1

To Appear in Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI),

Hyder abad, India, Jan 6-12 2007.

General Game L earning using Knowledge Transfer

Bikramjit Banerjee and Peter Stone
Department of Computer Sciences, The University of Texdaiatin; Austin, TX 78712
{banerjee, pstorjedcs.utexas.edu

Abstract

We present a reinforcement learning game player
that can interact with a General Game Playing sys-
tem and transfer knowledge learned in one game
to expedite learning in many other games. We
use the technique of value-function transfer where
general features are extracted from the state space
of a previous game and matched with the com-
pletely different state space of a new game. To
capture the underlying similarity of vastly disparate
state spaces arising from different games, we use
a game-tree lookahead structure for features. We
show that such feature-based value function trans-
fer learns superior policies faster than a reinforce-
ment learning agent that does not use knowledge
transfer. Furthermore, knowledge transfer using
lookahead features can capture opponent-specific
value-functions, i.e. can exploit an opponent’s
weaknesses to learn faster than a reinforcement
learner that uses lookahead with minimax (pes-
simistic) search against the same opponent.

I ntroduction

Oftentimes, specific skills required for target tasks are ac
quired from specially designed source tasks that are vary si
ilar to the targets themselvéasgharbeyget al., 2004. We
consider the more challenging scenario where skills aremor
general, and source target pairs bear little resemblanmeeo
another. Specifically, we consider the genre of 2-player, al
ternate move, complete information games and require that
knowledge acquired from any such game be transferrable to
any other game in the genre.

We develop a TDX) based reinforcement learner that
automatically discovers structures in the game-tree, ithat
uses adeatures, and acquires values of these features from
the learned value-function space. It then uses these values
learned in one game to initialize parts of the value-functio
spaces in other games in the genre. The intention is to reuse
portions of the value-function space that are independent o
the game in our chosen genre in order to learn faster in new
games. This is accomplished by focusing exploration in the
complementary regions of the value function space where
foresight is not informative in a game-independent way.

We use game-tree lookahead for generating features. We
show that features acquired in this way against some oppo-
nent are also indicative of how to play against that oppanent
even in new games. We assume that the Transfer Learner can

The General Game Playing (GGP) domain, introduced bydentify whether it had played against a given opponent be-
Pell [1993, allows description of a wide range of games in fore (in the same or a different game) and if so, retrieve the
a uniform language, called the Game Description Languagteature values learned against that opponent for reuse- How
(GDL) [Genesereth and Love, 2005 he challenge is to de- ever, a simple lookahead search player would additionally
velop a player that can compete effectively in arbitrary gam need to know (or learn) the opponent’s strategy to select the
presented in the GDL format. In this paper we focus on thenost effective heuristic. Without the right heuristic, s
problem of building a learning agent that can use knowledgé¢hat the lookahead search player will not perform as well as
gained from previous games to learn faster in new games ithe Transfer Learner against a given opponent.
this framework.

Knowledge transfer has received significant attention re2 Reinforcement Learning

cently in machine learning resear¢Asgharbeygiet al., Reinforcement Learning (RLSutton and Barto, 1998s a

g?gg\;/eTlgyli%r ?ggrrﬁﬁlonse's%gr%z; dFeedr%z?Ie'a %g?nddivligiﬁgd machine learning paradigm that enables an agent to make se-
pIng gy PP quential decisions in a Markovian environment, the agent’s

cations, each beginning from scratch, inductve bias isstran . . X o .
ferred from previgus Iegrning tasks (sources) to new, but regoal being to leam a decision function that optimizes its
' future rewards. Learning techniques emanating from RL

lated, 'ea”‘,'”,g tasks (targets) |.n order to have been successfully applied to challenging scenarioh, s
» offset initial performance in the target tasks, comparedyg game playing (particularly the champion backgammon
to learning from scratch, and/or player, TD-GammonTesauro, 199 involving delayed re-
e achieve superior performance faster than learning fronwards (rewards only on termination leading to the credit as-
scratch. signment problem of which actions were good/bad?). RL

problems are usually modeledMisrkov Decision Processes 2.2 The GGP Learner

or MDPs[Sutton and Barto, 19098An MDP is given by the \we have developed a complete GGP learner that caters to
tuple{S, 4, R, T}, WhgreS is the set of.envllronmental states the GGP protocdGGP, ; Genesereth and Love, 200%he
that an agent can be in at any given tindeis the set of ac- protocol defines a match as one instance of a game played
tions it can choose from at any stafe,: S x A — Risthe from the start state to a terminal state, between two players
reward function, i.e.R(s,a) specifies the reward from the that connect to the game manager (henceforth just the man-
environment that the agent gets for executing action A ager) over a network connection. Each match starts with both
in states € S; 7' : § x A x S — [0,1] is the state tran- pjayers receiving a GDL file specifying the description af th
sition probability function specifying the probability tfie game they are going to play and their respective roles in the
next state in the Markov chain consequential to the agent'game! The game manager then waits for a predefined amount
selection of an action in a state. The agent's goal is to learn of time (Yartclock) when the players are allowed to analyze
policy (action decision functiory : S — A that maximizes the game. It is possible that both players signal that they ar
the sum of discounted future rewards from any state ready before the end of this (Startclock) phase, in whick cas
Ty 1 / 2 (M " the manager terminates this phase and proceeds with the next
V7(s) = Br[R(s, m(s))+7R(s', m(s))+7 " R(s", m(s7))+ -] In the next phase the manager asks the first mover for its
wheres, s', s", ... are samplings from the distributidnfol- move, and waits for another whil®l@yclock). If the move
lowing the Markov chain with policyr. is not submitted by this time, the manager selects a move at
A common method for learning the value-functidn,as random on behalf of that player and moves to the next player,
defined above, through online interactions with the environand this continues. If a move is submitted before the end of a
ment, is to learn an action-value functi@hgiven by Playclock, the manager moves to the next player early. When
the manager senses a terminal state, it returns the apg®pri
Q(s,a) = R(s,a) + max~y Z T(s,a,s)V™(s") (1) rewardsto the players, and terminates the match. In thisrpap
" s we consider games where every player unambiguously knows
@ can be learned by online dynamic programming usinGhe current state.
the following update rule To measure learning performance, our learner plays a se-
/ ries of matches of the same game against a given opponent,
Qls,a) < Qls,a) +alrsa + mz?XWQ(S ,b) = Q(s, 0)] and notes the cumulative ave?age of ?ewards tghat it ggﬁs from
while playing actiona = arg max;, Q(s,b) in any states, the manager. Since the computations for transfer learning
wherea € (0, 1] is the learning rater,, is the actual envi- are often expensive, we perform these and@sepdates for
ronmental reward angl ~ T'(s, a,.) is the actual next state all states visited in the course of a match, during the Start-
resulting from the agent's choice of actiarin states. The clock of the next match. We keep the sequence of afterstates,
Q-values are guaranteed to converge to those in Equation &, 5, ..., o) (o} being terminal), in memory and use the
in the limit of infinite exploration of eacks, a), ensured by a fast TD(\) [Sutton and Barto, 199&ipdate
suitable exploration schenj8utton and Barto, 1998 i
AQ(op) = aXPlriy1 +7Q(0141) — Q(or)] (2)

21 RLinGGP atany timet = 1,...,k, forp = 1,...,t andX € (0,1],

In a General Game Playing system, the game manager acdighere onlyry,; is potentially non-zero, witl)) (o1) = 0.

as the environment, and a learner needs to interact with it iSuch batch update 6f-values is effectively no different from

almost the same way as in an MDP as outlined above. Imenline updates since a player cannot face the same afterstat

portant differences are (1) the game manager returns rewarghore than once in a match, unless the game allmop as a

only at the end of a game (100 for a win, 50 for a draw, andmove. By relegating the bulk of our computation to the Start-

0 for a loss) with no intermediate rewards, (2) the agent's acclock period, our transfer learner makes rapid moves (irvol

tion is followed by the opponent’s action which decides theing simple @-value lookup) which is useful in large games

next state that the agent faces. If the opponent chooses its &such as chess derivatrives) where move-time can otherwise

tion following a stationary (but not necessarily deterrsiit) exceed the Playclock some times.

policy, then the learner faces a stationary MDP as defined be-

fore. If, however, the opponent is adaptive, then the distri 3 Featuresin Value Space

tion T' is effectively non-stationary and the above techniqueI RL af I f .

for value function learning is no longer guaranteed to coni" RL. afeature usually means a property of some states in

verge. In this paper, we focus on stationary (non-adaptivef‘ For instance, the GPS location is a feature for a mob_|le

opponents. obot. If a set of features can be found such that the union
Leto = (s,a) € X be the state resulting from the learner's f (Neir joint values partitions, then each state can be de-

execution of actiom in states; this is actually the state that its scribed uniquely in terms of those features. In this work we

use game-specific features (or simply the state spf§dp,or-

opponent faces for decision making. The statalso called ; . e
an afterstate, can be reached from many different states Ofder to enable detailed learning within each game, but for the

the learner as a result of different actions. So usually< YIn general, the game may not be one that the agent has ever seen
|S x Al, and it is popular for game playing systems to learnpefore. In this paper, we consider smaller variants of fapytar
values of afterstates, instead of state-actions. Accglgin games, Tic-tac-toe, Othello, Connect-4 and Go, but thaaisiy for

we learn@ (o). ease of experimentation and presentation.

purpose of transfer, we constrain the system to identifyegam &3

independent features (the feature space) that are noesthel b; ;
correlated with the value function. These features describ ¢ ¢)
the transition structure under an afterstate in the gas®-tr

up to a certain depth, in game-independent way. For our ;
purpose, a feature is a game tree template such that if thg., ® ¢)

lookahead from a state matches the template, that feature is

said to be active in that state. A feature is generated/radtch
by starting at the afterstate generated by one move of the ;& ; ;jk i
learner from its current position (opponent’s state shosvaa ® a e

red square at the root of each subtree in Figure 1) and expand-

ing the game tree fully for up to two further moves (one moveFigure 2: The 12 features discovered by the learner in Tic-
of the opponent, followed by one move of itself). The learnertac-toe game. Empty circle/square are terminal states, wit
then classifies each node in this subtreeias loss, drawor ~ square (circle) meaning a win (loss) for the learner. A @dss
non-terminal. Both the tree expansion and the determinatiorsquare is a draw. To be considered a feature there must be at
of these node classes is enabled by a game simulator (usindeast one terminal node at some level.

Prolog based theorem prover) that the learner generai@s fro,g , o mina| and consequently, can identify winning moves
the given game description. Once all nodes in the subtree aT

o - : -step ahead.
classified, siblings of the same class in the lowermost leve

are coalesced. After this step, all siblings in the next bigh

lset\r/lilzt(lljr8e ltJhnedrgrl?hlg\rfneIalpchlgg{gs%:)etga}rngiz&iisnarg?ﬁg: acquired value-function space. This involves matchindieac
' 9 afterstate from the subset &fthat was actually visited dur-

a feature that does not incorporate any game-specific infok, ', o learning, against each of these discoveredrésatu
mation, such as the number of moves available to any play

in any state, or the semantics of a state. Figure 1 illustrat((eﬂsmg the simulator for lookahead. If an afterstatmatches

. - ; > feature, we note the val¥g(c) against that feature. The
Itgfkg;]%%?jslsévsgtiinsﬂg?gH:}zr\s/\(/:ahr?jme to arbitrary number O\"f/lalue of a featurd; is then calculated as a weighted aver-

ageval(F;) = avg,{Q(c)|c matched;}, wherew is the
weight associated with a, specifying the number of times

o was visited during the source game experience. Thus, the
abstract features in game-tree space are associated wiith th
l values in the source task under the assumption that they will

Once the training runs are complete in the source game (in
our case Tic-tac-toe), we extract feature information fthm

Original subtree

have similar values in the target task.

After the feature values have been computed, we use them
Lowest—level coalesci to initialize Q(o) in the target game for eaehthat matches
(intermediate step) F;,i.e.,Qinit(0) = val(F;)s.t. o matched;, once for each

newo encountered in the target game. During the Startclock

of a match, we look at the afterstates visited during the pre-

. , |) ceding match. If an afterstate has not been visited in any pre
I N vious match, it is matched against our set of features discov
S ered in the source game, and initialized as above. If there is

] ?ﬁif;'zz’;;)wa'escmg no match, we initialize to the default valéeNext the TDQ)
= producing a feature updates are done according to Equation 2.

The idea behind this transfer mechanism is to save the cost
of a few value-backup steps near terminal states (i.e., when
the states gain predictive potential) and thus guide eafitor

Figure 1: lllustration of an actual subtree (top) rooted at ao focus more in the regions where foresight is not usually
given afterstate, matching/generating a feature (bott@in) available. In this way, our transfer learner behaves méee |i
cular (green) nodes represent the learner’s states, setijl (human learners.
square) nodes are the opponent’s states (or learner’s after o
states). Empty squares stand for a win for the learner. Characteristics of Feature Transfer
. . The features do not depend on the exact game, as long as it

Figure 2 shows the 12 features discovered by our Trangg yithin the genre of chosen games. Specifically, the size
fer Learner in the Tic-tac-toe game. Note that although they the poard, the number of available actions at each level,
features are all distinct, the associated semantics canbé o semantics of states or actions, and win/loss critena ha
overlapping; for instance, Figure 2 (j),(k) and (|) are hgal poen effectively abstracted away by exploiting the GDL. Con

variants of the concept “fork opponent’, since the leasier’ giger the diverse natures of games in these aspects: in Tic-
move results in a state for the opponent where no matter what

move it makes, the learner can win in its next move. The 2The default initialization valug is the average of the win and
Transfer Learner also needs to check if the starting afterst loss rewards, in this case 50.

tac-toe the number of available moves steadily diminisines, 4 Experimental Results

Connect-4 it diminishes at intervals, while in Othello ityna |, thjs section, we report empirical results that isolagith-
actually increase. The winning criteria are widely varying nact of our general game-tree-feature-based transfensehe
these games; they are similar in Tic-tac-toe and Connect-h g variety of games. We will consider our method to be
but completely different in Go or Othello. A key motivation g syccess if it can lead to quicker and/or better asymptotic
behind this research is to develop simple techniques thmat C8earning in the new games when compared to learning the
transfer knowledge effectively from one game to a markedlynew games from scratch.
different game which is why we have focused on such a high e extracted the feature values from the Tic-tac-toe game,
level of abstraction. _ _ the source, and tested the Transfer Learner on 3 different ta
The distinct leaf-types used in the features (Figure 2) deget games: Connect3, CaptureGo and Othello. Connect-3 is
pend on the possible outcomes of the games from which they variant of Connect-4 where the board sizé is 5 and the
are acquired. In this paper, we have assumed all games hayga| is to make a line of 3 instead of 4 pieces. CaptureGo is a
3 possible outcomes, viz., win, loss or draw, identified byyariant of Go (or GoMoku) where the board siz&is 3 and
distinct rewards 100, 50 and O respectively. If some game ofy match terminates if a player captures an opponent’s piece
fers a different set of rewards (e.§-10,0, 10,20,50}) the following the usual rules of Go. If no player has a move but
Transfer Learner can create a distinct Ieaf-.type for each. Qﬂhere has been no capture yet, then the player with largeér ter
these outcomes to acquire features from this game. But if ifory wins, just as in the regular version of Go. Othello falo
is to apply features from previous games to this game, thethe same rules as the regular game but is played on a smaller
it needs to be provided with some equivalence relation thaggoard of sizet x 4.
maps these rewards to previous reward sets, e.g., thatdlO an For all games, we compared the learning speedsbabe:
0 in this game corresponds to 0 in the previous games, and $the learner to our Transfer Learner using feature knowledge
on. acquired from Tic-tac-toe. The baseline learner uses-after
It is worthwhile to note that in several games such as Ticstate TD-learning as in Equation 2 with a value function ini-
tac-toe and Connect-4, a terminal move by any player cafialized uniformly to the default value. For comparison-pur
cause its win or a draw, but never a loss for that player. Howposes and to isolate the effect of knowledge transfer from
ever, in other games such as Go or Othello, a player's moviokahead search, we also compare with a lookahead learner
can cause its immediate defeat. The features discovened frothat uses the same depth of lookahead as the Transfer Learner
Tic-tac-toe naturally cannot capture this aspect; as Bigur with minimax search to estimate the value of a new afterstate
shows, there are no “win” nodes in the mid-level, or “loss” In this search, non-terminal states at the leaf level aré eva
nodes in the lowest level. Our Transfer Learner can treat angated to the default value, while terminals at any level are
of these games as source, and consequently it can capturevaluated to their actual values. The value estimate for an
variety of possible types of features. In fact it can treat ev afterstate, thus reached, is used to initialize@tsalue for
ery game as both the application domain for previously acTD-learning using the same method as the other 2 learners
quired features, and at the end, as a source for new featurgise., Equation 2).
to carry forward to future games. In this paper, however, we We use three different types of opponents against which

focus on specific source-target pairs, and learn against speur 3 learners are made to compete in the GGP framework.
cific opponents to study the effects of transfer in contwblle These are

experiments. _ e-greedy This opponent uses a small fixed probabilitjor
One concern when using complex feature spaces for trans-~ exploration, and otherwise uses the following policy. It

edge should not overwhelm the learning time. By havinga takes winning moves, avoids losing moves, but other-

we are ensuring a low computational complexity for trans- novice player.

fer knowledge. Moreover, since a single source game Serv‘?andom This opponent picks actions using a uniform prob-
many target games, the time spentin acquiring the feataires ability distribution over the set of available actions agan

amortized, so we do not consider this as an added complexity furn
to target learning. The limited lookahead depth also serves "))

to keep the features somewhat indicative of the outcome ofVeak This opponentis the opposite of agreedy player. It

the subsequent moves. Note however, this indication is not ~ explores in the same manner, but picks worst moves at
always unambiguous, e.g., the outcome of Figure 2(g) can- decisive turns. In effect, this opponent plays randomly
not be specified without knowing the opponent's disposition ~ most of the time, but in the vicinity of a terminal state, it
This ambiguity justifies transfer learning; if merely lookj makes particularly poor decisions.

ahead would give a concrete idea of the ultimate outcome of The purpose of considering a weak opponent is to study
playing a in states irrespective of the opponent’s style of how fast the different learners can learn to exploit certain
play, then we could well have initialized the correspondingweaknesses in an opponent. Table 1 shows the feature val-
Q@-value in the target game to the known value of that out-ues for the 12 features of Figure 2, computed by the Trans-
come, perhaps by minimax search. In the experiments, weer Learner in the Tic-tac-toe game when competing against
actually show the transfer learner learning faster than R w each of these 3 types of opponents. Note that the minimax-
minimax-lookahead, against some opponents. lookahead learner would initialize the afterstates thatilebo

Table 1: Values of the features (from Figure 2) acquired in g
Tic-tac-toe game against various opponents. g 00.4 |
Feature 1D s
from Figure 2 e-greedy Random Weak =z 99 -
@) 41.08 4631 5162 £ oee
(b) 43.75 48.81 57.55 = - e 1
(C) 54.36 53.75 54.63 (_é o8.6 ,x’/){ it transfer ———
(d) 61.5 60.11 59.63 = 7 W lelaheaa L
(e) 43.03 50.41 59.62 = osar I
0] 38 43.5 40.77 082
(9) 40.18 49.43 58.16 © Meahos played s000
(h) 50 50 50
(i) 44.64 42.98 48.93 Figure 4: Learning curves for transfer learner, baseline
) 57.13 58.9 57.48 learner, and RL with lookahead only, ihx 4 Othello, all
(k) 58.42 54.84 58.28 against-greedy opponent
U] 63.36 54.26 57.45 o0
have matched these features to the values of 0, 50 or 100. vos |]

In other words the initializations of the minimax-lookabea
learner are more accurate (since these are the true values fo
those states) than the Transfer Learner, assuming the oppo-

Mean cumulative average performance over 10 runs

nent is perfectly rational. For all experiments, the leashe 085 P]
parameter values weke = 0.3, v = 1.0 (since the task is s
episodic),A = 0.7, and a fixed exploration probability of o8 | 1
e =0.01.
97.5 with transfer ——— o
N without transfer -
with lookahead--*----
100 ;
%] R M o7 %
E co.8 | i o 1000 2000 3000
= Matches played
% 99.6 —
& ooal M Figure 5: Learning curves for transfer learner, baseline
T sonl | learner, and RL with lookahead only, jhx 3 CaptureGo,
g S all againstk-greedy opponent
< 99 TS E
% o8.8 | //"X : learners to converge in the Othello game since the terminal
S esel /7 withwanster | states in this game are not as shallow as in the other games.
s / without transfer--—--— . . .
£ ..l F withiookahead = | In order to verify the learning rates against a weak or a ran-
dom opponent, we pitted the Transfer Learner and the looka-
98.2 . .
o 1000 2000 3000 head learner against each of these opponents, in the Othello

Matches played

game. This game is challenging to both learners because of
he depth of the terminal states. The Transfer Learner ised t
eature values learned against each opponent for the nsatche
against that opponent. The learning curves are shown in Fig-
ures 6 and 7. Since the opponents are quite unlike what
Figures 3, 4 and 5 show the learning curves for the 3 learnthe minimax-lookahead learner assumes, its learning sate i
ers against the-greedy opponent. The Transfer Learner usegpoorer than the Transfer Learner. The Transfer Learner not
the feature values learned against this player in Ticoagc-t only learns the values of features, but also learns themein th
(Table 1). The cumulative average reward from last 2700 ofontext of an opponent, and can reuse them whenever it is pit-
3000 matches are averaged over 10 runs and plotted agairietl against that opponent in the future. Note that the looka-
the number of matches in these figures. Although the Trandiead learner could have usednaxmax heuristic instead of
fer Learner outperforms the baseline learner, we see tkat timinimax to learn much faster against the weak opponent, and
lookahead learner is the ultimate winner since its assumpti similarly anavgmax heuristic against the random opponent.
of a rational opponent is realized in this case, and it uses suBecause of the random policy of this opponent, the learners
perior initializations compared to the Transfer LearndsoA typically have to deal with enormous sizes of afterstatespa
since all the learners use fast TD methods and afterstate lea and hence learn much slower (Figure 7) than against other
ing, their learning rates are high, typically crossiii§ per- opponents in the previous experiments.
formance level in less than 100 matches. Another thing to These experiments demonstrate that knowledge transfer
note from Figure 4 is that 3000 matches is insufficient for thewould be a beneficial addition to a baseline learner, butithat

Figure 3: Learning curves for transfer learner, baselin
learner, and RL with lookahead only, inx 5 Connect3, all
against-greedy opponent

100

ophy in[Fernset al., 2004 where similarity of states/actions
is determined by their effects, viz. rewards and trans#tion
through bisimulation metrics, which we accomplish by game-
tree lookahead.

Mean cumulative average performance over 10 runs
X,

oss| | wemBdENESLTI 6 Conclusions
We have presented a Transfer Learner that uses automatic
oa |/ 1 feature discovery in conjunction with reinforcement learn

ing to transfer knowledge between vastly different 2-peyso
orsl alternate move, complete information games, in the GGP
o OO e pro00 3000 framework. The key to feature construction is lookahead
search of the game tree. This paper demonstrates that game-

; . : : independent features can be used to transfer state value in-
Figure 6: Transfer it x 4 Othello against a weak opponent, formation from one game to another even better than looka-

compared to RL with lookahead. head minimax (or a fixed heuristic) search, particularly whe
°0 the opponent is suboptimal. We believe the lookahead search
player needs to know (or learn) the opponent’s strategy, un-
like the Transfer Learner, in order to select the approgriat
heuristic. Even so, it is unclear whether appropriate Iseuri
tics are readily available for a variety of opponent-weases
(we have only studied two simple cases), and how well they
es | | 1 work for the lookahead learner compared to the Transfer
co | ith tranator i Learner. This paper shows evidence that knowledge transfer
f with lookahead: - offers a simpler alternative to the complex issue of comstru
alr i ing appropriate heuristics for lookahead search. This work
50] also opens up new directions in GGP and transfer learning. In
as & —— —— ~ . the future we will extend feature definition to apply at highe
Matches played levels in the game-tree, incorporate deeper features Hiuilt
erarchically without deeper lookahead, and experimertt wit
Figure 7: Transfer int x 4 Othello against a random oppo- Other and/or larger games.

nent, compared to RL with lookahead. Acknowledgements

itimplements a lookahead approach that our Transfer Learnd his work was supported in part by DARPA/AFRL grant FA8750-
uses as well, then its performance may be superior to th§>-2-0283 and NSF CAREER award 11S-0237699. The authoos als
Transfer Learner, depending on the opponent. This is tru %n:i GtreDgory K”fh'mh?‘“F‘ folr prOVItdlpg th?tGGP ;()jlay?r codebas
if the lookahead scheme involves a heuristic that preciselg urt Dresner for his implementation of tagreedy player.
matches the opponent’s disposition. However, if the héaris References

is a mismatch, then knowledge transfer is the better optior{Asgharbeyggt al., 2006 N. Asgharbeygi, D. Stracuzzi, and
We argue that since selecting a heuristic (e.g., minimax) to P. Langley. Relational temporal difference learning. Piocs.

fit an opponent is a difficult task wihtout knowing the oppo- ICML-06, 2006.

nent’s strategy, knowledge transfer (does not need to knoyrawcett, 1998 Tom Elliott Fawcett. Feature discovery for prob-
the opponent’s strategy) is superior to lookahead learning lem solving systems, PhD thesis, University of Massachsiset
5 Reated Work Ambherst, 1993.

) LFernset al., 2004 N. Ferns, P.S. Castro, D. Precup, and P. Panan-
Lookahead search has been shown to be an effective tech- gaden. Methods for computing state similarity in markovidec

nigue in conjunction with Re_inforcem(_ant Learnifgesauro, sion processes. IRroceedings of UAI, 2006.

1994. Automated feature discovery in games has been eXgenesereth and Love, 2d0Bfichael Genesereth and Nathaniel
plored beforg Fawcett, 1998 which can form the basis of * | ove. General game playing: Overview of the AAAI compe-
further work in feature transfer. Asgharbeygi et[#004 tition. Al Magazine, 26(2), 2005.

have recently developed a relational TD learning techniqus{zGGP] GGP. http://aames.stanford.edu/

for knowledge transfer in the GGP domain. Their techniqu ' - HP-Y ' o
exploits handcrafted first order logic predicates that wagt
key skills in a given game and their values are learned "I)'{:‘)
the same way as we do for features. The main advantage uLtton and iarltot, 13933' SK/tItIE)I'nPand A.lcg.ggartcReu nforcement
our technique is that we do not need to define game-specific -5&"MNY- An Introduction. ress, : _

or opponent-specific features for transfer to be successful [Taylor and Stone, 2005M.E. Taylor and P. Stone. Behavior trans-
a wide variety of games. Some of the literature on Trans- fer for value-function-based reinforcement learning. The
fer Learning for MDPs has looked into constructing corre- Znogr;;'ullt?tergnitgf Jo gtoggnference on Autonormous Agertts
spondences between state and action spaces of two different ag ems, ')
but related MDPiTaonr and Stone, 2005whereas we face [Tesauro, 1994 Gerald Tesaur.o. Td-gammon, a self-teaching
MDPs that have very little in common in terms of syntax or batcl:gamépglnsprzolggaggich|eves masterlevel phégural Com-
semantics of states/actions. Our approach matches ttesphil putation, 6:21o5=215, '

85

80

75

70

Mean cumulative average performance over 10 runs

e[PeII, 1993 Barney Pell. Strategy generation and evaluation for
meta-game playing. PhD thesis, University of Cambridg®319

