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Abstract. We present a new multiagent learning algorithm,RVσ(t), that builds
on an earlier version, ReDVaLeR . ReDVaLeR could guarantee (a) convergence
to best response against stationary opponents andeither(b) constant bounded re-
gret against arbitrary opponents,or (c) convergence to Nash equilibrium policies
in self-play. But it makes two strong assumptions: (1) that it can distinguish be-
tween self-play and otherwise non-stationary agents and (2) that all agents know
their portions of thesameequilibrium in self-play. We show that the adaptive
learnng rate ofRVσ(t)that is explicitly dependent on time can overcome both of
these assumptions. Consequently,RVσ(t)theoretically achieves (a’) convergence
to near-best response againsteventuallystationary opponents, (b’) no-regret pay-
off against arbitrary opponentsand (c’) convergence to some Nash equilibrium
policy in some classes of games, in self-play. Each agent now needs to know
its portion of any equilibrium, and does not need to distinguish among non-
stationary opponent types. This is also the first successful attempt (to our knowl-
edge) at convergence of a no-regret algorithm in the Shapley game.

1 Introduction

Multiagent learning (MAL) in a reinforcement learning setting has been an active field
of study recently. The problem is simply of multiple controllers trying to learn indi-
vidually “optimal” control policies in a shared Markov Decision Process (MDP), often
called astochastic gameor aMarkov game. The difficulty arises from the fact that all
agents are learning simultaneously, which means the MDP faced by each agent is es-
sentiallynon-stationary. Hence, the concept of “optimal” policy becomes ill-defined,
and depends on the collective behavior of the other agents. Previous research has at-
tempted to tackle this problem by considering variousopponent classessuch that there
is a well-defined “optimal policy” for the learnerfor each class of opponents. Typically
the research contributions in this aspect has been to design learning algorithms that
learn the appropriate behaviors for the corresponding class of opponents,without any
access to the class information.

The present paper follows this line of research and makes several fundamental con-
tributions. In particular, we point out that the class taxonomy of the opponents suggested
so far is incomplete. We then fill the void and present the first algorithm that can tackle



all opponent classes. More specifically, we present a new multiagent learning algorithm
for repeated games, with the general philosophy of policy convergence against some
classes of opponents but otherwise ensuring high payoffs. We build on our previous al-
gorithm, ReDVaLeR [1], that we proved to guarantee (a) convergence to best response
against stationary opponents and either (b) constant bounded regret against arbitrary
opponents or (c) convergence to Nash equilibrium policies in self-play. It was shown
to achieve both (b) and (c) empirically but needed to assume that all agents must know
their portions of thesameequilibrium. In this paper we present a new technique extend-
ing ReDVaLeR , calledRVσ(t), that theoretically achieves (a’) convergence to near-best
response againsteventuallystationary opponents, (b’) no-regret payoff against arbitrary
opponents and (c’) convergence to Nash equilibrium policies in some classes of games,
in self-play. Each agent now needs to know only its portion ofanyequilibrium, besides
the other assumptions made in ReDVaLeR . Additionally, sinceRVσ(t)can achieve both
(b’) and (c’) simultaneously, it does not need to distinguish between a self-play agent
and an otherwise non-stationary agent.

No-regret has been an attractive property for a learner facing unknown opponents
- the case that precludes any meaningful definition of a “desirable behavior” even for
the agent designer. In such cases, no-regret stipulates a specific behavior sequence that
achieves “safe” play in terms of payoffs, but otherwise does not attempt convergence
to any specific behavior. However, depending on the opponents, we may want a no-
regret learner to indeed converge to some policy, e.g., we would want it to converge
to Nash equilibrium policy in self-play. Previous research [2] has empirically shown
that in some games (such as the Shapley game in Table 1), no-regret learners are un-
able to converge in self-play. A major consequence of our theoretical results is that
RVσ(t)is both no-regret and convergentin self-play in some classes of games that in-
cludes the Shapley game. The rest of the paper is organized as follows: sections 2 and
3 present the background and the related work respectively. In section 4 we present the
RVσ(t)technique and in section 5, its analysis. We present our conclusions in section 6.

2 Multiagent Reinforcement Learning

A Multiagent Reinforcement Learning task is usually modeled as a Stochastic Game
(SG, also calledMarkov Game), which is a Markov Decision Process with multiple con-
trollers. We focus on stochastic games with a single state, also called repeated games.
This refers to a scenario where a matrix game (defined below) is played repeatedly by
multiple agents. We shall represent the action space of theith agent asAi.

Definition 1 A matrix game withn players is given by ann-tuple of matrices,
〈R1,R2, . . . ,Rn〉 whereRi is a matrix of dimension|A1| × |A2| . . .× |An|, such that
the payoff of theith agent for the joint action(a1, a2, . . . , an) is given by the entry
Ri(a1, a2, . . . , an), ∀i.

As is usual, we assume that payoffs are bounded,Ri(a1, a2, . . . , an) ∈ [ri, r̄i], for real
ri, r̄i. Table 1 shows an example game of 2 players with 3 actions per player, called the
Shapley game.



Table 1.The Shapley Game.

R1=

(
1 0 0
0 1 0
0 0 1

)
, R2=

(
0 1 0
0 0 1
1 0 0

)

A mixed policy, vectorπi ∈ ∆(Ai) for agenti, is a probability distribution over
Ai. If the entire probability mass is concentrated on a single action (some actions), it
is also called apure policy(partially mixed policy). The joint policies of the opponents
of theith agent will be given by the vectorπ−i. We shall usually refer to theith agent
as the learner and the rest of the agents as the opponents. The expected payoff of the
learner at any stage in which the policy tuple〈π1,π2, . . . ,πn〉 is followed is given by
Vi(πi,π−i) =

∑
(a1,...,an)∈

∏
k

Ak
π1(a1) . . . πn(an)Ri(a1, . . . , an).

Definition 2 For an n-player matrix game, anε-best response (BRi
ε,π−i

) of the ith
agent to its opponents’ joint policy (π−i), for someε ≥ 0, is given by

BRi
ε,π−i

= {πi|Vi(πi,π−i) ≥ Vi(π′i,π−i)− ε, ∀π′i ∈ ∆(Ai)}

Definition 3 A mixed-policy Nash Equilibrium (NE) for a matrix game
〈R1,R2, . . . ,Rn〉 is a tuple of probability vectors〈π∗1,π∗2, . . . ,π∗n〉 (policy profile)
such that each is a best response to the rest, i.e.,π∗i ∈ BRi

π∗
−i
∀i. In terms of payoffs,

these conditions can be restated as

Vi(π∗i ,π
∗
−i) ≥ Vi(πi,π

∗
−i) ∀πi ∈ ∆(Ai) ,∀i

No player in this game has any incentive for unilateral deviation from the Nash equilib-
rium policy, given the others’ policy. There always exists at least one such equilibrium
profile for an arbitrary finite matrix game [3]. As an example, the only NE of the 2
player Shapley game in Table 1 is

〈
[ 13 , 1

3 , 1
3 ], [ 13 , 1

3 , 1
3 ]
〉
.

Definition 4 For a given time ranget = 0 . . . T , the regret of a learner (agenti), RgT
i

is given byRgT
i = maxπi

∑t=T
t=1 Vi(πi,π

t
−i)−

∑t=T
t=1 Vi(πt

i,π
t
−i).

This compares the total payoff of the actual sequence of policies of the learner with the
best response to the empirical distribution of the opponent.

3 Related Work

Multiagent Reinforcement Learning has produced primarily two types of algorithms.
One type learns some fixed point of the game e.g., NE (Minimax-Q [4, 5], Nash-Q [6],
FFQ [7]) or correlated equilibrium (CE-Q [8]). These algorithms can guarantee a cer-
tain minimal expected payoff asymptotically, but it may be possible to guarantee higher
payoff in certain situations if the learner is adaptive to the opponents’ play, instead of
learning the game solution alone. This brings us to the other type of learners that learn
a best response to the opponents’ actual play e.g., IGA [9], WoLF-IGA [10, 11], AWE-
SOME [12]. Since mutual best response is an equilibrium, two similar best responding



players (such situations referred to asself-play) should be able to converge to an equi-
librium. WoLF-IGA achieves this in2× 2 games (assuming it knows its portion of any
equilibrium) and AWESOME achieves it for arbitrary sized games. But an AWESOME
agent needs to know an entire equilibirum profile, meaning that it not only knows the
others’ equilibrium policy, but also that all agents agree on which equilibrium they
know in games with multiple equilibria.

Performance guaranteesduring the learning process are provided byregret match-

ing learners. These are algorithms that achievelimT→∞
RgT

i

T ≤ 0 (called no-regret
algorithms) but their convergence properties in policies are unknown [13–16] or at
best limited [2]. A generalized version of IGA, called GIGA, was shown to be no-
regret [17] but its convergence property is unknown. Clearly, there was a need for a
MAL algorithm that could address (eventually) stationary opponents and self-playas
well as other types of opponents.Our previous work on ReDVaLeR [1] filled this void
and allowed a learner to be no-regret against this large class of opponents, in addition
to satisfying the base cases againt stationary and self-play opponents. Subsequently, the
WoLF version of GIGA [18] was shown to be also no-regret but convergent to NE only
in 2× 2 games against GIGA. Our previous algorithm, ReDVaLeR [1] also had limita-
tions. It was shown to achieve both convergence and no-regret in arbitrary sized games,
but for conflicting settings of a parameterσ. Each ReDVaLeR agent was also assumed
to know its portion ofsomeequilibrium, i.e., there was agreement on equilibrium se-
lection. Our present work builds on ReDVaLeR and uses a single time dependentσ that
achieves both convergence and no-regret properties simultaneously. More importantly,
we relax the assumption that agents agree on which equilibrium they know their por-
tions of. Another recent work proposed a similar set of properties for a MAL algorithm,
with a greater focus on payoff [19]. This algorithm achieves near best response against
stationary players (in contrast we guarantee near best response against the larger set
of eventually stationary opponents), at least non-Pareto dominated (by another equi-
librium) equilibrium payoff in self-play (in contrast we provide convergence to some
equilibrium policy), and at least the minimax payoff against all other players (in con-
trast, we guarantee the stronger property of no-regret payoff that could be greater than
the minimax payoff depending on the opponents) in polynomial time. However, this
algorithm needs to know the game matrix ofall agents which is stronger than our 2
assumptions combined that the learner knows only its own game matrix and its portion
of any equilibrium policy.

4 Our Approach: ReDVaLeR with variable σ

We make the following assumptions for the current work,

1. that the learner knows its own bounded game payoffs (like AWESOME)
2. that the agents can observe each other’s instantaneous policies1 and can use van-

ishing step sizes for policy improvement (similar to IGA and WoLF-IGA).

1 This assumption is only used in Theorem 10 but it is dispensable. It is possible to collapse
this and the previous assumption into a single assumption that the learner canonly observe its
payoff vector at every round, as in [18]. We shall show the details in a consolidated version.



3. that the agents are given at the start, their portions ofanyequilibrium policy profile
(like WoLF-IGA). They might see their portions of different equilibria in games
with multiple equilibria.

We write the probability of thejth action of theith agent at timet asπt
i(j) and the

expected payoff of this action against the opponent’s current policy asVi(j,πt
−i) and

note that
∑

j πt
i(j)Vi(j, πt

−i) = Vi(πt
i,π

t
−i).

We use the ReDVaLeR algorithm (see [1] for details) with a time-varying sched-
ule for σ in place of a constant. The discrete form of the algorithm (slightly different
from [1]) is

πt+1
i (j) =

πt
i(j) + ηπt

i(j)l
t
i(j)Vi(j,πt

−i)
1 + η

∑
j lti(j)π

t
i(j)Vi(j, πt

−i)
(1)

for η being a small step size and initial condition:π0
i (j) = 1

|Ai| . Note that the probabil-
ity values generated above are automatically bounded in the range[0, 1] if ri ≥ 0. Also
the distribution is indeed a probability distribution (i.e., sum 1) without the need of a
projection operation unlike GIGA or GIGA-WoLF.

In continuous time, i.e., asη → 0, the above equation yields the same differential
equation as ReDVaLeR for the dynamics of then-player system

d

dt
(πt

i(j)) = πt
i(j)× [lti(j)Vi(j, π

t
−i)−

∑
j

lti(j)π
t
i(j)Vi(j, π

t
−i)] (2)

j = 1 . . . |Ai|, i = 1 . . . n. In contrast with [1], the learning rates (lti(j)) for this
algorithm,RVσ(t), are defined as

lti(j) =
{

1 + σ(t) if πt
i(j) < π∗i (j)

1− σ(t) if πt
i(j) ≥ π∗i (j) (3)

for a suitableσ-schedule as defined below.

Definition 5 (σ-Schedule) A time decaying schedule forσ(t) is defined by the 3 con-
ditions:

1. σ(t) is continuous and1 ≥ σ(t) ≥ 0,∀t,
2. σ(t) ≥ σ(t′),∀t′ ≥ t,
3. σ(t) → 0 ast →∞.

5 Analysis ofRVσ(t)

In the following analysis, we shall use the symbol‖x‖ to mean theL∞ norm of a vector,
i.e.,‖x‖ = maxi |xi| and the symbol1 to mean a vector of all 1’s. We also assume that
the game payoffs are all positive (i.e.,ri ≥ 0), which is merely a technical assumption,
since if the agent knows its game payoffs it can easily make an affine transformation
to satisfy this assumption. The new game is strategically unchanged and the no-regret
property also holds in the original game.



For the sake of brevity, we writeVi(j, πt
−i) simply asV j

i . Let Di(π̃i,π
t
i) be the

Kullback Leibler divergence between theith agent’s policy at timet and anarbitrary
distributionπ̃i, given by

Di(π̃i,π
t
i) =

∑
j

π̃i(j) log
(

π̃i(j)
πt

i(j)

)
(4)

With a slight abuse of notation, we will refer tȯDi or dDi

dt as the projection of the
gradient of the functionDi (equation 4) along the solution trajectory of (2) for a given
initial policy profile. When the trajectory follows the unmodified Replicator Dynamics,

we write the same asdDRD
i

dt . The following result is crucial to all subsequent analyses.

Lemma 1 [1] For any fixed policỹπi,

d

dt
(Di(π̃i,π

t
i)) =

∑
j

lti(j)π
t
i(j)V

j
i −

∑
j

lti(j)π̃i(j)V
j
i

d

dt
(DRD

i (π̃i,π
t
i)) = Vi(πt

i,π
t
−i)− Vi(π̃i,π

t
−i)

5.1 Convergence against eventually stationary opponents

Here we establish thatRVσ(t)with σ-schedule of definition 5 converges to the set ofε-
best responses against stationary opponents from which follow the convergence against
eventually stationary opponents. The following lemma is used and is straightforward to
prove.

Lemma 2 (Payoff-continuity) If πi1 andπi2 are two policy vectors of agenti against
the stationary joint policy of the opponentsπ−i and if ‖πi1 − πi2‖ ≤ α for some
α > 0, then

|Vi(πi1,π−i)− Vi(πi2,π−i)| ≤ α|Ai|r̄i

In other words, if two policies are close then so are their payoffs against a given joint
policy of the opponents.

The following Theorem establishes thatRVσ(t)with a non-stationaryσ (Defini-
tion 5) converges to the set ofε-best responses against stationary opponents.

Theorem 3 For a givenε > 0, there exists a timeτ , such that afterτ a RVσ(t)agent
i usingσ-schedule in Definition 5 againstn − 1 stationary agents, is guaranteed to
converge to the set ofε-best response policies,BRi

ε,π−i
.

Proof : Suppose the opponents’ joint stationary policy is given byπ−i, and let us con-
sider somēπi ∈ BRi

0,π−i
. Clearly the payoff of all policies inBRi

0,π−i
have the same

value and let this value bēVi. At any given timet we consider the following two cases:



Case 1 : πt
i 6∈BRi

ε,π−i

This means
V (πt

i,π−i) < V̄i − ε (5)

Now substitutinḡπi in place of the arbitrary policy in Lemma 1, we get

d

dt
(Di(π̄i,π

t
i)) =

∑
j

lti(j)π
t
i(j)V

j
i −

∑
j

lti(j)π̄i(j)V
j
i

≤ (1 + σ(t))Vi(πt
i,π−i)− (1− σ(t))Vi(π̄i,π−i)

= Vi(πt
i,π−i)− Vi(π̄i,π−i) + σ(t)[Vi(πt

i,π−i) + Vi(π̄i,π−i)]
< −ε + σ(t)[Vi(πt

i,π−i) + Vi(π̄i,π−i)] , by (5)

≤ −ε + 2σ(t)V̄i

Now according to Definition 5 there exists a time (τ ) such that for allt′ > τ ,
σ(t′) < ε

2V̄i
. Thus at all such timesddt (Di(π̄i,π

t′

i )) < 0 wheneverπt′

i 6∈BRi
ε,π−i

.
This means, the policy approaches a best response at such times. By Lemma 2, the
policy cannot approach a best response without its payoff approachingV̄i. Thus at
some pointt′, the value of the policy will exceed̄Vi − ε and so,πt′

i ∈ BRi
ε,π−i

.
This brings us to the 2nd case.

Case 2 : πt
i ∈ BRi

ε,π−i
. Also t ≥ τ

If πt′

i ∈ BRi
ε,π−i

, ∀t′ > t then we are done. Otherwise, there exists a timet′ > t

such thatπt′−η
i ∈ BRi

ε,π−i
andπt′

i 6∈BRi
ε,π−i

, whereη is the time step size used

in Equation 1. SoVi(π
t′−η
i ,π−i) ≥ Vi(πt′

i ,π−i). Also

‖πt′−η
i − πt′

i ‖ ≤ η(1 + σ(t′ − η))r̄i

≤ 2ηr̄i

Then by Lemma 2,

Vi(π
t′−η
i ,π−i)− Vi(πt′

i ,π−i) ≤ 2η|Ai|r̄2
i

that is
Vi(πt′

i ,π−i) ≥ V̄i − (ε + 2η|Ai|r̄2
i )

So even thoughπt′

i is not anε-best response, it is an(ε + 2η|Ai|r̄2
i )-best response.

Also from time t′ case 1 applies and both of the policy and the payoff approach
that of a strict best response. Thus afterτ , the payoff never falls below̄Vi − (ε +
2η|Ai|r̄2

i ) = V̄i − ε, sinceη → 0. Lastly, πt
i may not converge to any specific

policy in BRi
ε,π−i

, only stay in this set asymptotically. ut

An immediate corollary of Theorem 3 is thatRVσ(t)will converge to anε-best re-
sponse even if the opponents do not always play stationary policies, as long as they
settle down to a stationary profile at some finite time, τ1. This is justified by replacingτ
in the proof of Theorem 3 bymax{τ, τ1}. We state this result as the following corollary.



Corollary 4 If there exists a timeτ1 such that all other agents play stationary poli-
cies at all timest > τ1, then for a givenε > 0, there exists a timeτ , such that after
max{τ1, τ} an RVσ(t)agenti usingσ-schedule in definition 5, is guaranteed to con-
verge to the set ofε-best response policies,BRi

ε,π−i
.

Note that this does not require all of the opponents to start playing a stationary profile
simultaneously, only that the last opponent to settle down should do so at some finite
time point τ1. Also note that this notion of eventually stationary opponent profile is
a stronger condition than the non-stationary opponent policieswith a limit considered
in [20]. In the latter the opponents may never actually settle down but continue with an
ever decreasing distance from a limiting profile.

5.2 No-regret property

Here we prove the no-regret property ofRVσ(t). Compared to ReDVaLeR , now the
regret is no longer constant bounded but can grow with time. However, with the help of
the following lemma (stated without proof) we can show that the average regret goes to
0.

Lemma 5 (Vanishing average)Given definition 5 forσ(t), we havelimT→∞

∫ T

0
σ(t)dt

T =
0.

Theorem 6 If a RVσ(t)agenti uses the decayingσ-schedule of definition 5, then

lim
T→∞

RgT
i

T
≤ 0

i.e., the algorithm is asymptotically no-regret.

Proof : As in Theorem 2 in [1], we have

−D0 ≤
∫ T

0

∑
j

lti(j)π
t
i(j)V

j
i −

∑
j

lti(j)π̃i(j)V
j
i

 dt

≤
∫ T

0

(1 + σ(t))Vi(πt
i,π

t
−i)dt−

∫ T

0

(1− σ(t))Vi(π̃i,π
t
−i)dt

=
∫ T

0

Vi(πt
i,π

t
−i)dt−

∫ T

0

Vi(π̃i,π
t
−i)dt

+
∫ T

0

σ(t)
[
Vi(πt

i,π
t
−i) + Vi(π̃i,π

t
−i)
]
dt

Rearranging and again noting thatD0 ≤ log |Ai| and that̃πi was chosen arbitrarily, we
have ∫ T

0

Vi(πt
i,π

t
−i)dt ≥ max

π̃i

∫ T

0

Vi(π̃i,π
t
−i)dt− log |Ai|



−
∫ T

0

σ(t)
[
Vi(πt

i,π
t
−i) + Vi(π̃i,π

t
−i)
]
dt

≥ max
π̃i

∫ T

0

Vi(π̃i,π
t
−i)dt− 2r̄i

∫ T

0

σ(t)dt− log |Ai|

Thus the regret of theith agent is bounded by

RgT
i ≤ 2r̄i

∫ T

0

σ(t)dt + log |Ai|

The result now follows from Lemma 5. ut
We postpone the choice of actual form ofσ(t) till the end of section 5.3 in order

to satisfy both convergence and no-regret, whereby we also compare the emerging ex-
pression of regret with those from GIGA, GIGA-WoLF.

5.3 Convergence in Self-play

Since we do not assume any coordination in the choice of the equilibrium, for games
with multiple equilibria, the agents may be given their portions of different equilibria.
Although this is not difficult to handle in2×2 games [11], in larger games this becomes
a daunting task. In this paper we show that the variable learning rate is useful for this
purpose, in gamesof any sizebut with a unique mixed equilibrium. Even though coor-
dination in equilibrium selection is by default in such games, it has proven to be a hard
case for convergence in self-play beyond2× 2 games.RVσ(t)is the first algorithm that
extends this property to such games of arbitrary size, and this is also experimentally
validated in two such games, viz., the Shapley game (Table 1) and the game in Table 2
with a unique partially mixed equilibrium. This is addition toRVσ(t)being convergent
in all 2× 2 games with possibly multiple equilibria, which we show next.

2× 2 games In all 2× 2 games, theRVσ(t)algorithm can be shown to be equivalent to
WoLF-IGA. In cases where IGA converges (in policy) in self-play, only the direction of
the gradient matters and this remains same forRVσ(t). In the special case where WoLF-
IGA (but not IGA) converges in policy, the learning rate change inRVσ(t)turns out
to be the same as WoLF-IGA thus guaranteeing convergence like WoLF-IGA. Hence
RVσ(t)always converges to an equilibrium policy in all2 × 2 games, when given its
portion ofanyequilibrium, similar to WoLF-IGA.

Games with unique mixed equilibrium Here we prove that aσ-schedule can be de-
signed satisfying definition 5 such that convergence to equilibrium can be achieved in
these games. We make another technical assumption, that the minimum game payoff of
i is strictly positive,ri > 0, for all i. Again this is easy to satisfy in self-play without
changing the game strategically. The following lemmas will be used in the proof of the
final Theorem for convergence ofRVσ(t)in self-play.

As a first step we show that the requirement on the value ofσ (i.e.,σ = 1; Theorem
3 in [1]) from the perspective of any learneri can be relaxed in two ways. The first is a
direct but minor relaxation given by the lemma below.



Lemma 7 If the policy ofi is notεi-close to its equilibrium, i.e.,minj |πt
i(j)−π∗i (j)| >

εi, for someεi > 0, then d
dtDi(π∗i ,π

t
i) < −α for some0 < α < εiri, if i uses

σ >
1

1 + εiri
−α

r̄i+α

.

Proof : The proof closely follows Theorem 3 in [1]. In case 1 of that proof,σ only needs
to be positive. It is really case 2 that needs to be relaxed. It is easily seen that the proof
of case 2 in that theorem can be stated for individual agents as well. Consequently when
dDRD

i

dt > 0, we have

dDRD
i

dt
− dDi

dt
= σ

∑
j

∣∣πt
i(j)− π∗i (j)

∣∣V j
i (6)

Now sinceminj |πt
i(j) − π∗i (j)| > εi, there is at least one action, sayk, such that

πt
i(k) < π∗i (k). Therefore,|πt

i(k)− π∗i (k)|V k
i ≥ εiri. So,

dDRD
i

dt
=
∑
j 6=k

(πt
i(j)− π∗i (j))V j

i + (πt
i(k)− π∗i (k))V k

i

=
∑
j 6=k

(πt
i(j)− π∗i (j))V j

i − |πt
i(k)− π∗i (k)|V k

i

≤
∑
j 6=k

(πt
i(j)− π∗i (j))V j

i − εiri

Hence, ∑
j 6=k

(πt
i(j)− π∗i (j))V j

i ≥ dDRD
i

dt
+ εiri (7)

Equation 6 gives usdDRD
i

dt − dDi

dt ≥ σ
∑

j 6=k(πt
i(j) − π∗i (j))V j

i . Substituting from

Equation 7, we havedDRD
i

dt − dDi

dt ≥ σ(dDRD
i

dt + εiri). The result follows noting that
dDRD

i

dt ≤ r̄i. ut
To illustrate the nature of this relaxation, ifεi = 2 × 10−3, r̄i = 2, ri = 1, and

α = 10−3, then we haveσ > 0.9995. The main Theorem on convergence ofRVσ(t)in
self-play, however, depends on this to be maintained for only a finite time (O( 1

α )).
The following lemma allowsσ to approach 0 in self-play, but applies only when

the others aresufficiently closeto their portions of the equilibrium. First we define
“sufficiently close”. Let us write the vector ofith agents payoff,V j

i over indexj (j ∈
Ai), asVi. Also from Game Theory [21] we know that for a non-negative game with
a unique completely mixed equilibrium there is a constantV ∗

i > 0 for eachi such
that, Vi(j, π∗−i) = V ∗

i , ∀j. Clearly when the opponents’ policies are close to their
respective equilibria,V j

i = Vi(j, πt
−i) is also close toVi(j, π∗−i) = V ∗

i , since payoffs
are bounded.



Definition 6 The opponents of agenti are said to besufficiently closeto their equilibria
if ‖Vi − V ∗

i 1‖ < V ∗
i , and this distance does not exceedV ∗

i at any future time.

Now the following Lemma relaxes the the value ofσ from 1 when the opponents are
sufficiently closeto their equilibria.

Lemma 8 In self-play in non-negative games with a unique completely mixed equilir-
ium, when the opponents of agenti are sufficiently close to their equilibria, the value of
σ used byi need only satisfyσ(t) >

‖Vi−V ∗
i 1‖

V ∗
i

to ensure convergence ofπt
i to π∗i .

Proof : Let us callc = ‖Vi − V ∗
i 1‖. Note that under the given conditions,V ∗

i − c ≤
V j

i ≤ V ∗
i + c, ∀j. Then the rate of variation inDi(π∗i ,π

t
i) can be given as before by,

dDi

dt
=
∑

j

(πt
i(j)− π∗i (j))lti(j)V

j
i

=
∑

j:πt
i
(j)≥π∗

i
(j)

(πt
i(j)− π∗i (j))(1− σ(t))V j

i +
∑

j:πt
i
(j)<π∗

i
(j)

(πt
i(j)− π∗i (j))(1 + σ(t))V j

i

≤
∑

j:πt
i
(j)≥π∗

i
(j)

(πt
i(j)− π∗i (j))(1− σ(t))(V ∗

i + c)

+
∑

j:πt
i
(j)<π∗

i
(j)

(πt
i(j)− π∗i (j))(1 + σ(t))(V ∗

i − c)

= (1− σ(t))(V ∗
i + c)

∑
j:πt

i
(j)≥π∗

i
(j)

(πt
i(j)− π∗i (j))

+(1 + σ(t))(V ∗
i − c)

∑
j:πt

i
(j)<π∗

i
(j)

(πt
i(j)− π∗i (j))

= (1− σ(t))(V ∗
i + c)

∑
j:πt

i
(j)≥π∗

i
(j)

(πt
i(j)− π∗i (j))

−(1 + σ(t))(V ∗
i − c)

∑
j:πt

i
(j)≥π∗

i
(j)

(πt
i(j)− π∗i (j))

=

 ∑
j:πt

i
(j)≥π∗

i
(j)

(πt
i(j)− π∗i (j))

 [(1− σ(t))(V ∗
i + c)− (1 + σ(t))(V ∗

i − c)]

The equality of the last but one step follows from the fact that
∑

j:πt
i
(j)≥π∗

i
(j)(π

t
i(j)−

π∗i (j))+
∑

j:πt
i
(j)<π∗

i
(j)(π

t
i(j)−π∗i (j)) = 0. Since the factor in the first square braces

in the last step is strictly positive, the only situation when this is strictly negative is
whenσ(t) > c

V ∗
i

. This makesDi Lyapunov implying convergence toπ∗i . ut
Interestingly, if all agents aresufficiently closeto their equilibria and all use theσ

as in Lemma 8, then all of them will converge to their respective equilibria. This means
for eachi, ‖Vi − V ∗

i 1‖ will decrease and that agent will be able to further decrease its
σ with time while satisfying Lemma 8. The key is to get themsufficiently closeto their
equilibria. We show how in the next Theorem but before that we state one last necessary
Lemma.



Lemma 9 (KLD-L∞ correspondence)For any two probability distributions,x,y, we
have‖x− y‖ ≤ ε for some1 > ε > 0 if D(x,y) ≤ 2ε2

log 2 .

The following Theorem establishes the convergence ofRVσ(t)to Nash equilibrium in
self-play under appropriate assumptions.

Theorem 10 There exists aσ-schedule satisfying definition 5, which when followed by
n RVσ(t)agents guarantees the convergence of their policies to the unique completely
mixed equilibrium profile of the strictly positive game, provided each agent knows

1. the maximum game payoff of any agent,Rmax = maxi r̄i,
2. the maximum size of action space among all agents,maxi |Ai|,
3. the minimum equilibrium payoff among all agents,mini V ∗

i

4. the total number of agents,n.

Proof : The proof is stated in two steps. In step 1, we establish how agents can getsuf-
ficiently closeto their equilibria. In step 2, we show how they can continue to approach
their equilibria in self-play satisfying condition 3 of Definition 5.

Step 1: For eachi, we need the opponents (−i) to besufficiently closeto their equi-
libria. Now any agentp can make‖πt

p − π∗p‖ ≤ δp for someδp by usingσp >
1

1+
εprp−αp

r̄p+αp

(Lemma 7) for sufficiently long (sayτ ) to bringDp(π∗p,π
t
p) down from

initial valueDp(π∗p,π
0
p) = log |Ap|+

∑
j π∗p(j) log π∗p(j) to Dp(π∗p,π

τ
p) ≤ 2δ2

p

log 2
(Lemma 9) at the rate ofαp (Lemma 7). Therefore,

τ ≥
Dp(π∗p,π

0
p)−Dp(π∗p,π

τ
p)

αp

and this can be easily computed. Note that agentp can also compute appropriateεp

andαp since it has the knowledge of the necessary policies,πt
p andπ∗p.

Now if ‖πt
p − π∗p‖ ≤ δp ∀p ∈ {−i}, then‖πt

−i − π∗−i‖ ≤
∑

p δp approximately
(ignoring the terms in second and higher powers ofδ). As a consequence,i’s oppo-
nents will besufficiently closeto their equilibria if

‖Vi − V ∗
i 1‖ ≤ max

j
|V j

i − V ∗
i |

≤ |Ai|r̄i‖πt
−i − π∗−i‖

≤ |Ai|r̄i

∑
p

δp

is less thanV ∗
i . This can be ensured for all agentsp, by forcing

δp ≤
mini V ∗

i

nRmax maxi |Ai|

Hence the conditions in the Theorem statement. Thus all agents can be brought
sufficiently closeto their equilibria by someσ-schedule following Definition 5.



Step 2: After τ , each agenti must always satisfy Lemma 8. Since the starting value
(σ(τ)) has been specified inStep 1, i only needs to know an appropriatedσ

dt to keep
changing itsσ satisfying Lemma 8. It is easy to see that a suitabledσ

dt is

0 >
dσ

dt
>

(
−1
V ∗

i

)
max

j

∣∣∣∣∣∣
∑
a−i

Ri(j, a−i)
d

dt

(
πt
−i(a−i)

)∣∣∣∣∣∣ (8)

wherea−i is a joint action played byi’s opponents. The appropriate rate in (8) can
be computed fromi’s observation of its opponents’ policies at all times. Also since
(8) requiresdσ

dt be always negative afterτ , Definition 5 is satisfied. This completes
the proof. ut

Note that while in self-play (8) will leaddσ
dt to approach 0 from below ast → ∞,

if the opponents are not self-playdσ
dt may not approach 0. But sincedσ

dt is negative, the
no-regret property (Theorem 6) will be preserved if we make

∣∣dσ
dt

∣∣ explicitly decay with
time. A sample schedule that does this and satisfies (8) is (fort ≥ 1)

dσ

dt
=
(

−1
V ∗

i

√
t

)
max

j

∣∣∣∣∣∣
∑
a−i

Ri(j, a−i)
d

dt

(
πt
−i(a−i)

)∣∣∣∣∣∣ (9)

Thus aRVσ(t)agent can use the aboveσ-schedule for convergence to equilibrium in
self-play while being oblivious of the nature of the others. In case the others are not
self-play agents, the same schedule will guarantee the results of Theorem 3, Corollary 4
and Theorem 6.

Table 2.A 3 actions game with lone mixed equilibrium.

R1=

(
1 3 1
1 10 1
5 1 2

)
, R2=

(
7 1 1
1 0 1

10 15 1

)

Theorem 10 basically says that ifσ decays slow enough, then monotonic conver-
gence of the sum of KL divergences can be achieved in self-play. For the following
experiments we use aσ-scheduleσ(t) = 1

1+β
√

t
(of the form of (9)) and show the re-

sults for various values ofβ in Figure 1 corresponding to the Shapley game (Table 1)
and the game in Table 2 respectively. We usedη = 2 × 10−4 and the starting policies
were selected close to the edges of the probability simplex since these are the policies
that make convergence most difficult in RD. Note that the game in Table 1 is not strictly
positive, and that in Table 2 is not strictly positive for the column agent. Also note that
σ does not really need to be close to 1 as long as step 1 of Theorem 10 requires. In
both experiments, in just 2000 iterationsσ climbs down to less than 75% for the middle
values ofβ as shown in Figure 1.
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Fig. 1.The Sum of KL Divergences in the Shapley game (left) and in the game in Table 2 (right),
with σ = 1

1+β
√

t
.

6 Conclusion

We have presented a modification of ReDVaLeR that could guarantee (a) convergence
to best response against stationary opponents andeither (b) constant bounded regret
against arbitrary opponents,or (c) convergence to Nash equilibrium policies in self-
play. The original ReDVaLeR algorithm was shown to achieve both (b) and (c) empir-
ically but assumed that all agents must know their portions of thesameequilibrium.
The new algorithm,RVσ(t), theoretically achieves (a’) convergence to near-best re-
sponse againsteventuallystationary opponents, (b’) no-regret payoff against arbitrary
opponentsand (c’) convergence to some Nash equilibrium policy in some classes of
games, in self-play. Each agent now needs to know only its portion ofany equilib-
rium. Although we have shown property c’ in games with unique mixed equilibrium
only, we have also found it to hold in some other classes of games, like coordination
games (omitted here). Future work include further generalization and discrete analysis.
We also intend to experiment further with learning rate schedules identical to GIGA to
directly compare their regret growth rates.
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