

Player Modeling using Knowledge Transfer

Guy Shahine

DigiPen Institute of Technology

5001-150
th
 Ave NE

Redmond, WA 98052

USA

E-mail: gshahine@digipen.edu

Bikramjit Banerjee

School of Computing

The University of Southern Mississippi

118 College Drive

Hattiesburg, MS 39406

E-mail: Bikramjit.Banerjee@usm.edu

KEYWORDS

Transfer learning, Player modeling, Influence diagrams

ABSTRACT

We propose a technique for creating reusable models of

other agents (software or human) in a shared environment,

with application to video game AI, and AI in general. In

particular, we build upon an existing technique for agent

modeling using influence diagrams, and propose a method

to transform it into a reusable model. Such models can be

used effectively in reasoning by AI characters (NPCs) for

predicting the behavior of human players, for collaboration

or competition in different tasks. We show experiments in

two collaborative tasks (anti-air defense and predator-prey)

that clearly demonstrate the reusability and efficiency of our

modeling technique across different tasks.

INTRODUCTION

Knowledge transfer (Konidaris and Barto, 2007; Banerjee

and Stone, 2007) is a relatively new technique in AI, that is

useful in incremental learning of reusable skills and general

knowledge. The key idea is to reuse knowledge acquired in

previous tasks (called “source”) to learn/solve new, but

related tasks (called “target”) in order to

 offset initial performance in the target task, compared to

learning/solving from scratch

 achieve superior performance faster than learning from

scratch, when considering learning problems

This new trend in AI research seeks to overcome the long-

held tradition of developing specialized systems for given

tasks. Instead, we seek to develop life-long learning systems

that can map representations and knowledge efficiently from

one task to another, and bootstrap performance in the newer

tasks by exploiting previously acquired knowledge/skills

from a different setting. A motivating example can be as

follows: Suppose an agent (NPC) learns to coordinate with a

human player in the task of jointly intercepting several

incoming missiles; i.e., successful coordination will result in

the minimal (perhaps 0) damage to assets from the missiles.

Can this agent reuse any of this knowledge in coordinating

with the same player in a different task, such as coordinated

hunting of a prey? Traditional AI and Multi-agent systems

literature treats the second task as a new task and embarks

on learning a coordination policy from scratch.

The major attraction of knowledge transfer in game AI is the

dramatic impact it can have on learning speed, which has so

far proved to be a bottleneck for most mainstream machine

learning technique in games. No matter what baseline

learning technique we choose, knowledge transfer can make

it practical in complex game scenarios by exploiting

knowledge acquired from previous tasks.

In this paper we focus on the problem of learning models of

other agents/players in a domain, and explore the beneficial

impact of knowledge transfer on this problem. There may be

many motivations for studying the problem of agent

modeling. In collaborative domains where communication is

expensive, unreliable, and/or prone to interception by

adversaries, modeling can be an invaluable tool in predicting

the behavior of team-mates, to act in a coordinated fashion

(Carmel and Markovitch, 1996). Another major motivation

for agent modeling comes from the field of games,

especially video games itself. Prohibitive search cost has

kept deep searches in the strategy space in game-trees

(especially ones with large branching factors, such as chess,

or any video game) outside the purview of all but the

simplest of games. However, the ability to predict other

agents’ choices can greatly reduce the branching factor at

the search-tree-nodes corresponding to the choices of the

other agents. This could enable an agent to only focus on its

choices and consequently, search deeper/faster.

We build upon a previous work by Suryadi &

Gmytrasiewiez (1999) that outlines a simple technique for

learning the decision function of another agent from

observations, using an influence diagram model (see later

section). We argue that the structure of this model does not

lend itself to reuse. It is suited only for the problem at hand,

and if we were to deal with the same agents/players in

another task, we would need to acquire a new model in the

new task, all over again. We then show how this model can

be transformed into a reusable one, by decomposing the

environment-dependent components into two finer parts –

one of which is dependent on the agent (its intrinsic

character assumed to be unchanged from one task to

another; hence transferable across tasks) and the other still

depends on the current task. We show that this

decomposition allows the second part (task dependent) to be

readily deducible from the environment, and may not need

to be learned. As a result, our modeling approach enables

reuse/transfer of models in many different tasks involving

the same set of agents/players.

Essentially, we propose a technique for acquiring reusable

models of other agents, through interactions in a variety of

mailto:gshahine@digipen.edu
mailto:Bikramjit.Banerjee@usm.edu

tasks. While the tasks can be widely differing, we assume

that the other agents/players (teammates or adversaries) are

the same across different tasks. This assumption can be

appropriate in many applications. For instance, in video

games it is reasonable to assume that a Non-Playing

Character (NPC) needs to collaborate or compete with the

same human player(s) in different tasks, such as

collaborative defusing of Improvised Explosive Devices

(IEDs), joint patrolling, hunting etc. Consequently, we can

 personalize NPCs to human players, creating the

illusion of another “player” rather than a software,

and promoting empathy for NPCs,

 allow agents to incrementally model a human

player through several tasks, creating an

increasingly complete picture of the latter’s

preferences, styles etc.,

 allow reuse of agent’s code and knowledge across

different games, thus reducing development time.

Human players often do not prefer novice

opponents to sophisticated ones, every time he

enters a new game. This is especially true when he

himself is able to draw on experiences acquired

from previous games.

RELATED WORK

Suryadi and Gmytrasiewiez (1999) train an agent to learn a

model of another agent in a multi-agents system where the

other agent can be either automated or human. The

framework makes use of influence diagrams as a modeling

representation tool and three strategies are used to create a

new model of the other agent, which are based on learning

its capabilities, beliefs and preferences, given an initial

model and the agents’ behavior data. Consequently, through

the agents’ behavior data, things might change where some

capabilities are added or removed, and even some beliefs are

altered but the task cannot be switched, i.e. we cannot move

to another task while retaining what the agent has learned so

far. Although we base our current work on this method, we

provide significant extension for reusability of the learned

model in other tasks.

Transfer learning has received most attention in the realm of

reinforcement learning. The options framework defined by

closed loop policies for taking an abstract action over a

period of time provides an ideal foundation for knowledge

transfer. Examples of options include picking up an object,

going to lunch, and traveling to a distant city, that involve

specific sequences of primitive actions that can be activated

only in certain states. Options enable temporally abstract

knowledge and action to be included in the reinforcement

learning framework in a natural and general way (Sutton et

al. 1999). Consequently, options framework provides

methods for reinforcement learning agents to build new high

level skills. However, since options are learned in the same

state space as the problem that the agent is solving, they

cannot be readily used in other problems/tasks that are

similar but have different state space. Konidaris and Barto

(2007) introduce the notion of learning options in agent

space – the space generated by a feature set that is present

and retains the same semantics across successive problem

instances – rather than in problem space. Agent-space

options can be reused in later tasks that share the same

agent-space but have different problem-spaces. Our

approach in this paper bears some similarities to this idea of

agent-space since we essentially convert a task dependent

model language into a player/agent dependent model

language. In a recent work (Banerjee and Stone, 2007) we

have provided a transfer learning method for reinforcement

learning agents in the General Game Playing (GGP) domain.

In this paper, we carry forward the lessons learned to impact

a new domain, viz., player modeling for other genres of

games (RTS, FPS etc.)

While humans effortlessly use experience from previous

tasks to improve their performance at novel (but related)

tasks, machines must be given precise instructions on how to

make such connections. Roy and Kaelbling (2007) describe

a Bayesian model based prediction scheme in a meeting-

scheduling domain. They provide a hierarchical extension to

a Naïve Bayes model that can incorporate data from many

different users and make predictions for another user, thus

exploiting previous experience. In contrast, we use an

influence diagram model and instead of relying on model

combination, we seek model decomposition to identify

user/player specific components that can then be transferred

to a new task. Furthermore, we study our technique in

simulated game scenarios with an eye toward future

application to video games.

INFLUENCE DIAGRAMS

An Influence diagram (Howard and Matheson, 1984) is a

graphical scheme of knowledge representation for a decision

problem. It may be viewed as an extension to a Bayesian

(Charniak, 1991) or belief network (Pearl, 1988), with

additional node types for decisions and utilities. Influence

diagrams have three types of nodes: nature node (a.k.a.

chance node), decision node, and utility node. Nature nodes

correspond to decisions in nature, as in belief networks.

They are represented in the diagram as ovals and associated

with random variables or features, which represent the

agent’s possibly uncertain beliefs about the world. Decision

nodes holds the choice of actions an agent has, thus

represents the agent’s capabilities and they are represented

as rectangles in the diagram. The agents’ utility functions

are specified using utility variables, represented as diamonds

in the diagram. The links between the nodes summarize their

dependence relationships. Evaluation of the influence

diagram is done by setting the value of the decision node to

a particular choice of action, and treating the node just as a

nature node with a known value that can further influence

the values of other nodes. Conditional Probability Tables

(CPTs) are associated with nature and decision nodes,

giving)|(parentschildP . An algorithm for evaluating

influence diagrams can be found in Russell and Norvig

(1995).

Figure 1 above shows an influence diagram used as a basis

in the predator/prey task discussed later. Here four predators

are trying to jointly catch a prey by closing in on it and

surrounding it. In this example, each of the predators 2 thru

4 decides on its next move by taking into consideration two

factors: its distance from the prey and the current location of

the other predators on the board (whether they are on the

same quadrant or spread out, relative to the prey). Based on

his observation of these factors, Predator 1 tries to make a

prediction for each of the other predators using this

influence diagram, and then selects an action that will lead

to the best coordination with his predictions.

Below we present another example of a Multi-Agent

Influence Diagram (MAID), although this is not a

coordination task.

Figure 2: A MAID for the Tree Killer example;

Alice’s decision and utility variables are in dark

gray and Bob’s in light gray

In the Tree Killer Example (Koller et al., 2003), Alice is

considering building a patio behind her house, and the patio

would be more valuable to her if she could get a clear view

of the ocean. Unfortunately, there is a tree in her neighbor

Bob’s yard that blocks her view. Being somewhat

unscrupulous, Alice considers poisoning Bob’s tree, which

might cause it to become sick. Bob cannot tell whether Alice

has poisoned his tree, but he can tell if the tree is getting

sick, and he has the option of calling in a tree doctor (at

some cost). The attention of a tree doctor reduces the chance

that the tree will die during the coming winter. Meanwhile,

Alice must make a decision about building her patio before

the weather gets too cold. When she makes this decision, she

knows whether a tree doctor has come, but she cannot

observe the health of the tree directly. The Multi-Agent

Influence Diagram (MAID) for this scenario is show in

Figure 2.

CAPABILITIES

In the following, we use the words “learner”, “modeler”, and

“agent” interchangeably, and refer to the target of modeling

as “player”, meaning the human player. As in Suryadi and

Gmytrasiewicz (1999), a player’s capabilities are formed by

the set of actions (Miai ,...,1,) that it can perform to

interact with the world. These actions will be represented in

the influence diagram as possible value assignments to the

player's decision. Initially, only the known actions are

available to form the CPTs, but if a player is observed to

employ other (previously unknown) actions, the set can be

expanded to include these new actions. Conversely, if the

player somehow loses the ability to perform a certain action,

that can be determined by its absence in the observation

history, especially if the player consistently picks the next

most likely action (according to the model that the agent

maintains). The missing action can then be deleted from the

player’s capability.

In Figure 1, each of the predators can move to one of the

four cells surrounding its current location. The

modeler/learner (Predator 1) can formulate the CPTs for the

influence diagram using empirical observations of its

teammates’ actual moves. Since some available actions may

not be known (or pertinent) to the modeler, the latter should

ideally account for such contingency using an “Other”

action that bunches such actions together. For instance, if a

certain predator can move to a diagonal neighboring cell

unlike what the modeler expects, that capability may

become crucial to coordination and needs to be accounted

for. See Suryadi and Gmytrasiewicz (1999) for a more

detailed discussion of handling agent capabilities in model

building.

PREFERENCES

Each player has his own preferences depending on the

problem, and takes into consideration a set of features which

influence his decisions. Let X = {X1, X2, …, XN} be such a

set of features. In Figure 1, X is the set of parents of the

utility node (U), i.e., the nodes Distance and Quadrant. As

in Suryadi and Gmytrasiewicz (1999), we assume that utility

is a linear function of these features

NN xwxwU ...11

where kw are unknown weights measuring the influence of

feature kX on the utility, and kx is a value of kX . The

assumption of linear contribution of kx is a choice being

made for simplicity; a different choice might be necessary

for certain domains. E.g., if kx stands for money, then

Figure 1: An Influence Diagram model for the
Predator-prey task (described later)

)log(kx might be more suitable given the sub-linear nature

of money’s utility (St. Petersburg paradox).

It has been shown in Suryadi and Gmytrasiewiez (1999) that

the optimal decision of the player based on the model is

given by

N

k

i

kk
a

wA
i 1

* maxarg (1)

where ia are the actions available to the player, and
i

k

denotes the expected value of feature kX given ia and

background evidence E, i.e.,

l

ilkklk

i

k EaxXPx),|(,,

where ,..)1(, lx lk denote different possible values of kX

. The probabilities are available from the CPTs of the

influence diagram and are assumed to have been already

learned, or given. In the predator-prey example in Figure 1,

the probability distribution is always pure (e.g., the distance

between the next position of the predator after choosing

movement direction ia , and the current position of the prey

has a single possible value), whereas it can be a mixed

distribution in general.

Using equation (1), the modeler predicts that the player is

going to execute action
*A , and verifies if this matches the

actual action that the player chooses. If there is a mismatch

then it should adjust the weights by applying a well-known

gradient descent technique, viz., delta rule (Widrow and

Hoff 1960). The idea is to minimize a cost function based on

the error signal so that each weight adjustment brings the

actual output value closer to the desired value. A commonly

used cost function is the mean-square-error criterion:

M

i
i tetE

1

2)(
2

1
)(

where)(tei is the error signal generated by comparing the

agent’s prediction and the player’s actual decision. So

)()()(tyitd itei

where)(td i is the player’s decision at t and)(tyi is the

agent’s prediction.

Functionally, this model for weight learning can be

considered to be a neural network where χ’s are the inputs

and)(tyi are the outputs, as shown in Figure 3. In this

figure, vi is the expected utility of the ith action, ia , and the

sigma (not the sigmoid function common in neural nets)

module performs the maximization process of equation (1).

Now according to the delta rule, the weight adjustment is

proportional to the product of the error signal and the input

unit. We require normalization of the χ before presenting

them to the neural network, so that the resulting weights are

normalized as well (Suryadi & Gmytrasiewiez, 1999). The

normalization is given by:

M

r

N

s

r
s

i
k

1 1

2

i
k

Now,

M

i k

i

ik
k

tw

te

te

tE

tw

tE
w

1)(

)(
.

)(

)(

)(

)(

)()(

1

)(ti
k

t
M

i
eitwk

where Nk ,...,1 and is a constant denoting the learning

rate.

Neural Network Background

In this subsection, we provide a description of neural

networks for the sake of clarity. Readers familiar with this

machine learning technique may skip this subsection.

A neural network is made of basic units arranged in layers.

The first layer is the input layer and in our case it is formed

from several inputs (depending on the problem) represented

by the normalized expected values i
k

. The last layer is the

output, and in our model there is an output for each possible

action, although only one (the modeler’s prediction by

equation (1)) will be activated at any time. The intermediate

layers (if any) are called the hidden layers. The input

information is fed to the first layer and then propagated to

the neurons of the second layer for further processing. The

result is propagated to the next layer and so on until the last

layer is reached. The goal of the network is to learn or

discover some association between input and output, or to

analyze, or to find the structure of the input pattern. The

learning process is achieved through the modification of the

connection weights between units. These weights, called

synaptic weights multiply (i.e. amplify or attenuate) the

input information: A positive weight is considered

excitatory, a negative weight inhibitory.

Each of these units is a simplified model of a neuron and

transforms its input information into an output response.

This transformation involves two steps: First, the activation

of the neuron is computed as the weighted sum of it inputs,

and secondly, this activation is transformed into a response

by using a transfer function. Formally, if each input is

denoted xi , and each weight wi , then the activation is equal

to wxa ii
and the output denoted y is obtained as

)(afy .

Figure 3: Neural Network Architecture

The architecture of the network, along with the transfer

functions used by the neurons and the synaptic weights,

completely specify the behavior of the network. Our specific

architecture is shown in Figure 3. Notice that the neural

units are expanded for clarity and that there is no hidden

unit.

Neural networks are adaptive statistical devices. They can

change iteratively the values of their parameters (i.e., the

synaptic weights) as a function of their performance. These

changes are made according to learning rules which can be

characterized as supervised (when a desired output is known

and used to compute an error signal) or unsupervised (when

no such error signal is used).

The Widrow-Hoff rule (1960), a.k.a. gradient descent or

Delta rule, is the most widely known supervised learning

rule. It uses the difference between the actual output of the

network and the desired output as an error signal for units in

the output layer. Units in the hidden layers cannot compute

directly their error signal but estimate it as a function (e.g., a

weighted average) of the error of the units in the following

layer. This adaptation of the Widrow-Hoff learning rule is

known as error backpropagation. With Widrow-Hoff

learning, the correction to the synaptic weights is

proportional to the error signal multiplied by the value of the

activation given by the derivative of the transfer function.

Using the derivative has the effect of making finely tuned

corrections when the activation is near its extreme values

(minimum or maximum) and larger corrections when the

activation is in its middle range. Each correction has the

immediate effect of making the error signal smaller if a

similar input is applied to the unit. In general, supervised

learning rules implement optimization algorithms akin to

gradient descent techniques because they search for a set of

values for the free parameters (i.e., the synaptic weights) of

the system such that some error function computed for the

whole network is minimized (Abdi et al. 1999).

OUR CONTRIBUTION

Notice that the factors (viz., distance, quadrant in Figure 1)

that affect the player's utility (and hence his decision)

change from one problem to another. In the anti-air defense

task, the relevant factors are the damage that a missile can

cause and the cost of intercepting one. The number of

influencing factors (N) is also subject to change. As a result

the weight vector learned in one task may be completely

useless in another, even when modeling the same player. In

a video game, this would necessitate learning a new weight

vector in every new team-task involving the same set of

agents/players. This is surely wasteful and time-consuming,

and a major reason behind the impracticality of machine

learning in games.

We argue that there are some characteristics that are

intrinsic to a player and do not change from one task to

another. E.g., his risk-sensitivity, team-spirit and other

similar traits can be considered to be a constant. A modeler

might consider a fixed, given set of traits

},...,,{ 21 StttT that reasonably capture any player’s

disposition. The way to choose the number of traits and their

actual meaning is a design issue. The relative importance of

these traits (let’s say jp for jt , where we assume that the

jt ’s are given but the jp ’s are the ones that has to be

learned) to a player may also be considered fixed (but

unknown) for a given genre of tasks, such as tasks in an

RTS game. However, the effect of these traits on the

decision factors (distance, quadrant etc) can vary from one

task to another. For instance, team spirit can prompt a

player to try to increase quadrant value
1
 (in predator-prey

task), while it may prompt the players to decrease damage

value (in anti-air defense task), since damage occurs to

shared properties. We model the influence factor between

the j
th
 trait (jt) and the k

th
 decision factor (kX) as a three-

valued (-1, 0 or 1) variable,
j

kf because we are only

interested in capturing whether the j
th
 trait increases,

decreases or leaves unchanged the decision variable kX .

Combined with the importance of a trait (jp for jt), we can

directly relate to the weight of a decision variable using the

following equation:

Sj

j

j

kjk fpw
1

 (3)

Substituting this in Equation (1), we get the action decision

of the player in terms of his traits. This reduces the learning

task from acquiring the (old) weights kw , to the (new)

weights jp . The major gain of this decomposition is that

the weights to be learned are no longer associated with task

specific factors (such as distance, quadrant in predator-prey

vs. damage, cost in anti-air defense). Instead, they are now

associated with the traits of a player that are fixed over the

entire genre of tasks. Note from equation (3) that the right-

hand-side does still include the task-specific factor
j

kf , but

this can now be easily determined from the task (one of

three possible values) and the semantics of the decision

factors. For instance, team-spirit should increase quadrant

value in predator-prey, but decrease damage value in anti-

air defense. As a result, if we can acquire jp in one task,

1
 The quadrant value is high if players are spread out in

different quadrants, but low if they are concentrated on one

or a few, since this makes it harder to catch the prey.

we can reuse this value without learning it again in a new

task. Now Equation (3) will let us choose the values of
j

kf

in a way that the weight kw of a certain trait would make

sense with the problem that we’re trying to solve.

It may seem at this point, that the above formulation of the

learning problem makes learning unnecessary after the first

task. After all, if we can acquire all the trait weights (

Sjp j ,...,1,) in one task, what remains to be learned in

the next task? There are at least two reasons why this is not

the case. Firstly, all trait weights may not be learnable in any

one given task, because some
j

kf may be 0. If
j

kf is 0 for

all k, then jp is basically irrelevant to the current task, and

hence cannot be learned in the current task. In other words, a

task may only invoke a proper subset of the set of S traits

designed beforehand; so the rest cannot be learned in that

task. The second reason is more subtle and will be discussed

in the next subsection, after we have introduced the new

weight update rule.

The new learning rule

The new weight learning rule for our formulation can be

derived in the same way as in Suryadi and Gmytrasiewicz

(1999). Once again, gradient descent on the error function

)(tE gives us the necessary change to the new weight jp

by noting that

 Nk

k

i

k

j

k

j

i tf
p

te

1

)(
)(

.

Plugging this value in Equation (2) in place of
)(

)(

tw

te

k

i

, we

get

Mi

i

Nk

k

i

k

j

kij tftep
1 1

)()((4)

This is the new weight update rule.

Now it is possible that
1j

kf and
2j

kf are the same for all

decision variables kX , since they have a very limited set of

possible values. Then, by Equation (4),

21 jj pp .

This constrains the joint dynamics of),(21 jj pp such that

they may converge to values that are completely different

from their target values. In particular, they will converge to

identical values if their initial values are identical, even

though their target values may be different. Nevertheless,

Equation (3) will be preserved and jp ’s will still give the

correct target values of kw . However, since convergence to

the target jp cannot be guaranteed, the values learned in

one task may not be accurate for another task. We claim that

these inaccurate values are still a better point for

initialization in the next task, than simple default

initialization. We verify this intuition empirically.

EXPERIMENTAL RESULTS

We have used two different tasks for testing the relative

efficiency of our approach, compared to Suryadi and

Gmytrasiewicz (1999). These are the anti-air defense task,

and the predator-prey task, described below. The learning

agent works in a team with exactly one other player in both

of these tasks. Target weights that simulate the player’s

decision are chosen, but are not made known to the agent.

The agent must learn these weights from repeated joint

interaction with the environment, and the resulting

observations of the player’s action choices. The overall plan

is to make the agent learn some trait weights in the anti-air

defense task, and use these for initialization in the predator-

prey task. The trait weights that were not learned in the

former, can be initialized to some default values in the latter.

We then compare the learning rate with the baseline method

(from Suryadi and Gmytrasiewicz (1999)) which must learn

from scratch the player model in the latter task. We will

consider our knowledge-transfer approach a success if the

learning rate is superior to the baseline method. Two

particular hallmarks of this superiority are

 a difference in the initial performance; our

approach should have a lower initial error by virtue

of informed initialization

 a difference in the convergence value; our approach

should have lower error on convergence, i.e., it

should learn a better model faster than in Suryadi

and Gmytrasiewicz (1999).

Anti-air Defense task

This is a 1616 grid-world adopted from Suryadi and

Gmytrasiewicz (1999), with two agents, D1 and D2, the

learner and the human player, as shown in Figure 4. In every

round of the game, two missiles, M1 and M2 are fired and

Figure 4: The Anti-air defense task

the agents must shoot down these missiles with interceptors.

If missed, a missile will cause damage proportional to its

size. An agent incurs a cost proportional to the accuracy and

efficiency with which he intercepts a missile. Without

communicating, the agents must choose different missiles to

intercept, lest one of the missiles makes it through. Hence,

there are two actions available to each agent (M1 or M2)

and two decision variables, X1 = Damage, and X2 = Cost.

Predator-prey task

This is an 88 grid-world with two predators, the learner

and the human player, shown in Figure 5. There is a prey

that executes a random walk and the predators must catch

the prey by either reaching grid-cells neighboring the preys

that are on opposite quadrants relative to the prey, or by

cornering it. Each agent can select one of 5 actions, viz., go

north, west, south, east or stay put. Again for simplicity,

there are just 2 decision variables, X1 = Distance, and X2 =

Quadrant. Distance is the distance between the prey and

player if the player executes a chosen action. Quadrant is a

score with 3 possible values, viz., 0 (if both predators are on

the same quadrant relative to the prey if the player executes

the chosen action), 1 (if they are on different quadrants but

same side/half of the prey) and 2 (if they are on

diametrically opposite quadrants relative to the prey).

Therefore, higher values of Quadrant and lower values of

Distance are more conducive to catching the prey. In order

to surround the prey the learner needs to correctly predict

the player’s next move.

Experiments and analysis

For simplicity, we assume a small set of only 3 traits. To

simulate the player’s decisions without the involvement of a

real human player, we used the values

]13.0,272.0,95.0[],,[321 ppp which is a normalized

vector. Since we assume that the p-values are available

(albeit not to the modeler), the semantics of the traits are

immaterial in this paper; so we leave the traits unnamed. We

choose these (and f) values such that the resulting weights

(from equation (3)) make sense with respect to the features

kX . Considering a specific set of named traits will be

necessary in actual human trials where the p-values will not

be available for experimental validation.

In the anti-air defense task, we used

]0,0,1[],,[3

1

2

1

1

1 fff for X1 (i.e., Damage) and

]1,0,0[],,[3

2

2

2

1

2 fff for X2 (i.e., Cost). This effectively

excludes t2 from this task, so that p2 is impossible to learn

here. Our simulations show that the agent is able to learn p1

and p3 to a reasonable accuracy (0.98 and 0.18 respectively,

after 1000 iterations with 5.0), but p2 stays at the default

initial value
2
. This gives the learner a partial picture of the

player’s disposition that it then leverages in the next task.

In the predator-prey task, the learner initializes p1 and p3 to

the values it had learned in the previous task, but initializes

p2 to 0 (the default value, since it was not learned). The

influence factors in this task were chosen as

]1,1,1[],,[3

1

2

1

1

1 fff for X1 (i.e., Distance) and

]1,1,0[],,[3

2

2

2

1

2 fff for X2 (i.e., Quadrant). Thus all

three traits are needed in this task. The agent then learns all

3 trait-weights (using Equation 4) over 1000 iterations,

making a prediction in each iteration based on the current

weights and tallying it with the observed choice of the

player. A count of the errors in prediction is kept and a

cumulative average of these errors is plotted in Figure 6

(titled “with transfer”), averaging over 3 runs.

Additionally, we let the learner use the baseline approach

from Suryadi and Gmytrasiewicz (1999) (Equation (2)) to

learn 1w and
2w from repeated observations of the player’s

action choices in predator-prey, starting from default

weights of 0, since this method does not allow for

knowledge transfer. The cumulative average of the resulting

number of errors is also averaged over 3 runs and plotted in

Figure 6 (titled “without transfer”). A comparison of the two

plots in Figure 4 shows that

 the initial error is lower with our approach

 the convergence value of the error is lower with our

approach.

Thus we have met both criteria of successful transfer with

the proposed technique.

2
 Since the p-values are limited in the range [-1,1], we use

the default initial value of 0.
Figure 5: The Predator-prey task

Figure 6: Difference between Agent Modeling

with knowledge transfer and without transfer.

CONCLUSIONS

We have presented a reusable player modeling scheme that

exploits knowledge (partial model) acquired in previous

tasks to bootstrap learning in subsequent tasks. While tasks

can be markedly different, the similarity that knowledge

transfer exploits is in the fact that the model is of the same

player that the agent repeatedly meets in a series of tasks.

We have shown experiments in two simple tasks that

demonstrate the advantage of our approach compared to

previous work.

We treat the results in this paper as a proof of concept, and

plan a more elaborate study of our approach in more

complex RTS games. Additionally, we plan to incorporate

actual human decisions instead of simulated decisions.

REFERENCES

Abdi, H., Valentin, D., & Edelman, B. (1999). Neural networks.

Thousand Oaks (CA): Sage

Banerjee B., and Stone P. 2007. General Game Learning using
Knowledge Transfer. Proceedings of the Twentieth International

Joint Conference on Artificial Intelligence (IJCAI-07), Hyderabad,

India, January 6-12.

Carmel D. and Markovitch S. 1996. Learning models of intelligent
agents. AAAI/IAAI, 1:62–67.

Charniak E. 1991. Bayesian networks without tears: making
Bayesian networks more accessible to the probabilistically

unsophisticated. AI Mag. Volume 12 issue 4, p50-63. AAAI, Menlo
Park, CA, USA

Howard R. A. and Matheson J. E. 1984. Influence diagrams (article
dated 1981). Howard, R.A. and Matheson, J.E. (Eds.), Readings on

the principles and applications of decision analysis, 2:719–762.

Koller, Daphne & Milch, Brian, 2003. "Multi-agent influence
diagrams for representing and solving games," Games and
Economic Behavior, Elsevier, vol. 45(1), pages 181-221, October.

Konidaris G. and Barto A. 2007. Building Portable Options: Skill
Transfer in Reinforcement Learning. Proceedings of the Twentieth

International Joint Conference on Artificial Intelligence (IJCAI-

07), Hyderabad, India, January 6-12.

Roy D. M. and Kaelbling L. P. 2007. Efficient Bayesian Task-
Level Transfer Learning. Proceedings of the Twentieth

International Joint Conference on Artificial Intelligence,
Hyderabad, India.

Russell S. J. and Norvig P. 1995. Artificial Intelligence: A Modern
Approach. Prentice-Hall, Englewood Cliffs, NJ.

Pearl J. 1988. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kauffman, San Mateo,

CA.

Suryadi D. and Gmytrasiewiez P. J. 1999. Learning models of
other agents using influence diagrams. UM '99: Proceedings of the

seventh international conference on User modeling. Pages: 223-

232.

Sutton, R. S., Precup, D., & Singh, S. 1999. Between MDPs and

semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence, 112, 181--211

Widrow, B., and Hoff Jr., M. E. 1960. Adaptive switching circuits.
IRE WESCON Convention Record 96–104

http://www.ijcai.org/
http://www.ijcai.org/

