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Abstract— Behavior trees (BT) are a popular control archi-
tecture in the computer game industry, and have been more
recently applied in robotics. One open question is how can
intelligent agents/robots autonomously acquire their behavior
trees for task level control? In contrast with existing approaches
that either refine an initially given BT, or directly build
the BT based on human feedback/demonstration, we leverage
reinforcement learning (RL) that allows robots to autonomously
learn control policies by repeated task interaction, but often
expressed in a language more difficult to interpret than BTs.
The learned control policy is then converted to a behavior tree
via our proposed decanonicalization algorithm. The feasibility
of this idea is based on a proposed notion of canonical behavior
trees (CBT). In particular, we show (1) CBTs are sufficiently
expressive to capture RL control policies, and (2) that RL can
be independent of an optimal behavior permutation, despite
the BT convention of left-to-right priority, thus obviating the
need for a combinatorial search. Two evaluation domains help
illustrate our approach.

I. INTRODUCTION

Many control architectures for autonomous robots have
been studied over the decades. Finite state machines (FSM)
and hierarchical finite state machine (HFSM) underlie the
commonest architectures, because of their intuitive structures
and modularity of HFSMs. Algorithms also exist for opti-
mization and learning of such machines [1], [2]. However,
these architectures tend to become unwieldy with increasing
complexity, which prompted the computer game industry
to seek alternatives for non-player characters more than
a decade ago, leading to the adoption of behavior trees
(BT) [3]. Another disadvantage of HFSMs is the fact that
behaviors that are more abstract (e.g. approach ball) operate
on a different time scale than more ground/primitive level
behaviors (e.g., turn left by 2 degrees). On the one hand, this
typically restricts planning to behaviors at the same level of
abstraction. On the other hand, commitment to a higher level
behavior throughout its duration reduces the robot’s ability
to react to exigencies—a problem solved by teleo-reactive
programs [4] which were a precursor to BTs.

Behavior based architecture (BBA) [5], another popu-
lar architecture for robot control, derives inspiration from
Brooks’ subsumption architecture [6]. BBAs not only feature
modularity, scalability and code reuse, but they also solve the
time scale problem since all behaviors, irrespective of their
level of abstraction, operate on the same time scale. BTs
are a derivative of the BBA, and although they were initially

popularized in the game industry, they are being increasingly
adopted for robot control [7], [8], [9].

In this paper, we consider how an agent can autonomously
acquire a BT for task level control. Unfortunately, a rather
limited amount of work exists on this topic. Colledanchise
et al. [10] apply evolutionary approaches to incrementally
construct a BT, that requires an externally supplied fitness
function for the entire tree (or it can be estimated by offline
simulations, but this slows down learning). By contrast, we
consider reinforcement learning (RL), which only requires
a reward function constructed at the task level—often an
easier proposition. Dey & Child [11] apply RL to refine an
already constructed BT, whereas we do not require an initial
BT. Pereira & Engel [12] incorporate RL into individual
nodes (which can be viewed as skills), where users pick
the RL parameters to allow the agent improve those skills.
This, again, requires an initial BT be given. Robertson
& Watson [13] describe an algorithm for incrementally
constructing a BT from experience traces produced by an
expert or a human guide. By contrast, we enable an agent to
autonomously acquire its BT without requiring human/expert
demonstration.

Instead of incrementally growing a tree or refining an
externally supplied tree, we propose to directly convert an
autonomously acquired RL control policy into a BT. The
motivation behind this idea is the following. RL policies are
often represented in ways difficult for human interpretation,
e.g., using neural networks or other function approximators.
By contrast, a BT is easier for human users to understand and
modify, protecting human supervision in a robotic society.
However, initial construction of a BT from scratch may be
tedious to a human, which our proposal ameliorates. The
proposal hinges on the notion of a canonical behavior tree
(CBT). A CBT only contains (user coded) behaviors, and
guards/tests, without any structural variety, making it trivial
to construct for RL. Moreover, we prove theoretically that
even the guards/tests can be constructed after RL, meaning
that RL can be conducted without a priori knowledge of an
optimal behavior ordering, despite the BT convention of left-
to-right priority, thus obviating the need for a combinatorial
search. We also prove that an optimal RL policy based on
a given set of behaviors is indeed expressible as a CBT,
thus establishing the feasibility of the proposed approach.
We propose a decanonicalization algorithm to convert the
learned CBT into a BT that is perhaps easier for a human



to understand, and something close to what a robot control
designer might build by hand. We illustrate our approach
with two versions of a package delivery domain in the
Gazebo simulator, where an iRobot Create 2 loads pacakges
from one location and unloads them at another, but taking a
recharge detour when it senses low battery.

II. BACKGROUND

A. Behavior Trees

A BT is a directed rooted tree, with internal nodes serving
to direct control flow, while leaf nodes represent action
execution or condition evaluation. The execution of a BT
starts from the root node which generates clock pulses or
ticks at a given frequency, which are then sent to its children.
A parent passes on a tick to its children following logic that
depends on its type. A child, which may pass on the tick
to its children, must return to the parent one of three status:
running (if its execution is on-going), or success (if its goal
has been achieved) or failure. Internal, or control flow nodes,
may be of three main types: Selector, Sequence or Parallel.
A Selector node routes a tick to its children from left to right
until it finds a child that returns either success or running,
which is the status it then returns back to its parent. The
remaining children do not receive the tick. A Selector node
returns failure iff all of its children return failure. A Sequence
node routes a tick to its children from left to right until it
finds a child that returns either failure or running, which is
the status it then returns back to its parent. The remaining
children do not receive the tick. A Sequence node returns
success iff all of its children return success. A Parallel node
can cause the simultaneous execution of multiple children,
which can be useful for robots with multiple actuators, but
we defer this topic to future work and ignore parallel nodes
in this paper 1. The leaf nodes can be of two types: Condition
and Action. When a Condition node receives a tick, it tests
a proposition and returns success or failure depending on
its evaluation. It never returns running. An Action node
uses a tick to execute one step of some actuator command.
It returns success if/when the (multi-step) action completes
correctly, failure if it fails, or running if it needs more steps
to complete. Actions are, in fact, behaviors. There is an
additional type of control flow node, called the Decorator,
that has a single child, and simply modifies the return value
of its child according to some user defined logic (e.g.,
negation), before passing the modified value to its parent.
Decorators improve human readability and the expressive
power of BTs, but we defer them to future extension of this
work in more complex domains. Figure 1 shows the various
node types considered in this paper.

A BT allows the definition of hierarchical activities, as its
internal nodes can be seen as composing lower level activ-
ities with AND-OR logic into higher level (more abstract)
activities.

1Note that multi-actuator scenarios can also be addressed with separate
BTs for each actuator type, e.g., wheels vs. arms, thus not requiring parallel
nodes.
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Fig. 1. Various node types of a behavior tree. Some node types (viz.,
Parallel and Decorator) are omitted.

B. Reinforcement Learning

Reinforcement learning problems are modeled as Markov
Decision Processes or MDPs [14]. An MDP is given by the
tuple 〈Σ, A,R, P 〉, where Σ is the set of visible environ-
mental states that an agent can be in at any given time,
A is the set of actions it can choose from at any state,
R : Σ×A 7→ < is the reward function, i.e., R(σ, a) specifies
the reward from the environment that the agent gets for
executing action a ∈ A in state σ ∈ Σ; P : Σ×A×Σ 7→ [0, 1]
is the state transition probability function specifying the
probability of the next state in the Markov chain following
the agent’s selection of an action in a state. The agent’s goal
is to learn a policy π : Σ 7→ A that maximizes the sum
of current and future rewards from any state σ, given by,
V π(σ0) = EP [R(σ0, π(σ0)) + R(σ1, π(σ1)) + . . .] where
σ0, σ1, . . . are successive samplings from the distribution P
following the Markov chain with policy π.

Reinforcement learning algorithms often evaluate an
action-quality value function Q given by

Q(σ, a) = R(σ, a) + max
π

γ
∑
σ′

P (σ, a, σ′)V π(σ′) (1)

This quality value stands for the sum of rewards obtained
when the agent starts from state σ at step t, executes action
a, and follows the optimal policy thereafter. Model free
methods directly learn Q(σ, a), often by online dynamic
programming, e.g., Q-learning [14]. The final policy is
calculated as

π(σ) = arg max
a

Q(σ, a). (2)

In this paper, we focus on tasks that allow Q(σ, a) values to
be stored in a table, i.e., tabular Q-learning. In such tasks,
the state space is simple enough to not require any function
approximation.

C. Options

Sutton et al. [15] extended the theory of RL in MDPs
to semi-MDPs (SMDP) with temporally extended actions,
called options. An option is given as a tuple O =
〈IO, πO, βO〉, where IO ⊆ Σ is a set of states where the
option can be initiated, πO : Σ 7→ A is a local option
policy mapping states to primitive actions (or other options),
and βO : Σ 7→ [0, 1] is a termination condition for the
option. A primitive action, a, is a special case of options
under the setting Ia = Σ, βa(.) = 1 and πa(.) = a. In
this paper, we also consider actions that can be complex,
multi-step activities, called behaviors. We shall later show
the equivalence of behaviors and deterministic options.
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Fig. 2. Equivalent behavior trees.

In robotics domains, the state space Σ is often expressed
as a product space over a set of real-valued features F =
{f1, . . . , fk}. Each option/behavior policy πi will typically
map a subset of these features Fi ⊆ F to atomic ac-
tions. We assume that a set of predicates over F , P =
{P1, . . . ,PP }, is given for the construction of BT conditions.
For instance, while the battery-level is a real valued feature,
battery low(σ) is a predicate. Then the top-level policy
π :

∏
i Pi 7→ O maps combinations of predicates over Σ

to set of options, O. It is this top-level policy that a robot
can learn via RL and then convert to a BT.

Apart from the above description of options, we also
refer to the definition of a behavior B as a tuple B =
〈πB , ρB ,∆t〉 [16], where
• πB refers to the local control policy 2 of B that maps

states to (a distribution over) atomic actions. This can
be likened to the option policy πO described above.

• ρB maps states to a return status ∈
{success, failure, running}.

• ∆t stands for the time step, or tick duration, which may
be the same for all behaviors.

III. LEARNING BEHAVIOR TREES

Our main objective is for an agent to autonomously
acquire its behavior tree via ground interactions in the task
domain. While the structure of a behavior tree is highly
flexible to foster development by a human user, the flexibility
creates a challenge in autonomous acquisition by an agent. In
particular, there are multiple ways of representing essentially
the same tree. Figure 2 shows an example. This can be
a challenge to learning mechanisms that often work by
incremental structural changes that improve some measure of
performance. When different sequences of changes to a given
behavior tree policy can lead to the same (or equivalent)
policy, the repetitiveness can raise the complexity of a search
in the space of policies.

Our proposal is to canonicalize the structure of behavior
trees, to avoid or reduce the repetitiveness described above.
Given that behavior trees are essentially AND-OR trees, and
inspired by the universal normal form of logic which are
depth-2 representations, we propose to reduce behavior trees
to a depth-2 representation. The root is always a selector

2This is presented as a control law in [16], i.e., the right side of a
difference equation, but we use a different representation to be consistent
with RL literature.
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Fig. 3. A BT and its reduction to a unit.

node where ticks originate. Its children are all sequence
nodes. Each sequence node has two children. The left child is
a condition node, and the right child is a behavior node. The
condition can be thought of as the guard for the behavior,
i.e., a test for all conditions such that the behavior will be
executed iff the test returns true/success. Figure 2(a) shows
a small example of this reduced representation, which we
call the Canonicalized Behavior Tree (CBT). Each sequence
node at depth-1 with its two children forms a unit. Thus
a CBT can be seen as a selection among a number of
units. The overall idea is that developers will only write
the code for behaviors, and then let the agent autonomously
acquire the guards assuming that the units are arranged
in the CBT in an arbitrary order. To produce the final
behavior tree that is human understandable and closer to
something that a human user might create manually, the
autonomously acquired guards within the units may need
to be “de-canonicalized”, which will possibly disperse the
behaviors to different depths in the final tree.

There are several questions regarding the feasibility of the
above broad idea, which we address in turn in the following
sections.

1) Can all behavior trees be canonicalized to a depth-2
representation as described above?

2) Can a CBT represent the optimal policy for the task?
3) Assuming the existence of an optimal CBT, and given

the left-to-right order of tick traversal, what is the
impact on optimality of an arbitrary arrangement of
behaviors at depth 2?

IV. REDUCTION TO A CBT

Behavior trees, with their full range of features, are
perhaps too powerful to be universally reducible to CBTs.
However, we show in this section that many common and
useful structures are indeed reducible to CBTs. We par-
ticularly exclude the parallel nodes which allow multiple
actuators to operate simultaneously. Instead, we focus on
systems that only allow one action (user defined behavior,
or primitive action) to be active at any given tick.

One common feature in BTs is to organize condition nodes
at multiple levels, exploiting the in-built AND-OR modality
of BTs to combine these conditions. Figure 3 illustrates this
case, and also shows how such a substructure can be reduced
to a unit of the CBT.

Another common feature is a sequence node with memory
(notated as an arrow followed by an asterisk), that allows
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Fig. 4. A BT with memory sequence, and its unit reduction.

sequencing of multiple behaviors in a strict order, as shown
in Figure 4. The memory feature allows the BT to remember
which behavior was running in the last tick, so that once B1

is complete, successive ticks can be pushed directly to B2

instead of restarting B1. The condition C in Figure 4 (and in
Figure 5 as well) represents the condition under which the
memory sequence node receives a tick. It may not be a real
node in the BT, but a condensation of all such conditions
from the rest of the tree. Figure 4 also shows how such
substructures can be reduced to units of the CBT. Note that
this reduction requires additional tests regarding the status
of the behaviors (done, or not done), that are expected to be
reset after the sequence is complete. In our experiments, we
emulate this reset operation by using a moving window over
behavior completion with the success status, instead of an
explicit reset operation. Also note that the tests in Figure 4
could be simplified if we assumed that the units shown would
be arranged successively in the CBT.

An obvious question at this point is what if the substruc-
ture is more complex, involving multiple behaviors at differ-
ent levels, connected by sequences and selectors? Figure 5
shows a more elaborate example, with the corresponding
reduction to units. It is clear that recording which behaviors
completed with success status (as indicated in the previous
paragraph) alone is insufficient; we must also record which
behaviors failed. Again, we could emulate this with the
moving window over behavior terminations (with success
or failure). Furthermore, the set of predicates P need to
be extended to include two additional predicates for each
behavior’s success or failure.

Similar to a memory sequence node described in Figure 4,
there can also be a memory selector node, which would pass
on a tick directly to B2 if B1 fails. These nodes are typically
used to group together multiple ways of achieving the same
goal, e.g., grabbing an object with one arm, vs. grabbing it
with two arms. Multiple behaviors with the same goal add
redundancy, which is an important technique to achieve ro-
bustness and graceful degradation. Clearly, memory selector
nodes can be reduced in a similar way as memory sequence
nodes, and implemented by recording failure within the
moving window as described in the previous paragraph.

Sometimes, a behavior may be used in multiple leaves in
the same BT to exploit code reusability. In such cases, each
occurrence may lead to a unit reduction using the strategies
above, and the multiple resulting units can simply be unified
with a single guard that is the disjunction of the individual
unit guards. We shall show later that the order in which
the units appear, and the other units that intervene, will not

prevent such unification.
In concluding this section, we emphasize that we do not

claim every behavior tree can be reduced to a CBT. Our
claim is more modest—that many useful behavior trees can
indeed be reduced to equivalent CBTs. More importantly, it
is not actually necessary to reduce a BT to a CBT, rather
the inverse transformation is of our interest, and this section
illustrates the need to accommodate additional conditions
(behavior done, or failed) in our CBT to enable an inverse
transformation.

V. OPTIMAL CBT

With any new policy language there is a naturally associ-
ated question whether or not the new policy representation
is sufficiently expressive. One relevant measure is whether
it can represent an optimal policy whenever it exists. We
answer this question about the CBT in this section.

As in [16], a behavior can be viewed as a partition of
the state space into subsets according to the return status
function, ρ. More specifically, a behavior B partitions the
state space Σ into disjoint subsets where it returns success
(S) or failure (F ) immediately, a subset where it executes a
control action according to πB and transitions to another state
while returning running status (R), or a subset where it has
undefined behavior or is never supposed to be invoked (U ,
e.g., for features f 6∈ FB). Thus, at development time, every
behavior B partitions Σ into PB = {SB , FB , RB , UB}. This
view of a behavior B can be shown to be equivalent to the
definition of an option O = 〈IO, πO, βO〉 as follows:

σ ∈ RB ∪ SB ⇔ σ ∈ IO
σ ∈ RB ⇔ πO(σ) = πB(σ)

σ ∈ SB ∪ FB ⇔ βO(σ) = 1

Thus, every behavior corresponds to an option with determin-
istic termination—henceforth deterministic option, and every
deterministic option corresponds to one or more behaviors.
Note that the partition PB = {SB , FB , RB , UB} defined by
a behavior B is only valid when it is created—a process
usually independent of its guard or other behaviors. Once
placed in a CBT, however, this partition changes as outlined
below.

Proposition 1. Every behavior B in a CBT is associated
with a unique partition of Σ induced by the CBT.

Proof: Assume PB = {SB , FB , RB , UB} before the behav-
ior B is placed in the CBT, and P ′B = {S′B , F ′B , R′B , U ′B}
after the behavior is placed in the CBT, if such a partition
exists. The CBT changes the partition PB according to the
following two rules ∀σ ∈ Σ:

∃B′(B′ � B) ∧ (σ ∈ S′B′ ∪R′B′ ∪ F ′B′)⇒ σ ∈ U ′B , (3)
(gB(σ) = fail)⇒ σ ∈ U ′B , (4)

where � is the BT precedence in priority, and gB stands for
the guard of behavior B. In words, if there is a behavior of
higher priority, B′ (i.e., on the left of B in the CBT), that
will pre-empt B in some states then the corresponding states
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Fig. 5. A complex BT and its unit reduction.

are relocated to U ′B . Further, if the guard fails for a state,
then it is also relocated to U ′B . Although multiple behaviors
B′ may satisfy rule (4), the leftmost of them will dominate.
Thus the existence of a unique P ′B depends on the existence
of unique partitions for behaviors to the left of B in the
CBT. This argument extends inductively, until we reach the
base case of the leftmost behavior in the CBT for which the
partition is (potentially) only modified by rule (4), which
does not depend on any other behavior.

The following two observations follow directly from the
above construction:
• Observation 1: for any state that is not in the U ′B

subset of a behavior B in a CBT, B will receive a tick
whenever the system is in that state.

• Observation 2: any state is outside the U ′ subset of
no more than one behavior, since otherwise all but the
leftmost of them would be usurped by rule (4). If we
assume the inclusion of some behavior(s) that can be in-
voked in every possible state (i.e., universal behaviors),
then we can strengthen the observation to: any state is
outside the U ′ subset of exactly one behavior. Examples
of such universal behaviors include idle/noop, ballistic
turn, the wandering behavior in some settings, or even
simply a primitive action (because they are special cases
of options). Note that RL also returns exactly one action
in any state via equation 2.

Given that each behavior corresponds to a deterministic
option and vice versa, the above observations mean that
every CBT corresponds to a (top-level) policy over options.
Given the existence of an optimal policy 3 over options
for any given set of options [15], it then follows that such
a policy corresponds to at least one CBT. Note that the
existence of an optimal CBT is independent of the question
explored in the previous section, i.e., independent of whether
or not the optimal CBT was the outcome of reduction from
a BT. As stated earlier, we are more interested in the inverse
conversion from a CBT (in particular, an optimal CBT) to a
BT, described later in Section VII.

VI. OPTIMAL ORDERING OF BEHAVIORS

The above section established the existence of an optimal
CBT, which clearly would designate a strict ordering of

3Note that an optimal policy over options may differ in performance from
an optimal policy, unless the set of options includes the primitive actions.

the behaviors, coupled with specific guards. It might appear
that in order to learn the optimal CBT, one would need to
learn both the guards and the behavior permutation. However,
behavior permutation calls for a combinatorial search, which
we show in this section is unnecessary.

The idea is that we could choose any permutation of the
behaviors in the CBT, and still be able to reproduce the
behavior of the optimal CBT by simply setting the guards in
a certain way for the chosen permutation. We shall show in
this section that for any permutation of behaviors in a CBT,
there exists a set of guards for that CBT that emulates the
optimal CBT. This would obviate the need to either know
a priori, or learn, the behavior permutation of the optimal
CBT.

We shall establish the result inductively, by showing that
if such guards exist for k behaviors, then they also exist
for k + 1 behaviors, by constructing the guards inductively.
Let us suppose that we choose the permutation of behaviors
B1, . . . , Bk in our CBT, with the corresponding guards
tk1 , . . . , t

k
k that are computed based on the k behaviors. In the

optimal CBT, these behaviors may be permuted differently,
and let the guards corresponding to B1, . . . , Bk be t′1, . . . , t

′
k.

Now we insert a new behavior Bk+1 with the guard tk+1 at
the right end of our CBT, but in the optimal CBT it may
be inserted (with guard t′k+1) in a different location thereby
shifting some behaviors rightward. Under this construction,
the following holds:

Theorem 2. If the guards tk+1
1 , . . . , tk+1

k+1 in our CBT are
computed (on the basis of k + 1 behaviors) recursively as

tk+1
i =


tki Bi not shifted in optimal CBT
tki ∧ ¬t′k+1 i ∈ [1, k], Bi shifted
t′k+1 i = k + 1

(5)
then its behavior is identical to that of the optimal CBT of
the k + 1 behaviors.

Proof: For the base case, notice that when k = 1, t11 = t′1,
and our CBT will be equivalent to the optimal CBT. If B2 is
inserted to the right of B1 in the optimal CBT, then t2i = t1i ,
since no behavior is shifted (i.e., the optimal permutation
is the same as in our CBT). However, if B2 is inserted to
the left of B1 in the optimal CBT, then t21 = t′1 ∧ ¬t′2 =
t11 ∧ ¬t′2, while t22 = t′2. It is straightforward to verify that
these settings of t21 and t22 will give equivalent behaviors for
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Fig. 6. The subunits referenced in Algorithm 1.

the two CBTs.
For the inductive case, we take the strong hypothesis

that tk1 , . . . , t
k
k can be computed on the basis of t′1, . . . , t

′
k

and tk−11 , . . . , tk−1k−1, to give equivalent behaviors of the two
CBTs. Now assume that Bk+1 is inserted somewhere in the
optimal CBT. All behaviors to the left are unshifted, thus
when they receive a tick will not be affected by this insertion.
Hence their guards will need no change, proving tk+1

i = tki .
Next consider Bk+1 itself. It is a new behavior, therefore,
its guard can be no different from t′k+1. Finally, consider the
behaviors that were shifted rightward. They will receive a
tick in the optimal CBT not only when their previous guard
tki holds, but also when t′k+1 is false, allowing the tick to pass
through the unit with Bk+1. This completes the proof.

In the above proof we made use of a strong hypothesis
to account for the subtlety that when a new behavior Bk+1

is inserted into an optimal CBT containing k behaviors, the
relative permutation of the existing k behaviors may also
need to change. Thus the construction rules in equation 5
should be interpreted as being applied after the changed
tk1 , . . . , t

k
k have been computed.

Note that rules in equation 5 cannot actually be computed
without knowing t′1, . . . , t

′
k+1 from the optimal CBT. How-

ever, the result does imply that such guards tk+1
1 , . . . , tk+1

k+1

exist. Together with Observation 2’s (in previous section)
consistency with RL, this Theorem implies that the compu-
tation of the guards for the behaviors can be deferred until
after RL has generated the optimal CBT. The guards for
this optimal CBT can be extracted directly from RL’s output
(explained in the next section) for any chosen permutation
of the behaviors.

VII. DE-CANONICALIZATION

As mentioned in Section II-B, here we assume a simple
tabular form of RL that yields a direct mapping from

∏
i Pi

to the optimal behaviors. Only the predicate combinations
(minterms/products, i.e., conjunctions of all predicates or
their negations) seen during RL are in the map, while the
unseen combinations are assumed to be “don’t care”s, i.e.
they could be mapped to any behavior. We collect all the
minterms for each behavior Bi from the map, and call
this set minterms(Bi). Logic simplification can minimize
minterms(Bi) into compact guards ti. The set of pairs
(ti, Bi) yields a learned CBT. On the one hand, the learned
guards ti may still be less readable logic expressions. On the

Algorithm 1 De-Canonicalize

Input: A set of (ti, Bi)-pairs, minterms(Bi)
and the set dontcares of unseen predicate
combinations.

1: repeat
2: repeat
3: if ∃Bi, Bj , c, s.t. ti = ci ∧ ¬c, tj = cj ∧ c then
4: if c = Bidone then
5: if ci = cj then
6: Substitute subunit X (Fig. 6) for

ti, Bi, tj , Bj .
7: else
8: Substitute subunit Y for ti, Bi, tj , Bj .
9: end if

10: else
11: Substitute subunit Z for ti, Bi, tj , Bj .
12: end if
13: minterms(X/Y/Z) ← minterms(Bi) ∪

minterms(Bj)

14: end if
15: until No further Bi, Bj , c
16: Make remaining behaviors separate subunits, and or-

der them by increasing length of ti.
17: for subunit Xk in the chosen order do
18: tk ←LogicMin(minterms(Xk), dontcares)
19: dontcares← dontcares ∪minterms(Xk)
20: end for
21: until No change
22: Place all subunits under a selector node and return the

de-canonicalized BT.

other, it may be useful (again for the sake of human read-
ability) to replace recognizable structures (such as memory
sequence/selector) within the flattened CBT representation,
in order to transform the learned CBT into a BT from which
it could have been created by our canonicalization procedure
as illustrated in Section IV. Thus, we are interested in an
operation that is inverse to the canonicalization steps, that
also invokes logic simplification. We call this operation de-
canonicalization, and the resulting BT the decanonicalized
BT.

Algorithm 1 shows de-canonicalization, using inputs
(ti, Bi)-pairs, minterms(Bi) and dontcares, as described
above. In lines 2–9, Subunit X (Figure 6) is used for memory
sequences that have a common guard, but Y for those
that have different guards for the behaviors in a memory
sequence. An analogous if-block can be added to identify
memory selectors, but is omitted here because our evaluation
domains (see next section) did not use behaviors that can fail
after successful initiation. Algorithm 1 can only build mem-
ory sequences of length 2, because we maintained moving
window over just the last successful behavior. With longer
windows, the algorithm can be extended to build longer
memory sequences. Subunit Z is used for simplifying guards
that can help identify additional pairs in future passes of the



Fig. 7. The package delivery domain in Gazebo.

repeat-loop 1–21. The replacement of recognizable subunits
by X,Y, or Z is an instance of graph rewriting. Line 18
invokes a logic minimization procedure–LogicMin, while
line 19 essentially imposes the left-to-right priority in guard
simplification, which ultimately leads to the rightmost behav-
ior having the guard True. This is why we order the longest
guard last (line 16). Although most of Algorithm 1 involves
polynomial steps, unfortunately logic minimization is NP-
complete. We use a popular efficient heuristic algorithm,
Espresso [17], in particular its implementation in PyEDA,
for LogicMin.

VIII. EVALUATION

We use a package delivery domain for evaluation, where
an iRobot Create 2 picks up packages at location A and
drops them off at location B repeatedly, except to take a
recharging detour (to a charger at location C) when it senses
low battery, as shown in Figure 7. Package load and unload
operations occur automatically when the robot reaches A
and B respectively, but to keep the domain simple we do
not actually implement these operations; the robot simply
pretends to load or unload. We use two variants of the
domain, a smaller version with no obstacles, and a larger
version that contains the barrier shown in Figure 7 along
with more behaviors and predicates. Next we present the
details of the tasks, and show the results of RL (learned CBT)
and Algorithm 1 (de-canonicalized BT) for both variants of
package delivery.

A. Package Delivery Domain: Small

In the small variant, the robot’s set of behaviors includes
Goto-A (GA), Goto-B (GB), Goto-C (GC), and Dock-
Charger (DC). The last behavior allows the robot to dock its
charging pins correctly with a wall charger’s, and can only be
executed when the robot is at location C. The completion of
the Dock-Charger behavior fully recharges the robot’s battery
instantly. Without recharging, the battery drains at the rate of
0.1% per tick. There is also a directional IR beacon between
the charger’s pins, to help the robot orient, which can only
be sensed from within the circular region highlighted around
C. In the small version of this domain, the barrier between
A and B is absent, and the robot does not have the side
laser scanners shown in Figure 7. The robot uses multiple

?

→ →

t1 GA t3 GC

→

t2 GB

t1 = ¬ battery-low ˄ ¬ carrying-package

?

→

t

GC

GB

DC

Learned CBT Decanonicalized BT

→

t4 DC

t2 = ¬ battery-low ˄ carrying-package

t3 = battery-low ˄ ¬ (GC Done)

t4 = battery-low ˄ (GC Done)

t = battery-low

→

t' GA

t' = ¬ carrying-package

→*

Fig. 8. The learned optimal policy in the package delivery domain.

sensors to be able to navigate the domain, viz., front bump
sensors to detect wall collisions, and short range IR sensors
to detect the charger beacon and adjust the approach direction
for the Dock-Charger behavior. Additionally, it knows the
coordinates of A, B, C and also senses its current location
and orientation. These sensor features define Σ on the basis
of which the 4 behaviors are hand-coded. The given set
of predicates is P = {carrying package, battery low},
where the latter is true at and below 25% charge. To this
we add 4 more predicates, each corresponding to success
of a behavior, i.e., B1-done,. . . , B4-done. This emulates the
moving window over the last successful behavior. Because
of the way the behaviors are coded, they cannot fail once
successfully invoked, i.e., they can fail outright (if invoked
in states in FB ∪ UB), but not afterwards. Thus we do not
need behavior failure predicates for this paper, but this is
an important direction for future extension. For tabular Q-
learning, we treat a change in any of the 6 predicates as a
state transition. The reward function is: reward = +1 when
Goto-A completes successfully (i.e., package picked up), +2
when Goto-B completes successfully (i.e., package dropped
off), -5 if episode terminates (i.e., dead battery), and -0.1
for all other cases. The behaviors were implemented (as
servo) separately from RL, all in C++ within ROS and the
Gazebo simulator. RL yields a map of 10 predicate combina-
tions (minterms) to learned optimal behaviors {B1, . . . , B4},
while the remaining 26 − 10 combinations (unseen because
they are impossible, e.g., DC-done and battery low) form the
dontcares. Figure 8 (left) shows the learned CBT, and the
result of Algorithm 1 is on the right. A video of the learned
policy is included as a supplement.

B. Package Delivery Domain: Large

Figure 7 shows the full version of the package delivery
domain, where we add a barrier between A and B in
the environment, and add two more behaviors–Wall-Follow
(WF) and Wander (Wd). We equip the robot with laser
scanners (to sense walls while wall-following) on both sides,
and add 3 visibility predicates, vis(A|B|C), based on line of
sight. Together with a predicate for the successful completion
of each of the 6 behaviors, we thus have 11 predicates for RL.
In this domain, RL yields a map of 61 predicate combinations
(minterms) to learned optimal behaviors, leaving the remain-



Bi ti

GA VA ∧ CP ∧ LB

GB VB ∧ CP ∧ LB

GC GC Done ∧ VC ∧ LB

DC (GC Done) ∧ VC ∧ LB

WF (VB ∧ CP ∧ LB) ∨ (VC ∧ (LB ∨ CP )) ∨ (VA ∧ CP ∧ LB)
Wd VC ∧ VB ∧ CP ∧ LB

TABLE I
THE LEARNED TESTS (LEARNED CBT) FOR LARGE PACKAGE DELIVERY.

?

→

t1

GC

WF

DC

t3 = vis(A)

t1 = battery-low ˄ vis(C)

→

t2

t2 = carrying-package

→* →

t4 GB

?

→

t3 GA

t4 = vis(B)

→

t5 →Wd

t5 = carrying-package ˄ vis(C)

Fig. 9. The (de-canonicalized) optimal policy in the full package delivery
domain.

ing 211−61 unseen combinations as dontcares. The resulting
learned CBT is shown in Table I. This table uses shorthands
VX for vis(X), CP for carrying package and LB for
battery low. The result of Algorithm 1 is shown in Figure 9.
Notice that the replacement of intractable LogicMin by
efficient heuristic (Espresso) has not affected the accuracy
or readability of the result.

IX. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented a first step in the autonomous acqui-
sition of a behavior tree controller for a robot by lever-
aging reinforcement learning, with behavior coding being
the only user input. We have proven the soundness of
delayed commitment to behavior priority ordering, while
preserving optimality. Two versions of a package delivery
domain illustrated not only how our approach can produce
readable controllers, but also that the replacement of an
NP-complete step by an efficient heuristic may not affect
the accuracy or the readability of the result. Several future
extensions are possible, including accommodation of parallel
and decorator nodes, behavior failures, and additional human
intuitable patterns in de-canonicalization, including longer
memory selector/sequences.

The behavior tree as a language for expressing
plans/controllers also has untapped potential in multi-robot
systems [18], both in the context of computing/learning coor-

dinated plans for robot teammates [19], as well as construct-
ing plan libraries for application in plan recognition [20]. The
need for uniform action durations in both planning and plan
recognition has been a significant constraint when it comes
to practical applications particularly in multi-agent/robot
systems, and behavior trees offers an elegant solution, thus
opening up exciting future directions.
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