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ABSTRACT 

 

We propose a technique for creating reusable models of 

other agents (software or human) in a shared environment, 

with application to video game AI, and AI in general. In 

particular, we build upon an existing technique for agent 

modeling using influence diagrams, and propose a method 

to transform it into a reusable model. Such models can be 

used effectively in reasoning by AI characters (NPCs) for 

predicting the behavior of human players, for collaboration 

or competition in different tasks. We show experiments in 

two collaborative tasks (anti-air defense and predator-prey) 

that clearly demonstrate the reusability and efficiency of our 

modeling technique across different tasks. 

 

INTRODUCTION 

 

Knowledge transfer (Konidaris and Barto, 2007; Banerjee 

and Stone, 2007) is a relatively new technique in AI, that is 

useful in incremental learning of reusable skills and general 

knowledge. The key idea is to reuse knowledge acquired in 

previous tasks (called “source”) to learn/solve new, but 

related tasks (called “target”) in order to  

 offset initial performance in the target task, compared to 

learning/solving from scratch  

 achieve superior performance faster than learning from 

scratch, when considering learning problems 

 

This new trend in AI research seeks to overcome the long-

held tradition of developing specialized systems for given 

tasks. Instead, we seek to develop life-long learning systems 

that can map representations and knowledge efficiently from 

one task to another, and bootstrap performance in the newer 

tasks by exploiting previously acquired knowledge/skills 

from a different setting. A motivating example can be as 

follows: Suppose an agent (NPC) learns to coordinate with a 

human player in the task of jointly intercepting several 

incoming missiles; i.e., successful coordination will result in 

the minimal (perhaps 0) damage to assets from the missiles. 

Can this agent reuse any of this knowledge in coordinating 

with the same player in a different task, such as coordinated 

hunting of a prey? Traditional AI and Multi-agent systems 

literature treats the second task as a new task and embarks 

on learning a coordination policy from scratch. 

 

The major attraction of knowledge transfer in game AI is the 

dramatic impact it can have on learning speed, which has so 

far proved to be a bottleneck for most mainstream machine 

learning technique in games. No matter what baseline 

learning technique we choose, knowledge transfer can make 

it practical in complex game scenarios by exploiting 

knowledge acquired from previous tasks. 

 

In this paper we focus on the problem of learning models of 

other agents/players in a domain, and explore the beneficial 

impact of knowledge transfer on this problem. There may be 

many motivations for studying the problem of agent 

modeling. In collaborative domains where communication is 

expensive, unreliable, and/or prone to interception by 

adversaries, modeling can be an invaluable tool in predicting 

the behavior of team-mates, to act in a coordinated fashion 

(Carmel and Markovitch, 1996). Another major motivation 

for agent modeling comes from the field of games, 

especially video games itself. Prohibitive search cost has 

kept deep searches in the strategy space in game-trees 

(especially ones with large branching factors, such as chess, 

or any video game) outside the purview of all but the 

simplest of games. However, the ability to predict other 

agents’ choices can greatly reduce the branching factor at 

the search-tree-nodes corresponding to the choices of the 

other agents. This could enable an agent to only focus on its 

choices and consequently, search deeper/faster. 

 

We build upon a previous work by Suryadi & 

Gmytrasiewiez (1999) that outlines a simple technique for 

learning the decision function of another agent from 

observations, using an influence diagram model (see later 

section). We argue that the structure of this model does not 

lend itself to reuse. It is suited only for the problem at hand, 

and if we were to deal with the same agents/players in 

another task, we would need to acquire a new model in the 

new task, all over again. We then show how this model can 

be transformed into a reusable one, by decomposing the 

environment-dependent components into two finer parts –

one of which is dependent on the agent (its intrinsic 

character assumed to be unchanged from one task to 

another; hence transferable across tasks) and the other still 

depends on the current task. We show that this 

decomposition allows the second part (task dependent) to be 

readily deducible from the environment, and may not need 

to be learned. As a result, our modeling approach enables 

reuse/transfer of models in many different tasks involving 

the same set of agents/players. 

 

Essentially, we propose a technique for acquiring reusable 

models of other agents, through interactions in a variety of 
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tasks. While the tasks can be widely differing, we assume 

that the other agents/players (teammates or adversaries) are 

the same across different tasks. This assumption can be 

appropriate in many applications. For instance, in video 

games it is reasonable to assume that a Non-Playing 

Character (NPC) needs to collaborate or compete with the 

same human player(s) in different tasks, such as 

collaborative defusing of Improvised Explosive Devices 

(IEDs), joint patrolling, hunting etc. Consequently, we can 

 personalize NPCs to human players, creating the 

illusion of another “player” rather than a software, 

and promoting empathy for NPCs, 

 allow agents to incrementally model a human 

player through several tasks, creating an 

increasingly complete picture of the latter’s 

preferences, styles etc., 

 allow reuse of agent’s code and knowledge across 

different games, thus reducing development time. 

Human players often do not prefer novice 

opponents to sophisticated ones, every time he 

enters a new game. This is especially true when he 

himself is able to draw on experiences acquired 

from previous games. 

 

RELATED WORK 

 

Suryadi and Gmytrasiewiez (1999) train an agent to learn a 

model of another agent in a multi-agents system where the 

other agent can be either automated or human. The 

framework makes use of influence diagrams as a modeling 

representation tool and three strategies are used to create a 

new model of the other agent, which are based on learning 

its capabilities, beliefs and preferences, given an initial 

model and the agents’ behavior data. Consequently, through 

the agents’ behavior data, things might change where some 

capabilities are added or removed, and even some beliefs are 

altered but the task cannot be switched, i.e. we cannot move 

to another task while retaining what the agent has learned so 

far. Although we base our current work on this method, we 

provide significant extension for reusability of the learned 

model in other tasks.  

 

Transfer learning has received most attention in the realm of 

reinforcement learning. The options framework defined by 

closed loop policies for taking an abstract action over a 

period of time provides an ideal foundation for knowledge 

transfer. Examples of options include picking up an object, 

going to lunch, and traveling to a distant city, that involve  

specific sequences of primitive actions that can be activated 

only in certain states. Options enable temporally abstract 

knowledge and action to be included in the reinforcement 

learning framework in a natural and general way (Sutton et 

al. 1999). Consequently, options framework provides 

methods for reinforcement learning agents to build new high 

level skills. However, since options are learned in the same 

state space as the problem that the agent is solving, they 

cannot be readily used in other problems/tasks that are 

similar but have different state space. Konidaris and Barto 

(2007) introduce the notion of learning options in agent 

space – the space generated by a feature set that is present 

and retains the same semantics across successive problem 

instances – rather than in problem space. Agent-space 

options can be reused in later tasks that share the same 

agent-space but have different problem-spaces.  Our 

approach in this paper bears some similarities to this idea of 

agent-space since we essentially convert a task dependent 

model language into a player/agent dependent model 

language. In a recent work (Banerjee and Stone, 2007) we 

have provided a transfer learning method for reinforcement 

learning agents in the General Game Playing (GGP) domain. 

In this paper, we carry forward the lessons learned to impact 

a new domain, viz., player modeling for other genres of 

games (RTS, FPS etc.) 

 

While humans effortlessly use experience from previous 

tasks to improve their performance at novel (but related) 

tasks, machines must be given precise instructions on how to 

make such connections. Roy and Kaelbling (2007) describe 

a Bayesian model based prediction scheme in a meeting-

scheduling domain. They provide a hierarchical extension to 

a Naïve Bayes model that can incorporate data from many 

different users and make predictions for another user, thus 

exploiting previous experience. In contrast, we use an 

influence diagram model and instead of relying on model 

combination, we seek model decomposition to identify 

user/player specific components that can then be transferred 

to a new task.  Furthermore, we study our technique in 

simulated game scenarios with an eye toward future 

application to video games. 

 

INFLUENCE DIAGRAMS 

 

An Influence diagram (Howard and Matheson, 1984) is a 

graphical scheme of knowledge representation for a decision 

problem. It may be viewed as an extension to a Bayesian 

(Charniak, 1991) or belief network (Pearl, 1988), with 

additional node types for decisions and utilities. Influence 

diagrams have three types of nodes: nature node (a.k.a. 

chance node), decision node, and utility node. Nature nodes 

correspond to decisions in nature, as in belief networks. 

They are represented in the diagram as ovals and associated 

with random variables or features, which represent the 

agent’s possibly uncertain beliefs about the world. Decision 

nodes holds the choice of actions an agent has, thus 

represents the agent’s capabilities and they are represented 

as rectangles in the diagram. The agents’ utility functions 

are specified using utility variables, represented as diamonds 

in the diagram. The links between the nodes summarize their 

dependence relationships. Evaluation of the influence 

diagram is done by setting the value of the decision node to 

a particular choice of action, and treating the node just as a 

nature node with a known value that can further influence 

the values of other nodes. Conditional Probability Tables 

(CPTs) are associated with nature and decision nodes, 

giving )|( parentschildP . An algorithm for evaluating 

influence diagrams can be found in Russell and Norvig 

(1995). 

 

 



 

    

Figure 1 above shows an influence diagram used as a basis 

in the predator/prey task discussed later. Here four predators 

are trying to jointly catch a prey by closing in on it and 

surrounding it. In this example, each of the predators 2 thru 

4 decides on its next move by taking into consideration two 

factors: its distance from the prey and the current location of 

the other predators on the board (whether they are on the 

same quadrant or spread out, relative to the prey). Based on 

his observation of these factors, Predator 1 tries to make a 

prediction for each of the other predators using this 

influence diagram, and then selects an action that will lead 

to the best coordination with his predictions.  

 

Below we present another example of a Multi-Agent 

Influence Diagram (MAID), although this is not a 

coordination task. 

 

Figure 2: A MAID for the Tree Killer example; 

Alice’s decision and utility variables are in dark 

gray and Bob’s in light gray 

In the Tree Killer Example (Koller et al., 2003), Alice is 

considering building a patio behind her house, and the patio 

would be more valuable to her if she could get a clear view 

of the ocean. Unfortunately, there is a tree in her neighbor 

Bob’s yard that blocks her view. Being somewhat 

unscrupulous, Alice considers poisoning Bob’s tree, which 

might cause it to become sick. Bob cannot tell whether Alice 

has poisoned his tree, but he can tell if the tree is getting 

sick, and he has the option of calling in a tree doctor (at 

some cost). The attention of a tree doctor reduces the chance 

that the tree will die during the coming winter. Meanwhile, 

Alice must make a decision about building her patio before 

the weather gets too cold. When she makes this decision, she 

knows whether a tree doctor has come, but she cannot 

observe the health of the tree directly. The Multi-Agent 

Influence Diagram (MAID) for this scenario is show in 

Figure 2. 

 

CAPABILITIES 

 

In the following, we use the words “learner”, “modeler”, and 

“agent” interchangeably, and refer to the target of modeling 

as “player”, meaning the human player. As in Suryadi and 

Gmytrasiewicz (1999), a player’s capabilities are formed by 

the set of actions ( Miai ,...,1,  ) that it can perform to 

interact with the world. These actions will be represented in 

the influence diagram as possible value assignments to the 

player's decision. Initially, only the known actions are 

available to form the CPTs, but if a player is observed to 

employ other (previously unknown) actions, the set can be 

expanded to include these new actions.  Conversely, if the 

player somehow loses the ability to perform a certain action, 

that can be determined by its absence in the observation 

history, especially if the player consistently picks the next 

most likely action (according to the model that the agent 

maintains). The missing action can then be deleted from the 

player’s capability. 

 

In Figure 1, each of the predators can move to one of the 

four cells surrounding its current location. The 

modeler/learner (Predator 1) can formulate the CPTs for the 

influence diagram using empirical observations of its 

teammates’ actual moves. Since some available actions may 

not be known (or pertinent) to the modeler, the latter should 

ideally account for such contingency using an “Other” 

action that bunches such actions together. For instance, if a 

certain predator can move to a diagonal neighboring cell 

unlike what the modeler expects, that capability may 

become crucial to coordination and needs to be accounted 

for.  See Suryadi and Gmytrasiewicz (1999) for a more 

detailed discussion of handling agent capabilities in model 

building.  

 

PREFERENCES 

 

Each player has his own preferences depending on the 

problem, and takes into consideration a set of features which 

influence his decisions. Let X = {X1, X2, …, XN} be such a 

set of features. In Figure 1, X is the set of parents of the 

utility node (U), i.e., the nodes Distance and Quadrant. As 

in Suryadi and Gmytrasiewicz (1999), we assume that utility 

is a linear function of these features 

 

NN xwxwU  ...11  

 

where kw are unknown weights measuring the influence of 

feature kX  on the utility, and kx  is a value of kX . The 

assumption of linear contribution of kx  is a choice being 

made for simplicity; a different choice might be necessary 

for certain domains. E.g., if kx  stands for money, then 

Figure 1: An Influence Diagram model for the 
Predator-prey task (described later) 



 

)log( kx might be more suitable given the sub-linear nature 

of money’s utility (St. Petersburg paradox). 

 

It has been shown in Suryadi and Gmytrasiewiez (1999) that 

the optimal decision of the player based on the model is 

given by 
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where ia  are the actions available to the player, and 
i

k

denotes the expected value of feature kX given ia  and 

background evidence E, i.e.,  
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where ,..)1(, lx lk denote different possible values of kX

. The probabilities are available from the CPTs of the 

influence diagram and are assumed to have been already 

learned, or given. In the predator-prey example in Figure 1, 

the probability distribution is always pure (e.g., the distance 

between the next position of the predator after choosing 

movement direction ia , and the current position of the prey 

has a single possible value), whereas it can be a mixed 

distribution in general. 

 

Using equation (1), the modeler predicts that the player is 

going to execute action 
*A , and verifies if this matches the 

actual action that the player chooses. If there is a mismatch 

then it should adjust the weights by applying a well-known 

gradient descent technique, viz., delta rule (Widrow and 

Hoff 1960). The idea is to minimize a cost function based on 

the error signal so that each weight adjustment brings the 

actual output value closer to the desired value. A commonly 

used cost function is the mean-square-error criterion: 
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where )(tei is the error signal generated by comparing the 

agent’s prediction and the player’s actual decision. So  

 

)()()( tyitd itei   

 

where )(td i is the player’s decision at t and )(tyi  is the 

agent’s prediction. 

 

Functionally, this model for weight learning can be 

considered to be a neural network where χ’s are the inputs 

and )(tyi  are the outputs, as shown in Figure 3. In this 

figure, vi is the expected utility of the ith action, ia , and the 

sigma (not the sigmoid function common in neural nets) 

module performs the maximization process of equation (1). 

Now according to the delta rule, the weight adjustment is 

proportional to the product of the error signal and the input 

unit. We require normalization of the χ before presenting 

them to the neural network, so that the resulting weights are 

normalized as well (Suryadi & Gmytrasiewiez, 1999). The 

normalization is given by: 
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where Nk ,...,1  and  is a constant denoting the learning 

rate. 

 

Neural Network Background 

 

In this subsection, we provide a description of neural 

networks for the sake of clarity. Readers familiar with this 

machine learning technique may skip this subsection. 

 

A neural network is made of basic units arranged in layers. 

The first layer is the input layer and in our case it is formed 

from several inputs (depending on the problem) represented 

by the normalized expected values i
k

. The last layer is the 

output, and in our model there is an output for each possible 

action, although only one (the modeler’s prediction by 

equation (1)) will be activated at any time. The intermediate 

layers (if any) are called the hidden layers. The input 

information is fed to the first layer and then propagated to 

the neurons of the second layer for further processing. The 

result is propagated to the next layer and so on until the last 

layer is reached. The goal of the network is to learn or 

discover some association between input and output, or to 

analyze, or to find the structure of the input pattern. The 

learning process is achieved through the modification of the 

connection weights between units. These weights, called 

synaptic weights multiply (i.e. amplify or attenuate) the 

input information: A positive weight is considered 

excitatory, a negative weight inhibitory. 

 

Each of these units is a simplified model of a neuron and 

transforms its input information into an output response. 

This transformation involves two steps: First, the activation 

of the neuron is computed as the weighted sum of it inputs, 

and secondly, this activation is transformed into a response 

by using a transfer function. Formally, if each input is 

denoted xi , and each weight wi , then the activation is equal 

to wxa ii  
and the output denoted y is obtained as

)(afy  . 



 

  

Figure 3: Neural Network Architecture 

 

The architecture of the network, along with the transfer 

functions used by the neurons and the synaptic weights, 

completely specify the behavior of the network. Our specific 

architecture is shown in Figure 3. Notice that the neural 

units are expanded for clarity and that there is no hidden 

unit. 

 

Neural networks are adaptive statistical devices. They can 

change iteratively the values of their parameters (i.e., the 

synaptic weights) as a function of their performance. These 

changes are made according to learning rules which can be 

characterized as supervised (when a desired output is known 

and used to compute an error signal) or unsupervised (when 

no such error signal is used). 

 

The Widrow-Hoff rule (1960), a.k.a. gradient descent or 

Delta rule, is the most widely known supervised learning 

rule. It uses the difference between the actual output of the 

network and the desired output as an error signal for units in 

the output layer. Units in the hidden layers cannot compute 

directly their error signal but estimate it as a function (e.g., a 

weighted average) of the error of the units in the following 

layer. This adaptation of the Widrow-Hoff learning rule is 

known as error backpropagation. With Widrow-Hoff 

learning, the correction to the synaptic weights is 

proportional to the error signal multiplied by the value of the 

activation given by the derivative of the transfer function. 

Using the derivative has the effect of making finely tuned 

corrections when the activation is near its extreme values 

(minimum or maximum) and larger corrections when the 

activation is in its middle range. Each correction has the 

immediate effect of making the error signal smaller if a 

similar input is applied to the unit. In general, supervised 

learning rules implement optimization algorithms akin to 

gradient descent techniques because they search for a set of 

values for the free parameters (i.e., the synaptic weights) of 

the system such that some error function computed for the 

whole network is minimized (Abdi et al. 1999). 

 

OUR CONTRIBUTION 

 

Notice that the factors (viz., distance, quadrant in Figure 1) 

that affect the player's utility (and hence his decision) 

change from one problem to another. In the anti-air defense 

task, the relevant factors are the damage that a missile can 

cause and the cost of intercepting one. The number of 

influencing factors (N) is also subject to change. As a result 

the weight vector learned in one task may be completely 

useless in another, even when modeling the same player. In 

a video game, this would necessitate learning a new weight 

vector in every new team-task involving the same set of 

agents/players. This is surely wasteful and time-consuming, 

and a major reason behind the impracticality of machine 

learning in games. 

 

We argue that there are some characteristics that are 

intrinsic to a player and do not change from one task to 

another. E.g., his risk-sensitivity, team-spirit and other 

similar traits can be considered to be a constant. A modeler 

might consider a fixed, given set of traits 

},...,,{ 21 StttT  that reasonably capture any player’s 

disposition. The way to choose the number of traits and their 

actual meaning is a design issue. The relative importance of 

these traits (let’s say jp for jt , where we assume that the 

jt ’s are given but the jp ’s are the ones that has to be 

learned) to a player may also be considered fixed (but 

unknown) for a given genre of tasks, such as tasks in an 

RTS game. However, the effect of these traits on the 

decision factors (distance, quadrant etc) can vary from one 

task to another.  For instance, team spirit can prompt a 

player to try to increase quadrant value
1
 (in predator-prey 

task), while it may prompt the players to decrease damage 

value (in anti-air defense task), since damage occurs to 

shared properties. We model the influence factor between 

the j
th
  trait ( jt ) and the k

th
 decision factor ( kX ) as a three-

valued (-1, 0 or 1) variable,
j

kf because we are only 

interested in capturing whether the j
th
 trait increases, 

decreases or leaves unchanged the decision variable kX . 

Combined with the importance of a trait ( jp for jt ), we can 

directly relate to the weight of a decision variable using the 

following equation: 
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Substituting this in Equation (1), we get the action decision 

of the player in terms of his traits. This reduces the learning 

task from acquiring the (old) weights kw , to the (new) 

weights jp . The major gain of this decomposition is that 

the weights to be learned are no longer associated with task 

specific factors (such as distance, quadrant in predator-prey 

vs. damage, cost in anti-air defense). Instead, they are now 

associated with the traits of a player that are fixed over the 

entire genre of tasks. Note from equation (3) that the right-

hand-side does still include the task-specific factor
j

kf , but 

this can now be easily determined from the task (one of 

three possible values) and the semantics of the decision 

factors. For instance, team-spirit should increase quadrant 

value in predator-prey, but decrease damage value in anti-

air defense. As a result, if we can acquire jp in one task, 

                                                         
1
 The quadrant value is high if players are spread out in 

different quadrants, but low if they are concentrated on one 

or a few, since this makes it harder to catch the prey. 



 

we can reuse this value without learning it again in a new 

task. Now Equation (3) will let us choose the values of 
j

kf  

in a way that the weight kw of a certain trait would make 

sense with the problem that we’re trying to solve. 

It may seem at this point, that the above formulation of the 

learning problem makes learning unnecessary after the first 

task. After all, if we can acquire all the trait weights (

Sjp j ,...,1,  ) in one task, what remains to be learned in 

the next task? There are at least two reasons why this is not 

the case. Firstly, all trait weights may not be learnable in any 

one given task, because some 
j

kf may be 0. If 
j

kf is 0 for 

all k, then jp  is basically irrelevant to the current task, and 

hence cannot be learned in the current task. In other words, a 

task may only invoke a proper subset of the set of S traits 

designed beforehand; so the rest cannot be learned in that 

task. The second reason is more subtle and will be discussed 

in the next subsection, after we have introduced the new 

weight update rule. 

 

The new learning rule 

 

The new weight learning rule for our formulation can be 

derived in the same way as in Suryadi and Gmytrasiewicz 

(1999). Once again, gradient descent on the error function 

)(tE  gives us the necessary change to the new weight jp  

by noting that 
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This is the new weight update rule. 

 

Now it is possible that 
1j

kf  and 
2j

kf are the same for all 

decision variables kX , since they have a very limited set of 

possible values. Then, by Equation (4),  

 

21 jj pp  .  

 

This constrains the joint dynamics of ),( 21 jj pp such that 

they may converge to values that are completely different 

from their target values. In particular, they will converge to 

identical values if their initial values are identical, even 

though their target values may be different. Nevertheless, 

Equation (3) will be preserved and jp ’s will still give the 

correct target values of kw . However, since convergence to 

the target jp cannot be guaranteed, the values learned in 

one task may not be accurate for another task. We claim that 

these inaccurate values are still a better point for 

initialization in the next task, than simple default 

initialization. We verify this intuition empirically. 

 

EXPERIMENTAL RESULTS 

 

We have used two different tasks for testing the relative 

efficiency of our approach, compared to Suryadi and 

Gmytrasiewicz (1999). These are the anti-air defense task, 

and the predator-prey task, described below. The learning 

agent works in a team with exactly one other player in both 

of these tasks. Target weights that simulate the player’s 

decision are chosen, but are not made known to the agent. 

The agent must learn these weights from repeated joint 

interaction with the environment, and the resulting 

observations of the player’s action choices. The overall plan 

is to make the agent learn some trait weights in the anti-air 

defense task, and use these for initialization in the predator-

prey task. The trait weights that were not learned in the 

former, can be initialized to some default values in the latter. 

We then compare the learning rate with the baseline method 

(from Suryadi and Gmytrasiewicz (1999)) which must learn 

from scratch the player model in the latter task. We will 

consider our knowledge-transfer approach a success if the 

learning rate is superior to the baseline method. Two 

particular hallmarks of this superiority are 

 a difference in the initial performance; our 

approach should have a lower initial error by virtue 

of informed initialization 

 a difference in the convergence value; our approach 

should have lower error on convergence, i.e., it 

should learn a better model faster than in Suryadi 

and Gmytrasiewicz (1999). 

 

Anti-air Defense task 

 

This is a 1616 grid-world adopted from Suryadi and 

Gmytrasiewicz (1999), with two agents, D1 and D2, the 

learner and the human player, as shown in Figure 4. In every 

round of the game, two missiles, M1 and M2 are fired and 

Figure 4: The Anti-air defense task 



 

the agents must shoot down these missiles with interceptors. 

If missed, a missile will cause damage proportional to its 

size. An agent incurs a cost proportional to the accuracy and 

efficiency with which he intercepts a missile. Without 

communicating, the agents must choose different missiles to 

intercept, lest one of the missiles makes it through. Hence, 

there are two actions available to each agent (M1 or M2) 

and two decision variables, X1 = Damage, and X2 = Cost.  

 

Predator-prey task 

 

This is an 88 grid-world with two predators, the learner 

and the human player, shown in Figure 5. There is a prey 

that executes a random walk and the predators must catch 

the prey by either reaching grid-cells neighboring the preys 

that are on opposite quadrants relative to the prey, or by 

cornering it. Each agent can select one of 5 actions, viz., go 

north, west, south, east or stay put. Again for simplicity, 

there are just 2 decision variables, X1 = Distance, and X2 = 

Quadrant. Distance is the distance between the prey and 

player if the player executes a chosen action. Quadrant is a 

score with 3 possible values, viz., 0 (if both predators are on 

the same quadrant relative to the prey if the player executes 

the chosen action), 1 (if they are on different quadrants but 

same side/half of the prey) and 2 (if they are on 

diametrically opposite quadrants relative to the prey). 

Therefore, higher values of Quadrant and lower values of 

Distance are more conducive to catching the prey. In order 

to surround the prey the learner needs to correctly predict 

the player’s next move. 

 

Experiments and analysis 

 

For simplicity, we assume a small set of only 3 traits. To 

simulate the player’s decisions without the involvement of a 

real human player, we used the values 

]13.0,272.0,95.0[],,[ 321 ppp  which is a normalized 

vector. Since we assume that the p-values are available 

(albeit not to the modeler), the semantics of the traits are 

immaterial in this paper; so we leave the traits unnamed. We 

choose these (and f) values such that the resulting weights 

(from equation (3)) make sense with respect to the features 

kX . Considering a specific set of named traits will be 

necessary in actual human trials where the p-values will not 

be available for experimental validation.  

 

In the anti-air defense task, we used 

]0,0,1[],,[ 3

1

2

1

1

1 fff  for X1 (i.e., Damage) and 

]1,0,0[],,[ 3

2

2

2

1

2 fff  for X2 (i.e., Cost). This effectively 

excludes t2 from this task, so that p2 is impossible to learn 

here. Our simulations show that the agent is able to learn p1 

and p3 to a reasonable accuracy (0.98 and 0.18 respectively, 

after 1000 iterations with 5.0 ), but p2 stays at the default 

initial value
2
. This gives the learner a partial picture of the 

player’s disposition that it then leverages in the next task. 

 

In the predator-prey task, the learner initializes p1 and p3 to 

the values it had learned in the previous task, but initializes 

p2 to 0 (the default value, since it was not learned). The 

influence factors in this task were chosen as 

]1,1,1[],,[ 3

1

2

1

1

1 fff  for X1 (i.e., Distance) and 

]1,1,0[],,[ 3

2

2

2

1

2 fff  for X2  (i.e., Quadrant). Thus all 

three traits are needed in this task. The agent then learns all 

3 trait-weights (using Equation 4) over 1000 iterations, 

making a prediction in each iteration based on the current 

weights and tallying it with the observed choice of the 

player. A count of the errors in prediction is kept and a 

cumulative average of these errors is plotted in Figure 6 

(titled “with transfer”), averaging over 3 runs.  

 

Additionally, we let the learner use the baseline approach 

from Suryadi and Gmytrasiewicz (1999) (Equation (2)) to 

learn 1w and 
2w  from repeated observations of the player’s 

action choices in predator-prey, starting from default 

weights of 0, since this method does not allow for 

knowledge transfer. The cumulative average of the resulting 

number of errors is also averaged over 3 runs and plotted in 

Figure 6 (titled “without transfer”). A comparison of the two 

plots in Figure 4 shows that  

 the initial error is lower with our approach 

 the convergence value of the error is lower with our 

approach. 

Thus we have met both criteria of successful transfer with 

the proposed technique. 

 

 

                                                         
2
 Since the p-values are limited in the range [-1,1], we use 

the default initial value of 0. 
Figure 5: The Predator-prey task 



 

 

Figure 6: Difference between Agent Modeling 

with knowledge transfer and without transfer. 

 

CONCLUSIONS 

 

We have presented a reusable player modeling scheme that 

exploits knowledge (partial model) acquired in previous 

tasks to bootstrap learning in subsequent tasks. While tasks 

can be markedly different, the similarity that knowledge 

transfer exploits is in the fact that the model is of the same 

player that the agent repeatedly meets in a series of tasks. 

We have shown experiments in two simple tasks that 

demonstrate the advantage of our approach compared to 

previous work.  

 

We treat the results in this paper as a proof of concept, and 

plan a more elaborate study of our approach in more 

complex RTS games. Additionally, we plan to incorporate 

actual human decisions instead of simulated decisions. 
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