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Abstract. We present a new multiagent learning algorith®1/;, ), that builds

on an earlier version, ReDValLeR . ReDVaLeR could guarantee (a) convergence
to best response against stationary opponentiiner (b) constant bounded re-
gret against arbitrary opponents,(c) convergence to Nash equilibrium policies

in self-play. But it makes two strong assumptions: (1) that it can distinguish be-
tween self-play and otherwise non-stationary agents and (2) that all agents know
their portions of thesameequilibrium in self-play. We show that the adaptive
learnng rate ofRV, ;) that is explicitly dependent on time can overcome both of
these assumptions. Consequeniy;, ;) theoretically achieves (a’) convergence

to near-best response agaiesentuallystationary opponents, (b’) no-regret pay-

off against arbitrary opponengnd (c’) convergence to some Nash equilibrium
policy in some classes of games, in self-play. Each agent now needs to know
its portion of any equilibrium, and does not need to distinguish among non-
stationary opponent types. This is also the first successful attempt (to our knowl-
edge) at convergence of a no-regret algorithm in the Shapley game.

1 Introduction

Multiagent learning (MAL) in a reinforcement learning setting has been an active field
of study recently. The problem is simply of multiple controllers trying to learn indi-
vidually “optimal” control policies in a shared Markov Decision Process (MDP), often
called astochastic gamer aMarkov gameThe difficulty arises from the fact that all
agents are learning simultaneously, which means the MDP faced by each agent is es-
sentially non-stationary Hence, the concept of “optimal” policy becomes ill-defined,
and depends on the collective behavior of the other agents. Previous research has at-
tempted to tackle this problem by considering variopponent classesuch that there
is a well-defined “optimal policy” for the learnéor each class of opponentEypically
the research contributions in this aspect has been to design learning algorithms that
learn the appropriate behaviors for the corresponding class of opponéhis it any
access to the class information

The present paper follows this line of research and makes several fundamental con-
tributions. In particular, we point out that the class taxonomy of the opponents suggested
so far is incomplete. We then fill the void and present the first algorithm that can tackle



all opponent classes. More specifically, we present a new multiagent learning algorithm
for repeated games, with the general philosophy of policy convergence against some
classes of opponents but otherwise ensuring high payoffs. We build on our previous al-
gorithm, ReDVaLeR [1], that we proved to guarantee (a) convergence to best response
against stationary opponents and either (b) constant bounded regret against arbitrary
opponents or (c) convergence to Nash equilibrium policies in self-play. It was shown
to achieve both (b) and (c) empirically but needed to assume that all agents must know
their portions of thesameequilibrium. In this paper we present a new technigue extend-
ing ReDVaLeR , called?V, ), that theoretically achieves (a’) convergence to near-best
response againstventuallystationary opponents, (b’) no-regret payoff against arbitrary
opponents and (c’) convergence to Nash equilibrium policies in some classes of games,
in self-play. Each agent now needs to know only its portioarfequilibrium, besides
the other assumptions made in ReDValLeR . Additionally, siaeg ;) can achieve both
(b)) and (c’) simultaneously, it does not need to distinguish between a self-play agent
and an otherwise non-stationary agent.

No-regret has been an attractive property for a learner facing unknown opponents
- the case that precludes any meaningful definition of a “desirable behavior” even for
the agent designer. In such cases, no-regret stipulates a specific behavior sequence that
achieves “safe” play in terms of payoffs, but otherwise does not attempt convergence
to any specific behavior. However, depending on the opponents, we may want a no-
regret learner to indeed converge to some policy, e.g., we would want it to converge
to Nash equilibrium policy in self-play. Previous research [2] has empirically shown
that in some games (such as the Shapley game in Table 1), no-regret learners are un-
able to converge in self-play. A major consequence of our theoretical results is that
RV,is both no-regret and convergeit self-play in some classes of games that in-
cludes the Shapley game. The rest of the paper is organized as follows: sections 2 and
3 present the background and the related work respectively. In section 4 we present the
RV, technique and in section 5, its analysis. We present our conclusions in section 6.

2 Multiagent Reinforcement Learning

A Multiagent Reinforcement Learning task is usually modeled as a Stochastic Game
(SG, also calletlarkov Gamg which is a Markov Decision Process with multiple con-
trollers. We focus on stochastic games with a single state, also called repeated games.
This refers to a scenario where a matrix game (defined below) is played repeatedly by
multiple agents. We shall represent the action space ofthagent asA;.

Definition 1 A matrix game withn players is given by an-tuple of matrices,
(R1,Ra,...,R,) whereR,; is a matrix of dimensioih4| x |4z| ... x |4,], such that
the payoff of theth agent for the joint actior(a;, as, ..., a,) IS given by the entry
Ri(alv az, ... 7an)7 i

As is usual, we assume that payoffs are bound&@y, as, . .., a,) € [r;, 7], for real
r;, 7. Table 1 shows an example game of 2 players with 3 actions per player, called the
Shapley game.



Table 1. The Shapley Game.

100 010
Ri=1 010 |, R.=|1 001
001 100

A mixed policy vectorm; € A(A;) for agenti, is a probability distribution over
A;. If the entire probability mass is concentrated on a single action (some actions), it
is also called gure policy(partially mixed policy. The joint policies of the opponents
of theith agent will be given by the vecter_;. We shall usually refer to thi&h agent
as the learner and the rest of the agents as the opponents. The expected payoff of the
learner at any stage in which the policy tugte,, s, . .., 7, ) is followed is given by

Vi(mws,w_y) = Z(al,...,an)GHk m mi(ar) ... mp(an)Ri(ay, ..., an).

Definition 2 For an n-player matrix game, am-best responseBR; . ) of theith
agent to its opponents’ joint policyr(;), for somee > 0, is given by

BR' o = {m;|Vi(m;,7w_;) > Vi(wh, m_;) — €, Yr, € A(A4;
€T _; 3 2

Definition 3 A mixed-policy Nash Equilibrium (NE) for a matrix game
(R1,Raq,...,R,) is a tuple of probability vectorgzi, 5, ..., %) (policy profile)
such that each is a best response to the rest, . BRi. Vi.Interms of payoffs,
these conditions can be restated as '

Vi(w?, 7" ,) > Vi(mwy,w™,) Vm;, € A(A;) Vi

No player in this game has any incentive for unilateral deviation from the Nash equilib-
rium policy, given the others’ policy. There always exists at least one such equilibrium
profile for an arbitrary finite matrix game [3]. As an example, the only NE of the 2
player Shapley game in Table 1(&, 1, 3], [3. 3, 3])-

Definition 4 For a given time range = 0...T, the regret of a learner (agef}, Ry}

is given byRg! = maxn, Y2121 Vi(mi, wt,) = 2y Vilwl ).

—1

This compares the total payoff of the actual sequence of policies of the learner with the
best response to the empirical distribution of the opponent.

3 Related Work

Multiagent Reinforcement Learning has produced primarily two types of algorithms.
One type learns some fixed point of the game e.g., NE (Minimax-Q [4, 5], Nash-Q [6],
FFQ [7]) or correlated equilibrium (CE-Q [8]). These algorithms can guarantee a cer-
tain minimal expected payoff asymptotically, but it may be possible to guarantee higher
payoff in certain situations if the learner is adaptive to the opponents’ play, instead of
learning the game solution alone. This brings us to the other type of learners that learn
a best response to the opponents’ actual play e.g., IGA [9], WoLF-IGA [10, 11], AWE-
SOME [12]. Since mutual best response is an equilibrium, two similar best responding



players (such situations referred tossdf-play should be able to converge to an equi-
librium. WoLF-IGA achieves this i2 x 2 games (assuming it knows its portion of any
equilibrium) and AWESOME achieves it for arbitrary sized games. But an AWESOME
agent needs to know an entire equilibirum profile, meaning that it not only knows the
others’ equilibrium policy, but also that all agents agree on which equilibrium they
know in games with multiple equilibria.

Performance guarantedaring the learning process are provided fegret match-

ing learners. These are algorithms that achiBuer_. Rﬁ‘i’iT < 0 (called no-regret
algorithms) but their convergence properties in policies are unknown [13-16] or at
best limited [2]. A generalized version of IGA, called GIGA, was shown to be no-
regret [17] but its convergence property is unknown. Clearly, there was a need for a
MAL algorithm that could address (eventually) stationary opponents and selfaplay

well as other types of opponen@ur previous work on ReDValLeR [1] filled this void

and allowed a learner to be no-regret against this large class of opponents, in addition
to satisfying the base cases againt stationary and self-play opponents. Subsequently, the
WoLF version of GIGA [18] was shown to be also no-regret but convergent to NE only

in 2 x 2 games against GIGA. Our previous algorithm, ReDVaLeR [1] also had limita-
tions. It was shown to achieve both convergence and no-regret in arbitrary sized games,
but for conflicting settings of a parameterEach ReDValLeR agent was also assumed

to know its portion ofsomeequilibrium, i.e., there was agreement on equilibrium se-
lection. Our present work builds on ReDVaLeR and uses a single time depenttet
achieves both convergence and no-regret properties simultaneously. More importantly,
we relax the assumption that agents agree on which equilibrium they know their por-
tions of. Another recent work proposed a similar set of properties for a MAL algorithm,
with a greater focus on payoff [19]. This algorithm achieves near best response against
stationary players (in contrast we guarantee near best response against the larger set
of eventually stationary opponents), at least non-Pareto dominated (by another equi-
librium) equilibrium payoff in self-play (in contrast we provide convergence to some
equilibrium policy), and at least the minimax payoff against all other players (in con-
trast, we guarantee the stronger property of no-regret payoff that could be greater than
the minimax payoff depending on the opponents) in polynomial time. However, this
algorithm needs to know the game matrixaf agents which is stronger than our 2
assumptions combined that the learner knows only its own game matrix and its portion
of any equilibrium policy.

4 Our Approach: ReDValLeR with variable o

We make the following assumptions for the current work,

1. that the learner knows its own bounded game payoffs (like AWESOME)
2. that the agents can observe each other’s instantaneous pbliidscan use van-
ishing step sizes for policy improvement (similar to IGA and WoLF-IGA).

! This assumption is only used in Theorem 10 but it is dispensable. It is possible to collapse
this and the previous assumption into a single assumption that the learramtlgabserve its
payoff vector at every round, as in [18]. We shall show the details in a consolidated version.



3. that the agents are given at the start, their portiomsgéquilibrium policy profile
(like WoLF-IGA). They might see their portions of different equilibria in games
with multiple equilibria.

We write the probability of thgth action of theith agent at time as~!(j) and the
expected payoff of this action against the opponent’s current polid§@sn* ;) and
note thaty; 7f (j)Vi(j, 7L;) = Vi(wi, wl,).

We use the ReDVaLeR algorithm (see [1] for details) with a time-varying sched-
ule for o in place of a constant. The discrete form of the algorithm (slightly different
from [1]) is

iy = HOL OOV e
ST T DA Vil )

for n being a small step size and initial conditior}(;) = W' Note that the probabil-
ity values generated above are automatically bounded in the fanigef r, > 0. Also
the distribution is indeed a probability distribution (i.e., sum 1) without the need of a
projection operation unlike GIGA or GIGA-WoLF.

In continuous time, i.e., ag — 0, the above equation yields the same differential
equation as ReDVaLeR for the dynamics of thplayer system

)

—(mi(5) = 7 (5) x [LG)Vil, mt) Zl ViG] &)

j = 1...]4;], i = 1...n. In contrast with [1], the learning rate# ((j)) for this
algorithm, RV, are deflned as

oo 140 if 7l(g) < nF
li(j){l_a'(t) if £ (j) > 77 (5) )

for a suitabler-schedule as defined below.

Definition 5 (c-Schedule) A time decaying schedule fet(t) is defined by the 3 con-
ditions:

1. o(t) is continuous and > o(t) > 0, Vi,
2. 0(t) > o(t),Vt' > t,
3. o(t) — 0 ast — oc.

5 Analysis of RV,

In the following analysis, we shall use the symbg|| to mean the ., norm of a vector,
i.e.,||x|| = max; |x;| and the symbol to mean a vector of all 1's. We also assume that
the game payoffs are all positive (i.e;,> 0), which is merely a technical assumption,
since if the agent knows its game payoffs it can easily make an affine transformation
to satisfy this assumption. The new game is strategically unchanged and the no-regret
property also holds in the original game.



For the sake of brevity, we writ&;(j, 7' ;) simply asV;/. Let D;(#;, ) be the
Kullback Leibler divergence between thgh agent’s policy at time and anarbitrary
distributionr;, given by

o= Sna(34)

With a slight abuse of notation, we will refer t; or dtl as the projection of the

gradient of the functioD; (equation 4) along the solution trajectory of (2) for a given
initial policy profile. When the trajectory follows the unmodified Replicator Dynamics,

. RD . : .
we write the same a%%t—. The following result is crucial to all subsequent analyses.

Lemma 1 [1] For any fixed policyr;,
d i N
5 (DilFim Zzt GIV? =2 L7
J

— (DI (7, 7)) = Vi(w, 7" ,) — Vi(7s, wt )

17

5.1 Convergence against eventually stationary opponents

Here we establish thatV/, ;)with o-schedule of definition 5 converges to the set-of

best responses against stationary opponents from which follow the convergence against
eventually stationary opponents. The following lemma is used and is straightforward to
prove.

Lemma 2 (Payoff-continuity) If 7r;; and;, are two policy vectors of agentgainst
the stationary joint policy of the opponents_; and if ||7;; — m;2|] < « for some
a > 0, then

\Vi(min, ) = Vi(miz, m—i)| < ol Ail7

In other words, if two policies are close then so are their payoffs against a given joint
policy of the opponents.

The following Theorem establishes thRi, with a non-stationaryr (Defini-
tion 5) converges to the set efbest responses against stationary opponents.

Theorem 3 For a givene > 0, there exists a time, such that afterr a RV, agent
1 using o-schedule in Definition 5 against — 1 stationary agents, is guaranteed to
converge to the set efbest response poIicieBRim.

Proof : Suppose the opponents’ joint stationary policy is giverrhy, and let us con-
sider somer; € BR} _.. Clearly the payoff of all policies iBR{, . _, have the same
value and let this value b&. At any given timet we consider the following two cases:



Case 1:7/¢BR. »
This means
Virj,m_i) <V;—e )

Now substitutingr; in place of the arbitrary policy in Lemma 1, we get

KATHC - SRV - Lk

< (1+U( NWVilmi,moi) = (1= o () Vi(7wi, m—)

= Vi(wj, i) = V(i 7 23) + o () [Vi(mel, m i) + V(7 7w 3)
< —e+ o) Vi(mi, m_i) + Vi(mi, w_4)] , by (5)

< —e+20()V;

Now according to Definition 5 there exists a time Guch that for alit’ > 7,
o(t') < 317 - Thus at all such time$. (D; (7;, ™ ")) < 0 wheneverr! ¢BR! . N
This means, the policy approaches a best response at such times. By Lemma 2, the
policy cannot approach a best response without its payoff approathifigius at
some point’, the value of the policy will exceetl; — ¢ and sor! € BR!
This brings us to the 2nd case.
Case2:w, € BR. 5 .Alsot>r

If xt' e BRI x ., Vt' > t then we are done. Otherwise, there exists a tifne ¢
such thatr! " ¢ BR! p_ andw! ¢BR! r , wheren s the time step size used
in Equation 1. S&/;(x! ", 7_;) > Vi(x! , w_;). Also

7t =" = | < 1+ (' — )7
< 2n7;

Then by Lemma 2,

V(! T ) = Vilwl ) < 2| Ay
that is
V(ﬂ' w_;) > Vv — (e + 2n|Ai\Fi2)

So even though!’ is not ane-best response, it is da + 21| A;|72)-best response.
Also from timet’ case 1 applies and both of the policy and the payoff approach
that of a strict best response. Thus aftethe payoff never falls below; — (e +

2n|A;|7?) = V; — ¢, sincen — 0. Lastly, 7! may not converge to any specific
policy in BRQ,LH only stay in this set asymptotically. O

An immediate corollary of Theorem 3 is th&/, ,,will converge to ar:-best re-
sponse even if the opponents do not always play stationary policies, as long as they
settle down to a stationary profile at some finite time This is justified by replacing
in the proof of Theorem 3 byiax{r, 71 }. We state this result as the following corollary.



Corollary 4 If there exists a time such that all other agents play stationary poli-
cies at all times > 7, then for a giverr > 0, there exists a time, such that after
max{7, 7} an RV, agent: usingo-schedule in definition 5, is guaranteed to con-
verge to the set afbest response policieBR; ..

Note that this does not require all of the opponents to start playing a stationary profile
simultaneously, only that the last opponent to settle down should do so at some finite
time point;. Also note that this notion of eventually stationary opponent profile is

a stronger condition than the non-stationary opponent polheittssa limit considered

in [20]. In the latter the opponents may never actually settle down but continue with an
ever decreasing distance from a limiting profile.

5.2 No-regret property

Here we prove the no-regret property BV, ). Compared to ReDVaLeR , now the
regret is no longer constant bounded but can grow with time. However, with the help of
the following lemma (stated without proof) we can show that the average regret goes to
0.

Lemma 5 (Vanishing average)Given definition 5 for (¢), we havdimy_, o, m =

T
0.

Theorem 6 If a RV, ;)agenti uses the decaying-schedule of definition 5, then

i.e., the algorithm is asymptotically no-regret.

Proof : As in Theorem 2 in [1], we have
T . .
Do< [ StGmGv - S uhmG? | d
0 j j

T T
< [ 0ot atia = [0 = a@)Wilr
’ t ot _ ! (7. et
:/0 ‘/;(ﬂi7ﬂ7i)dt /0 sz( 2 7z)dt
T
+/ o(t) [Vi(ml, wty) + Vi(m;, wty)] dt
0

Rearranging and again noting tag < log |A;| and thatr; was chosen arbitrarily, we
have

T T
/ Vi(wl, 't ,)dt > mﬁux/ V(i ,)dt — log | Ay
0 ™ Jo



T
_/0 o(t) [Vi(ml,mt ) + Vi(r, wt )] dt

T T
> max/ V(i mh,)dt — 2@/ o(t)dt — log|A4;]
™ Jo 0
Thus the regret of th&th agent is bounded by

T
0
The result now follows from Lemma 5. O
We postpone the choice of actual forma(t) till the end of section 5.3 in order
to satisfy both convergence and no-regret, whereby we also compare the emerging ex-
pression of regret with those from GIGA, GIGA-WoLF.

5.3 Convergence in Self-play

Since we do not assume any coordination in the choice of the equilibrium, for games
with multiple equilibria, the agents may be given their portions of different equilibria.
Although this is not difficult to handle i x 2 games [11], in larger games this becomes

a daunting task. In this paper we show that the variable learning rate is useful for this
purpose, in gamesf any sizeébut with a unique mixed equilibrium. Even though coor-
dination in equilibrium selection is by default in such games, it has proven to be a hard
case for convergence in self-play beydhd 2 games RV ,)is the first algorithm that
extends this property to such games of arbitrary size, and this is also experimentally
validated in two such games, viz., the Shapley game (Table 1) and the game in Table 2
with a unique partially mixed equilibrium. This is addition &, ,)being convergent

in all 2 x 2 games with possibly multiple equilibria, which we show next.

2 x 2 gamesIn all 2 x 2 games, the?V/, ,)algorithm can be shown to be equivalent to
WOLF-IGA. In cases where IGA converges (in policy) in self-play, only the direction of
the gradient matters and this remains samefig ). In the special case where WoLF-
IGA (but not IGA) converges in policy, the learning rate changéii, turns out

to be the same as WoLF-IGA thus guaranteeing convergence like WoLF-IGA. Hence
RV, always converges to an equilibrium policy in allx 2 games, when given its
portion ofanyequilibrium, similar to WoLF-IGA.

Games with unique mixed equilibrium Here we prove that a-schedule can be de-
signed satisfying definition 5 such that convergence to equilibrium can be achieved in
these games. We make another technical assumption, that the minimum game payoff of
i is strictly positive,r, > 0, for all 5. Again this is easy to satisfy in self-play without
changing the game strategically. The following lemmas will be used in the proof of the
final Theorem for convergence &V, ,in self-play.

As a first step we show that the requirement on the value(oé.,o = 1; Theorem
3in [1]) from the perspective of any learnecan be relaxed in two ways. The first is a
direct but minor relaxation given by the lemma below.



Lemma 7 If the policy ofi is note;-close to its equilibrium, i.emin; |7¢(j) -7} (j)| >
€;, for somee; > 0, then%Di(w;‘, w!) < —afor some) < a < ¢r;, if i uses

1
1 + €T, —Q :

Tita

o>

Proof : The proof closely follows Theorem 3 in [1]. In case 1 of that preodnly needs
to be positive. It is really case 2 that needs to be relaxed. It is easily seen that the proof
of case 2 in that theorem can be stated for individual agents as well. Consequently when

RD
d[;; > 0, we have

dDEP  dD; , e
O O A (6)
J

Now sincemin; |7f(j) — 7 (j)| > e, there is at least one action, saysuch that
wt(k) < m} (k). Therefore|rt (k) — 77 (k)|VFE > er;. So,

RD .
D S (G) — m GOV -+ (k) — 3 (k)

dt ;
J#k
=Y (@) = mF GV — Imi(k) —m (k) [V
J#k
< (@ G) @)V — e
i#k
Hence,
. e/ s - ADEP
Dm0 -GNV 2 —— e )
j#k
Equation 6 gives uéi%w —4Di > oY (wh(j) — = (j))V; . Substituting from
. DERD dD. dDEDP .
Equation 7, we havgle — St > o(—— + &r;). The result follows noting that
dDEP _
L < 7. O

To illustrate the nature of this relaxation,df = 2 x 1073, 7 = 2,r, = 1, and
a = 1073, then we haver > 0.9995. The main Theorem on convergencerdi, ;,)in
self-play, however, depends on this to be maintained for only a finite @(@X).

The following lemma allowsr to approach 0 in self-play, but applies only when
the others aresufficiently closeo their portions of the equilibrium. First we define
“sufficiently close”. Let us write the vector @fh agents payoff);/ over index;j (j €
A;), asV;. Also from Game Theory [21] we know that for a non-negative game with
a unique completely mixed equilibrium there is a constéft > 0 for eachi such
that, V;(j, 7*,) = V;*, V4. Clearly when the opponents’ policies are close to their
respective equilibrial// = V;(j, " ;) is also close td/;(j, #* ;) = V;*, since payoffs
are bounded.



Definition 6 The opponents of agehdire said to besufficiently closeo their equilibria
if |V, — V;*1|| < V;*, and this distance does not excdétlat any future time.

Now the following Lemma relaxes the the valuecofrom 1 when the opponents are
sufficiently closéo their equilibria.

Lemma 8 In self-play in non-negative games with a unique completely mixed equilir-
ium, when the opponents of agémire sufficiently close to their equilibria, the value of
o used byi need only satisfy (¢) > w to ensure convergence of to 7

Proof : Let us callc = ||V; — V*1|. Note that under the given conditiorig; — ¢ <
V? < Vi 4 ¢, Vj. Then the rate of variation i; (7%, ') can be given as before by,

i = S )~ GGV

J

> (wlG) - mrG)NA— @)V + D () () + o)V
Jmi() > (5) J: 7r*(J)<Tr*(J)
< DY (@O - mO))A = @)V + o)

Jmi(G)>mr(d)
+ Y (TG =) A+ o)) (V- c)

Jimi () <mr(5)
=1-o®)(V;i+e) > (mG) - 7))

Jmi() 27 (5)
+A+o®)(V =) > (wG) =)
FEHOIS )
=1-o®)Vi+e) >, (mG) -7 ()
VEHO RS E)]

~A+oO)(Vi =) Y (w(G) — ()

VM OELHE)

= Y @G -mO)| Q=@ +e) = A+ a®)(V; - )]

Jmi()=mr(d)
The equality of the last but one step follows from the fact @a}t t(j)r <y () =

T3 () + 2 jimt ()< (i) (T t(j) — 7 (j)) = 0. Since the factor in the flrst square braces

in the last step is strlctly posmve the only S|tuat|on when this is strlctly negative is
wheno(t) > O

Interestingiy, if all agents areufficiently closeo their equilibria and all use the
as in Lemma 8, then all of them will converge to their respective equilibria. This means
for eachi, ||V, — V;*1|| will decrease and that agent will be able to further decrease its
o with time while satisfying Lemma 8. The key is to get theuafficiently closeo their
equilibria. We show how in the next Theorem but before that we state one last necessary
Lemma.




Lemma 9 (KLD- L. correspondence)or any two probability distributionsx, y, we

have||x — y|| < e for somel > ¢ > 0if D(x,y) < 13;22_

The following Theorem establishes the convergenc&¥f ,to Nash equilibrium in
self-play under appropriate assumptions.

Theorem 10 There exists a-schedule satisfying definition 5, which when followed by
n RV, agents guarantees the convergence of their policies to the unique completely
mixed equilibrium profile of the strictly positive game, provided each agent knows

1. the maximum game payoff of any agdi}t,.x = max; 7;,

2. the maximum size of action space among all agemis; | A4;|,
3. the minimum equilibrium payoff among all agentsp; V;*

4. the total number of agents,

Proof : The proof is stated in two steps. In step 1, we establish how agents camfget
ficiently closeto their equilibria. In step 2, we show how they can continue to approach
their equilibria in self-play satisfying condition 3 of Definition 5.

Step 1: For eachi, we need the opponents{) to besulfficiently closdo their equi-
libria. Now any agenp can make|n}, — ;|| < 0, for somed, by usings, >

ﬁ (Lemma 7) for sufficiently long (say) to bring D, (7, w;) down from
-+ T‘:jr‘"p
252

initial value D, (75, 7)) = log | Ap| + 3 ; 75 (j) log 7 () t0 Dy (5, 7)) <
(Lemma 9) at the rate af, (Lemma 7). Therefore,

log 2

s Dp(ﬂ';ﬂ'rg) — Dp(ﬂ';,ﬂ';)

Qp

and this can be easily computed. Note that agersn also compute appropriatg
anday, since it has the knowledge of the necessary polietgsand.

Now if |7}, — 5| < 0, Vp € {—i}, then|wl, —=* || < 3" 4, approximately
(ignoring the terms in second and higher power§)ofAs a consequencés oppo-
nents will besufficiently closeo their equilibria if

IVi = Vi1 < max |V - V7|
J
< |AilFi|lwt; — w7

< Al )6
p

is less thari/;*. This can be ensured for all ageptdy forcing

5 < min; V;*
P = nRpax max; |4

Hence the conditions in the Theorem statement. Thus all agents can be brought
sufficiently closeo their equilibria by some-schedule following Definition 5.



Step 2: After 7, each agent must always satisfy Lemma 8. Since the starting value
(o(7)) has been specified Btep 1, i only needs to know an appropria%g to keep
changing itsr satisfying Lemma 8. It is easy to see that a suitéﬁle’s

do -1 . d
0> 5> () max| X Ria) (2 4fa-0) ®)

wherea_; is a joint action played bys opponents. The appropriate rate in (8) can
be computed froni's observation of its opponents’ policies at all times. Also since
(8) requires‘fl—‘t’ be always negative after, Definition 5 is satisfied. This completes
the proof. O

Note that while in self-play (8) will Ieadfﬁ to approach 0 from below a@s— oo,
if the opponents are not self—plag may not approach 0. But sin% is negative, the
no-regret property (Theorem 6) will be preserved if we m@gq explicitly decay with
time. A sample schedule that does this and satisfies (8) i$ for)

do —1 . d
7~ (7)o T 0o 00 ©

Thus aRV, ) agent can use the aboveschedule for convergence to equilibrium in
self-play while being oblivious of the nature of the others. In case the others are not
self-play agents, the same schedule will guarantee the results of Theorem 3, Corollary 4
and Theorem 6.

Table 2. A 3 actions game with lone mixed equilibrium.

131 711
Ri=[ 1101 |, Ro=[ 1 01
5 12 10151

Theorem 10 basically says thatdfdecays slow enough, then monotonic conver-
gence of the sum of KL divergences can be achieved in self-play. For the following
experiments we use@&schedules(t) = 1+é\/% (of the form of (9)) and show the re-
sults for various values gf in Figure 1 corresponding to the Shapley game (Table 1)
and the game in Table 2 respectively. We used 2 x 10~* and the starting policies
were selected close to the edges of the probability simplex since these are the policies
that make convergence most difficult in RD. Note that the game in Table 1 is not strictly
positive, and that in Table 2 is not strictly positive for the column agent. Also note that
o does not really need to be close to 1 as long as step 1 of Theorem 10 requires. In
both experiments, in just 2000 iteratiomglimbs down to less than 75% for the middle

values off3 as shown in Figure 1.
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Fig. 1. The Sum of KL Divergences in the Shapley game (left) and in the game in Table 2 (right),

H _ 1
with o = TAvi

6 Conclusion

We have presented a modification of ReDValLeR that could guarantee (a) convergence
to best response against stationary opponentseithdr (b) constant bounded regret
against arbitrary opponentsr (c) convergence to Nash equilibrium policies in self-
play. The original ReDVaLeR algorithm was shown to achieve both (b) and (c) empir-
ically but assumed that all agents must know their portions ostrmeequilibrium.

The new algorithm,RV, (), theoretically achieves (a’) convergence to near-best re-
sponse againgventuallystationary opponents, (b’) no-regret payoff against arbitrary
opponentsand (¢’) convergence to some Nash equilibrium policy in some classes of
games, in self-play. Each agent now needs to know only its porticanpfequilib-

rium. Although we have shown property ¢’ in games with unique mixed equilibrium
only, we have also found it to hold in some other classes of games, like coordination
games (omitted here). Future work include further generalization and discrete analysis.
We also intend to experiment further with learning rate schedules identical to GIGA to
directly compare their regret growth rates.
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