0 ≤ l ≤ 9.

Figure 4 suggests that as the size of the solution space
increases, the amount of pruning tends to increase. This is
due to the fact that instances with more solutions tend to be
less constrained than those with fewer solutions, resulting in
deeper trees with more branching. This increases the like-
lihood that pruning a sub-tree will significantly reduce the
amount of work done. Furthermore, as more solutions are
found the value of the current best solution cannot decrease,
which, in turn, increases the chances that sub-trees can be

1063

Figure 4: Plot of averages of the work-ratio between pruned
and unpruned searches, against the number of solutions seen
by the unpruned search on the log-scale. Ratio 1 is shown
for reference.

pruned.
While this experiment demonstrates that significant prun-

ing is possible with our algorithm, it is likely that better or
worse pruning may result in instances with a different set
of parameters. We leave it as future work to study the re-
lationship between the parametric settings (n, T, |Σ|, |L|) of
MAPR instances and the effectiveness of the pruning algo-
rithm, and also to develop improved pruning techniques.

Conclusion

We have formalized MAPR using a new model and pre-
sented its hardness, revealing an important fundamental dis-
tinction between the hardnesses of single and multi-agent
plan recognition. We have also proposed a first-cut approach
to solving MAPR in this model, and have evaluated its ef-
ficacy. This model of MAPR is clearly capable of han-
dling dynamic team memberships and behavioral patterns,
although complex features – such as goal abandonment and
interleaved plan execution – will require modifications to
Algorithm 1 that will make it significantly more complex.
Managing this complexity in the extended model is an im-
portant future direction.
Acknowledgements: We appreciate the feedback from the
anonymous reviewers. This work was supported in part by a
start-up grant from the University of Southern Mississippi.

References
Avrahami-Zilberbrand, D., and Kaminka, G. A. 2007. Towards
dynamic tracking of multi-agent teams: An initial report. In Pro-
ceedings of AAAI conference.

Bui, H. 2003. A general model for online probabilistic plan recog-
nition. In Proc. of the International Joint Conference on Artificial
Intelligence (IJCAI, 1309–1315.

Castelfranchi, C., and Falcone, R. 1995. From single-agent to
multi-agent: Challenges for plan recognition systems. In Proceed-

ings of the IJCAI-95 Workshop on The Next Generation of Plan
Recognition Systems, 24–32.

Charniak, E., and Goldman, R. 1993. A bayesian model of plan
recognition. Artificial Intelligence 64:53–79.

Cohen, P.; Perrault, C.; and Allen, J. 1981. Strategies for Natural
Language Processing. Lawrence Earlbaum Assoc. chapter Beyond
question answering.

Devaney, M., and Ram, A. 1998. Needles in a haystack: Plan
recongition in large spatial domains involving multiple agents. In
Proceedings of AAAI conference.

Drew, C. (Jan-10) 2010. Military is deluged in intelligence from
drones. In New York Times.

Erol, K.; Hendler, J.; and Nau, D. S. 1994. Htn planning: Com-
plexity and expressivity. In Proceedings of the Twelfth National
Conference on Artificial Intelligence (AAAI-94, 1123–1128. AAAI
Press.

Fulkerson, D. R., and Gross, O. A. 1965. Incidence matrices and
interval graphs. Pacific Journal of Mathematics 15:835–855.

Garey, M. R., and Johnson, D. S. 1979. Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. San Francisco,
CA: W.H. Freeman and Co.

Geib, C. 2004. Assessing the complexity of plan recognition. In
Proc. of AAAI-04.

Goldman, R. P.; Geib, C. W.; and Miller, C. A. 1999. A new model
of plan recognition. Artificial Intelligence 64:53–79.

Hongeng, S., and Nevatia, R. 2001. Multi-agent event recognition.
In Proceedings of the Eighth IEEE International Conference on
Computer Vision, 84–91 vol.2.

Hsiao, J. Y.; Tang, C. Y.; and Chang, R. S. 1992. An efficient algo-
rithm for finding a maximum weight 2-independent set on interval
graphs. Information Processing Letters 43(5):229–235.

Huber, M., and Durfee, E. 1992. Plan recognition for real-world
autonomous robots: Work in progress. In Working notes of AAAI
symposium: Applications of AI to Real-World Autonomous Robots.

Intille, S., and Bobick, A. 1999. A framework for recognizing
multi-agent action from visual evidence. In Proc. of AAAI.

Kaminka, G., and Bowling, M. 2002. Towards robust teams with
many agents. In Proc. AAMAS-02.

Kaminka, G.; Pynadath, D.; and Tambe, M. 2002. Monitoring
teams by overhearing: A multi-agent plan recognition approach.
Journal of Artificial Intelligence Research 17.

Kautz, H. A., and Allen, J. F. 1986. Generalized plan recognition.
In Proc. AAAI.

Knuth, D. E. 2000. Dancing links. In Davies, J.; Roscoe, B.; and
Woodcock, J., eds., Millennial Perspectives in Computer Science:
Proceedings of the 1999 Oxford-Microsoft Symposium in Honour
of Sir Tony Hoare, 187–214.

Pynadath, D. V., and Wellman, M. P. 2000. Probabilistic state-
dependent grammars for plan recognition. In Proceedings of the
Conference on Uncertainty in Artificial Intelligence, UAI2000,
507–514. Morgan Kaufmann Publishers.

Sidner, C. 1985. Plan parsing for intended response recognition in
discourse. Computational Intelligence 1(1):1–10.

Sukthankar, G., and Sycara, K. 2006. Simultaneous team assign-
ment and behavior recognition from spatio-temporal agent traces.
In Proceedings of AAAI conference.

Sukthankar, G., and Sycara, K. 2008. Hypothesis pruning and
ranking for large plan recognition problems. In Proc. of AAAI.

Tambe, M. 1997. Towards flexible teamwork. In Journal of Artifi-
cial Intelligence Research, volume 7, 83–124.

Vilain, M. 1990. Getting serious about parsing plans: a grammati-
cal analysis of plan recognition. In Proc. of AAAI-90.

1064

	AAAI-10
	Contents
	Index
	Help
	Terms
	AAAI

