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We present a novel technique for anomaly detection and prognosis in sensor data from
rocket engine test stands. We apply a combination of particle filtering and machine learn-
ing approaches to capture the model of nominal operations, and use voting techniques in
conjunction with particle filtering to detect anomalies in test runs. We use two approaches
– pure particle filtering and pure machine learning – for prognosis. Our experiments on
test stand sensor data show successful detection of a known anomaly in the test data,
while producing almost no false positives. Both prognostic approaches, however, predict
no further impact had the test been completed, perhaps indicating that the anomaly was
innocuous.

I. Introduction & Objectives

We present the application of two well-known AI techniques – Bayesian filtering and machine learning
– to the problems of diagnosis and prognosis of anomalies in sensor network data. Our objective was to
develop a system that post-processes a csv file showing the sensor readings and activities (time-series) from
a rocket engine test, and detect any anomalies that might have occurred during the test, as well as predict
the future evolution of these (and other) anomalies if the test was allowed to continue. The output was
required to be in the form of the names of the sensors that show anomalous behavior, and the start and end
time of each anomaly, both diagnosed and predicted. Since our approach was model-based, we needed to
automatically learn a model of nominal behavior from tests that were marked nominal. In this paper, we
will describe this system and show experimental results that demonstrate that it has successfully detected a
known anomaly in a given test stand data set, and delivered a prognosis that matches the broad conclusion
of the test engineers.

The paper is organized as follows. In section III we present the theoretical background, viz., dynamic
Bayesian networks and the particle filtering framework that underlies our approach. In section IV we present
our anomaly detection model and explain how it is tied to the particle filtering framework. In section V
we describe anomaly detection module in detail, and present the experimental results in section V.D. In
section VI we present the prognosis module and mention the experimental results. We present our conclusions
and future work in section VII.

II. Motivation

The genesis of our ideas on fast anomaly detection and prognosis in sensor data, lies in the several
limitations of existing approaches. The prevailing approach to anomaly detection in spacecraft sensor data
has been to employ many human experts, aided by simple range-checks that signal when a particular variable
goes out of a pre-determined range.1 Given the very large number of variables involved, and the large
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disparity between data sampling frequency and human reaction times, it is a tedious and an error-prone
process. In the recent past, several model-based, automatic anomaly detection systems were developed by
encoding knowledge from human experts, such as Livingstone, TEAM-RT, RODON, SHINE and others.
However, engineering these systems have also been labor-intensive, as well as incomplete.

In order to significantly reduce the involvement of domain experts, several data-driven approaches have
been proposed, where models are automatically acquired from the data, thus bypassing the cost and effort
of building system models. Many supervised learning methods are known (such as neural networks and
support vector machines) that can efficiently learn operational and fault models, given large amounts of both
nominal and fault data. However, for domains such as SSME and RETS data, the amount of anomalous data
that is actually available is relatively small, making most supervised learning methods rather ineffective (an
important exception is one-class support vector machines, although it can be less robust2). Despite this, Guo
and Musgrave3 applied neural networks to sensor validation for the SSME with some success, and follow-up
work demonstrated a greater efficacy for support vector machines. In general, however, supervised methods
have met with limited success in anomaly detection. We also apply neural networks, but in an innovative
way so that they only need nominal data. Thus we overcome the limitation inherent in supervised learning.

Recently, model-free techniques have gained momentum. Schwabacher1 has reported the results of ap-
plying two unsupervised anomaly detection algorithms, Orca (nearest neighbor classifier with scale-up) and
GritBot (subset based outlier detection), to data from rocket propulsion testbeds (SSME and E-1 test stand
at Stennis Space Center). Four different anomalies were detected, including a brief de-correlation between
two strongly correlated redline enablers. However, experts did not feel any of these could be considered
anomalies.

One of the most popular unsupervised learning technique is clustering.4 Iverson’s Inductive Monitoring
System (IMS)5 applies the clustering approach to divide the nominal training data into clusters, representing
different modes of the system. When new data fails to fit into any of the known clusters, it is flagged as an
anomaly, with its distance from the nearest cluster indicating the “strength” of the anomaly. Retrospective
analysis has shown that this method might have succeeded in identifying an anomaly in the temperature
sensors in the left wing of space shuttle Columbia, well before the disaster. However, these systems have
turned out to be hyper-sensitive in anomaly detection, and incapable of prognosis.

Another application of the clustering approach, in conjunction with entropy measures, was performed by
Agogino and Tumer6 on SSME data. Their approach was two-pronged: on the one hand they performed
entropy analysis over the entire set of sensors to detect anomalies that have broad system-wide impact. On
the other hand, they also clustered the sensors themselves (as opposed to sensor data) to isolate their impacts
that have a more localized nature. They used cluster entropy to detect anomalies that are specific to certain
subsystems, and whose impact is spread over a small subset of correlated sensors.

Despite the attempt by Agogino and Tumer to exploit the local and global correlations in sensors, the
fundamental problem with all of these unsupervised and supervised approaches is that they assume that the
data are i.i.d, i.e., independent and identically distributed, which is violated in typical RETS data. None
of these techniques naturally exploit the temporal information inherent in time series data from the sensor
networks. There are correlations among the sensor readings, not only at the same time, but also across time.
But hardly any of these approaches have explicitly identified and exploited such correlations.

Given these limitations of model-free methods, there has been renewed interest in model-based methods,
specifically graphical methods that explicitly reason temporally. Martin2,7 acknowledges the i.i.d. assump-
tion problem with previous approaches, and proposes a Gaussian Mixture Model (GMM) in a Linear Dynamic
System, i.e., a linear Markov chain of hidden states, xk (unfilled circles), and observations, zk (filled circles),
as shown in Figure 1. In this figure, the arrows show the causal dependence, so the horizontal arrows imply
temporal dependence (albeit Markovian, i.e., each state only depends on the previous state). This work
assumes that the multi-dimensional SSME data is a mixture of multi-variate Gaussians, and fits a given
number of Gaussian clusters with the help of the well-known Expectation Maximization (EM) algorithm.
The parameters thus learned, are used for calculating the joint distribution of the observations (z1,z2, . . .
in Figure 1). However, it should be noted that the GMM assumption is essentially an approximation, and
Martin himself acknowledges7 the potential viability of non-parametric density estimators. This is precisely
the key idea underlying our approach.
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Figure 1. Linear Dynamic System

III. Technical Background

The conceptual model behind our approach is that of a dynamic Bayesian network; in particular a linear
Markov chain of hidden states, xk (unfilled circles), and observations, zk (filled circles), as shown in Figure 1.
Conceptually, the hidden state xk of the system changes due to some activities (test commands) in a way
that can be learned from nominal tests. We can track such changes due to the observations zk (sensor
readings) which are tied to the hidden states. For this task of tracking, we have employed a technique called
particle filtering which we describe next.

III.A. Particle Filtering

Filtering is the problem of estimating the current state, xt, given the observations until now, z1:t. Typically
the states are hidden, with access limited to merely the series of observations. So we need to construct the
pdf p(xt|z1:t), assuming that the prior p(x0|z0) = p(x0) is known, or is uniform (z0 is the null observation).
In principle, this pdf can be obtained recursively in two stages: prediction and update, as discussed below.

III.A.1. Prediction

Suppose the posterior at the previous time instant (t−1) was available, i.e., p(xt−1|z1:t−1). This could then
be used to generate a prediction regarding xt, with a transition density, p(xt|xt−1), using the Chapman
Kolmogorov equation

p(xt|z1:t−1) =
∫

p(xt|xt−1)p(xt−1|z1:t−1)dxt−1

Note that the transition density assumes that the underlying (hidden) states undergo transition (either
passively, e.g., a Markov process, or under some actions from an agent) that is conditionally independent
of the observations, given the previous state. Formally, p(xt|xt−1) = p(xt|xt−1,z1:t−1). Furthermore, this
transition may follow a noisy process; all we need is to be able to gather statistics on the noise, e.g., mean
and variance, either from measurement or from prior knowledge of the nature of the process. It is common
to assume that this noise is white.

III.A.2. Update

Given the prediction of the likelihood of xt, based on all prior observations (i.e., z1:t−1), the current obser-
vation (zt) plays a critical role: It can be utilized to validate the prediction, and thus update the prior. By
Bayes’ rule

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)∫

p(zt|xt)p(xt|z1:t−1)dxt
(1)

where p(zt|xt) is the observation density, usually defined by a measurement model, and associated noise. In
other words, the update stage uses the new observation zt to refine the prior density to obtain the posterior
density of the current state.
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III.B. Sequential Importance Sampling

The recurrence relations defined above form the basis of the optimal Bayes solution. Unfortunately, the
solution can seldom be generated analytically. Solution methods such as Kalman filtering and extended
Kalman filtering crucially depend on approximating the densities as Gaussians. Another approach is to
use sequential Monte Carlo filtering, where the posterior density (p(xt|z1:t); equation 1), instead of being
approximated, is represented by a set of random samples or particles (with weights given by the posterior),
and the estimates are generated on the basis of these samples. This sequential Monte Carlo approach is one
way of implementing the particle filtering method.

Let’s say the ith particle (i = 1 . . . N) represents the hypothesis xi
t−1 at time step t − 1. The particle

filtering algorithm replaces this sample at time t by sampling from the distribution p(xi
t|xi

t−1), and then
updating its weight as wi

t = p(zt|xi
t). After all the N particles have been updated this way, a new set of N

particles is sampled with replacement from the weight distribution, and the entire process is repeated.

IV. Particle Filtering for Anomaly Detection

Our key insight is that the particle filtering technique for localization can be naturally applied to anomaly
detection from sensor readings, with significant benefits compared to existing approaches. In this case, the
mapping to the anomaly detection problem is given by:

• the (hidden) state variable, xt, is the unknown nominal correlation model among the sensor read-
ings (both spatially and temporally), that the algorithm “localizes” over a few initial iterations, and
thereafter tracks this nominal operation.

• the (noisy) sensor readings themselves constitute the observation vector, zt.

Our correlation model is simply a matrix, M , of size n × n where n is the number of sensors. This is also
the hidden state:

x = M.

Given the sensor observations at time t, zt, we predict that the sensor observations at t + 1 would be

zt+1 = Mt.zt, i.e., zt+1 = xt.zt (2)

This generates the observation density p(zt|xt). Since the matrix Mt = xt is unknown, this is the variable
we track by particle filtering. The only other unknown is the transition density p(xt|xt−1, at), which in this
case depends not only on the previous state but also on the activity at (such as a command) performed at
that time during the test. For this, we train a neural network based on the nominal tests.

V. System Description

Figure 2 shows a typical input test data file. Our system automatically identifies the binary columns and
interprets them as the commands. It identifies an activity at as the change in some binary column between
two successive rows. All non-binary columns are interpreted as sensors.

V.A. Pre-processing

The sensor columns are first normalized individually, so that each reading is in the range [−1, 1] where 1
corresponds to the largest magnitude of the values for that particular sensor. Normalizing the value in this
way allows us to relate sensors with relatively different value ranges. According to equation 2, the ith row
of our n× n model, xt = Mt, represents a linear combination of all of the sensor values, zt, to produce the
predicted value of sensor i at time t + 1, i.e., zi

t. Since each of these linear combinations is used to predict
the value of exacly one sensor and we know that the value of a sensor must lie in the range [−1, 1], we reduce
our search space by restricting each row to an affine combination.

The number of frames (rows in the input csv file) that we have to consider directly affects the runtime
during both training and testing. Datasets that have data captured at a high frequency will have many
frames, but if there is relatively little change from frame to frame, we can reduce the amount of frames
without much loss of information. So, in our preprocessing stage we average the frames together at some
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Figure 2. Data file (csv) and interpretation.

specified interval, and thus scale down the number of frames unless there are too few frames between two
actions (at and at+1) to allow such aggregation.

V.A.1. Sensor Selection

The model Mt used in equation 2 is of size O(n2), where n is the number of sensors used. Since we use
a neural network to learn how the model changes (to generate p(xt+1|xt, at)) when an action occurs (see
section V.B), and the complexity of training (and even applying) the neural network is O(n4), minimizing
the number of sensors can greatly reduce the runtime of our system. There is a tradeoff in this selection
problem. Omitting a sensor improves the runtime but reduces the amount of information we have about the
system, and if certain groups of sensors are omitted, it may be impossible to detect some anomalies. Then,
ideally, we would like the smallest set of sensors that best represents the state of the system. This could be
difficult to do manually, so we have created a principled way to choose this set of sensors.

In order to obtain this set, we first partition the sensors into groups such that the sensors within each
group are highly correlated with each other, but those in different groups are poorly correlated. Although
this could be accomplished by traditional clustering algorithms, we did not want to impose limits on the
number or the sizes of the clusters. We developed an efficient greedy algorithm for this purpose, which is
shown as Algorithm 1.

From each of these clusters with size greater than one, we select the sensor that is most correlated with
the other sensors in that cluster (i.e., most representative of this cluster) and add it to our set of selected
sensors. After selecting such sensors (resulting in say k sensors), we sort the ungrouped sensors - i.e. groups
of size one - in descending order based upon how uncorrelated they are to all of the other sensors. Then,
we select the top n − k of these sensors, where n depends on how many more sensors we have time to
accommodate. This way we select n sensors.

Note that a major consequence of this method of sensor selection is that a non-systemic problem, i.e.
failure of an individual sensor that affects no other sensor (even the ones it is supposed to be correlated
with), cannot be detected unless that sensor is included. However, if an omitted sensor is known to have
exhibited an anomaly, and no anomaly is observed using our method, it is likely that the anomaly is not due
to a systemic problem but local to that sensor, and can most likely be overlooked.
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Algorithm 1 Greedy Correlation Clustering

{Input g({a}, {b}), the correlation values for all sensors a, b ∈ A. Returns a partition of A}
(Initialize) CS ← {{a1}, {a2}, . . . , {an}}, and best-gain > 0.
while best-gain > 0 do

for each pair of sensor-clusters C,C ′ ∈ CS do
CS′ ← ((CS \ C) \ C ′) ∪ (C ∪ C ′)
h(C,C ′)← g(C,C ′) + max(0,maxC′′ ,C′′′∈CS′ g(C

′′
, C

′′′
))

end for
(P,Q)← arg maxC,C′∈CS h(C,C ′)
best-gain ← h(P,Q)
if best-gain > 0 then

Cm ← P ∪Q
CS ← ((CS \ P ) \Q) ∪ Cm

for C ∈ (CS \ Cm) do
g(Cm, C)← g(P,C) + g(Q,C)

end for
end if

end while
Return CS

V.A.2. Action Selection

The size of the action set (the binary columns in the data file, see Figure 2) affects the size of the input to
the neural network (see section V.B). While it is not the most prominent factor of the complexity of using
the neural network, it still has appreciable effect on the runtime. Thus, we would like to choose the minimal
set of actions that represents the state changes in the system. This requires domain knowledge, and we have
not automated this process.

Even though the action set has been minimized by manual selection, we still may have multiple actions
that occur when a state change occurs. Since the actions can occur within a few frames of each other this
can be problematic. Since there are few frames between the actions, we will not be able to properly localize,
and this could cause us to learn bad transitions. Also, since we train the neural network at each transition,
this will increase the number of times we have to train the neural network. We solve this problem by simply
merging actions together if some amount of time has not passed between them.

V.A.3. Variance Masks

We also offer variance masks as a screening method for sensors. A variance mask is a binary vector with an
element corresponding to each sensor in the sensor set. If a sensor is masked (zero), then both the row and
the column corresponding to that sensor in the model matrix Mt are zeroed out, and that sensor is excluded
from the error function. Essentially, while a sensor is masked by the error function it does not exist. We offer
two types of variance masking, inactivity masking and overactivity masking. Inactivity masking considers
each sensor’s variance over the entire data set. If the variance does not exceed some threshold, the sensor is
considered inactive and will be masked out over the entire dataset. The purpose of this type of masking is to
remove sensors that maintain a near-constant value the entire run, as if these sensors were idling throughout
the run. If we were to leave such a sensor in, we could potentially learn a model where a significant portion
of the prediction for another sensor is based on it. Ideally, no useful sensors should exhibit this behavior. If
one is found that behaves this way it can actually be removed from the sensor set entirely.

Overactivity masking considers a sensor’s variance over a segment (at to at+1, not the entire dataset). If
that sensor’s variance exceeds some threshold, the sensor is masked for that segment only. The idea behind
this is that there may be segments for which a sensor’s value may vary wildly even in the nominal case, and
ignoring the sensor for that segment could reduce false positives. Caution should be taken when using this
type of masking because if we have, for instance, an orderly linear change over a segment, the variance may
be high due to the change in magnitude.
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V.B. Training the Transition Model

Our primary assumption is that the underlying model M (which is tracked by hypothesis samples Mt) will
only drastically change when actions occur, and if the current model does not explain the observations well
enough beyond actions, we say that an anomaly has occurred. This requires us to learn a nominal model,
since without knowing what is “normal”, we cannot decide what is “abnormal”. To this end, we first learn
how to transition models (i.e., (Mt, at) → Mt+1) from action to action (i.e., between at and at+1) using
nominal data. In order to learn these transitions, we first generate training data with input-output pairs:

Figure 3. Neural Network model for transition (Mt, at) → Mt+1

(Input = (Mt, at), Output = Mt+1). Since each particle in the particle filtering system is a sample of Mt,
say M̃ , we calculate the weight of a particle M̃ as the inverse of its error in predicting the observations
between at and at+1, aggregated over the entire interval. Supposing that at occurs at time τ and at+1 occurs
at τ

′
> τ , the error function is given by

e(M̃, τ, τ
′
) =

√√√√k=τ ′−1∑
k=τ

∥∥∥M̃.zk − zk+1

∥∥∥2

(3)

Thus particle filtering based localization produces a set of particles that predict the observations between at

and at+1 well, and the goodness of the prediction increases with an increasing number of frames between τ
and τ

′
. However, this scheme also allows only one step for particle filtering between at and at+1, whereas

particle filtering requires many steps to localize well. Therefore, we artificially create many steps by iteration.
In order to allow for exploration of the search space, we apply noise to all of our particle models after each
step.

Once the above process completes, we have (possibly many) samples of model matrices both before and
after each action. Then for each successive action pair, at and at+1, we teach a neural network this transition
(Mt, at) → Mt+1. The neural network has n2 + a inputs – one for each element in the model matrix, and
one for each action column– and n2 output units to generate a model matrix, as shown in Figure 3. In order
train this network, we need to map the “before” set of particles (i.e., samples of Mt) to the “after” set of
particles (i.e., samples of Mt+1). One method for doing this would be to map all particles in the “before”
set to the particle with the best weight in the “after” set. The problem with this method is that while we
do assume that there is a consistent model between two actions, we do not always learn a single model with
particle filtering but rather a distribution of models. Then we would like to map each “before” particle to
the “after” particle that it is most likely to evolve into. In order to do this, we keep track of the ancestry
of each particle while localizing such that each particle in the “after” set knows which particle it descended
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from. Because of the resampling in particle filtering, many of the particles in the “before” set will have no
representatives (descendants) in the “after” set. We resolve this by mapping each of these unrepresented
particles to the represented particle that it most closely resembles. This leaves us with k groups of “before”
particles with every particle in the “after” set being a descendant of one of these groups. Then, for each
group, we select some particles - the amount we select is based on the size of the group relative to other
groups - and train the neural network to transition each of those particles to the best-weighted descendant
of the group.

V.C. Detecting Anomalies in a New Test

After we have learned a suitable transition model, we can use it to detect anomalies in a new test file. As
in training we use particle filtering; however, we use it in an entirely different way. Where we used particle
filtering to find the underlying model during training, here we mostly use it to make slight adjustments
to the model to accommodate minor changes that can occur from run to run. Also, where we used entire
intervals between actions as steps in the particle filtering process, here we use individual frames as steps.
As before, we apply noise to the particle models after each step, but we substantially reduce the amount of
noise to reduce exploration.

The testing process is as follows. A new file “A” can be tested against a specific nominal/training file
“B”. During the first segment (i.e., until a1) in “A”, we initialize the particle set with the set that the
nominal file “B” reached at its first action by localization, when it was used to train the neural network.
Then we localize in “A” using particle filtering to find the underlying model. When an action is reached,
we use the neural network to transition each particle. We continue localizing (in a much less aggressive
fashion, i.e., with low noise) and transitioning at actions. In this way, the model distribution during testing
should resemble the nominal model distribution. At each frame, we log the average error (using the same

Figure 4. Illustration of the voting method used to output the final anomalies. The bars represent the timespans of
sufficiently high errors for a given sensor, i.e, alerts, when compared to separate nominal runs, B, C and D. If the
threshold is set to v = 1, the output is the timespan T1–T8, since at all times in this range at least one of B, C, or D
produces an alert. If v = 2, the output is T2–T3 and T4–T7, since at other times fewer than 2 of B, C, or D produce an
alert.

error function as in equation 3 with τ ′ = τ + 1) and the average error of each sensor (which breaks up
equation 3 on sensor-by-sensor basis). If the current model distribution is unable to properly predict the
sensor values, then the error will increase, and since the current model distribution should resemble the
nominal distribution, this indicates an anomaly.

In order to extract the anomalies from test “A” against the nominal test “B”, we require the sensor error
logs from both “A” and “B”. Note that this means we need to run the above test method on the nominal file
“B” as well, to produce this data. We search for anomalies on a segment-by-segment basis. For each segment
(at to at+1), we partition the corresponding segment in “A” and “B” into k blocks. Within each of these
blocks, we find the average error for each sensor. If within a block, the average error for a particular sensor
in “A” exceeds the corresponding value in the training log of “B” by some threshold t, then we produce an
alert for that sensor over the time period covered by that block. To reduce the number of alerts reported,
for each sensor, we combine alerts that occur in contiguous blocks.

Now it may be the case that multiple nominal files (i.e., many “B”s) are available, and we would like to
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aggregate the test results on file “A” against all nominal files. We have devised a simple voting algorithm to
accomplish this. First, we perform all the afformentioned steps for each nominal file, “B”, so that we have
a set of alerts for each. Then, for each sensor, we find timespans that are covered at all times by at least
v alerts and report an anomaly for each. Figure 4 provides an example for a single sensor. In this figure,
the vertical bars represent alerts report by nominal files, “B”, “C”, and “D”. The brackets depict the alerts
found for various values of v.

V.D. Experiments on a Given Data Set

We experimented with a dataset generated at the “E” test stand at Stennis Space Center. Test identifiers
63A–D were said to be nominal runs, while identifier 66A was known to have displayed an anomaly. Although
63A was redlined, the reason was later determined to be innocuous. Test 66A was known to have shown
anomalous pressure reading at sensor ID 1491 (a pressure gauge). We first selected a set of 10 sensors using
the method outlined in section V.A.1, but the output of this step did not include sensor ID 1491. Since we
are able to detect systemic anomalies where an anomaly at one sensor is supposed to affect other sensors
that are correlated with it, we needed the anomaly in sensor ID 1491 to reflect on other sensors. However,
this anomaly appears to be isolated, and has not affected any other sensor. Therefore, we report the results
from two alternative sensor sets: one that used only the 10 sensors selected in section V.A.1, and another
that included sensor ID 1491 in addition to those 10 sensors.

Figure 5. Anomalous Sensor (ID 1491) Included Figure 6. Anomalous Sensor (ID 1491) Excluded

Using all of 63A–D as nominal runs, we obtained the error plots of Figures 5 and 6 for tests 66A and 63A–
D, for the cases that the sensor ID 1491 was included or excluded, respectively. There are many error peaks,
but many of these occur at actions (i.e., model transition points), which also occur in the corresponding
nominal runs, and are thus eliminated when compared to the latter. Figures 7 and 8 show the magnified
section between t = 0 and t = 70, for the cases that sensor ID 1491 is selected or not, respectively. In
Figure 7, we see a clear rise in the error in 66A from around t = 30 until the test redlined at t = 55. This
demonstrates that our system is able to detect an anomaly well ahead of the redline, about the time of its
actual onset. Figure 8 however, shows that if the anomalous sensor was not included, then the system fails
to detect the anomaly, since the anomaly was non-systemic and limited to sensor 1491 alone.

Our system is also capable of weeding out false positives, and reporting only the names of the anomalous
sensors and the timespan of each anomaly, by virtue of the voting procedure and limiting the duration of an
anomaly to be at least 5 seconds. For the test 66A, the output of our system is the following:

Possible Anomaly:
-----Sensor Name: PE 1491 C1c
-----Start Time: 41.7786
-----Duration: 14.1994
-----End Time: 55.978

Note that the voting procedure makes the anomaly undetectable until 41.78 secs, while Figure 7 reveals
it earlier. This is the price paid for better sensitivity to false positives. The anomaly ends when the redline
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Figure 7. Anomalous Sensor (ID 1491) Included (Closer
View)

Figure 8. Anomalous Sensor (ID 1491) Excluded (Closer
View)

actually happened in this test. No other test file, excepting the nominal run 63B shows any anomaly in the
output. For 63B, the output is the following:

Possible Anomaly:
-----Sensor Name: PE 9505 PWc
-----Start Time: 269.918
-----Duration: 5.915
-----End Time: 275.833
Possible Anomaly:
-----Sensor Name: PE 1241 LOc
-----Start Time: 269.918
-----Duration: 5.915
-----End Time: 275.833
Possible Anomaly:
-----Sensor Name: TC 1489 PWc
-----Start Time: 269.918
-----Duration: 5.915
-----End Time: 275.833

Two pressure gauges and a temperature gauge showed brief anomalous behaviors at the end of the test,
during various purge steps. Since these occurred after the main test, and had brief durations, these can be
overlooked. Hence, we observe that our approach shows good false positive performance.

VI. Prognosis of Anomalies

When an anomaly has been detected, the main role of prognosis is to project the impact of this anomaly
onto future behavior, and identify other sensors that may indicate further trouble during the rest of the engine
test. However, this must be done before further sensor data becomes available. There is a set of sensors
that are identified as “redline” and “blueline”, which must remain within certain pre-specified ranges during
the test, and if a redline sensor falls outside its range then the test is automatically aborted. Sometimes,
anomalies rising during a test are innocuous and aborting a test is unnecessary. Therefore, the ability to
predict the likely outcome of an anomaly could prevent needless failures that are costly. If a set of sensors
are predicted to redline in the future such that the pattern of failures indicates a major problem, then the
test should be aborted. But if no other sensors are predicted to redline, or if the pattern of predicted failures
are innocuous then the test might be continued.

The tracking method implemented so far could be an invaluable tool in the prediction of anomalies that
could, in turn, be leading to redlines. Such prediction will not only raise the confidence in anomaly detection
(by cross-verification with prediction, when the data becomes available), but also provide early warning for
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redlines. The key insight is that there are temporal associations among the observed variables between the
times when the anomalies occur, and the time of an ultimate redline, or even other anomalies later in the
test. In the particle filtering framework, this can be roughly framed (with a subtle variation; see below) as
the problem of estimating the posterior at a future time, p(xt+k|z1:t) where k > 0, based on observations
until now. This posterior can be given by

p(xt+k|z1:t) =
∫

p(xt|z1:t)
t+k∏

j=t+1

p(xj |xj−1)dxt:t+k−1 (4)

where the first factor in the integral is simply the posterior from the anomaly detection problem (update
step, i.e., equation 1) as already described, dxt:t+k−1 = dxt.dxt+1 . . . dxt+k−1, and p(xj |xj−1) could be the
transition model already learned from nominal tests. Conceptually, equation 4 directly projects a current
anomaly to future times to predict its effect on different parts in the system (spanned by particles). While
the update equation (equation 1) helps detect a current anomaly, equation 4 helps predict the evolution of
such an anomaly into a catastrophic failure possibly culminating in its abortion.

However, equation 4 is not trivially applicable. Because the transition model holds for a nominal run but
not after an anomaly has occurred, the learned transition model will not work for the anomalous sensors
and the ones correlated to them. Another reason why the learned transition models are actually unusable
in prognosis, is as follows. The command plan in the rocket engine tests include a main test segment
when the engine is firing, and many other commands/actions that either prepare for the test (e.g., chamber
pressurizations), or finish up after the test (e.g., various purge actions), and the engine does not actually fire
during these steps. The redline limits of various sensors are active only during the main segment, and not
during the other activities. In fact, almost all sensors sit well outside their redline limits during these other
segments. Therefore, while anomaly detection covers all activities during a test, prognosis of anomalies is
only feasible during the main test segment (when the engine is firing) with no intervening actions. Therefore,
equation 4 needs to be reinterpreted for prognosis.

A major difficulty with applying the particle filtering approach to prognostics is that the particles are
frame-to-frame predictors, i.e., xt is used to predict zt+1 (see equation 2). Such short-range predictions
necessitate repeated applications of a particle to yield long-range predictions. However, this is problematic
in the case of prognosis where the prediction cannot be matched against actual data, unlike the case with
diagnosis. This is because the actual data is not available between the time an anomaly is diagnosed and the
time that the prognosis must be made. Moreover, prognosis is often a counter-factual operation; while the
actual test may have been aborted, we predict the outcome of allowing it to continue. With the actual data
thus unavailable, we must rely on one step’s prediction to feed into next step’s input. This implies a (possibly
long) chain of predictions, {z̃k+1, z̃k+2, . . .} (k being the last anomalous frame diagnosed), unrestrained
by actual data through (re-)weightings, with possibly snowballing errors. We describe two approaches to
prognosis, that implement equation 4 while addressing this problem.

VI.A. Pure Machine Learning Approach

First we took the set of all redline and blueline sensors as well as the 10 sensors selected in section V.A.1,
and applied Algorithm 1 during the main test segment, separately for each nominal test run. This gives
us a clustering of correlated sensors in this set during this segment. Then for each redline and blueline
sensor, and for each nominal test run 63B–D, we trained a neural network to predict a sensor A’s value at
t + τ , given the readings of the other sensors (i.e., excluding A unless A is in a singleton cluster) in A’s
cluster at t and the values t and τ as inputs. We used all integer values of t and τ from 1 to the length
of the segment. Essentially, we assume that while the nominal models may not hold after an anomaly, the
correlations among the sensors continue to hold and as a result, sensors correlated to an anomalous sensor
may display anomalous behavior later. Therefore, this approach implements an alternative to equation 4,
where the neural network is the substitute for the underlying model x.

Suppose the main segment of a test run is between frames T ′ and T , and an anomaly is detected between
k′ and k, with X being the set of anomalous sensors. Therefore, the frames from k + 1 to T are effectively
unavailable to prognosis. The sensors in X are linearly regressed from k′ to k. Then for each redline and
blueline sensor, we use the corresponding neural network to predict its value at T given its cluster-mates’
values at k, and the values k and T − k as inputs. If the predicted value falls outside the corresponding
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(redline or blueline) range, then that sensor is flagged as a likely predicted anomaly. If sufficient nominal
runs indicate anomaly on the same sensor, then it is flagged as a predicted anomaly by simple voting.

In the experimental data, most sensors give flat readings in the segment T ′ to T . Therefore, the neural
networks simply learned to predict the same value for a sensor as the nominal training input, and the result
of prognosis ended up being unreliable. For sanity check, we also ran prognosis on the nominal tests 63B–
D, identifying a dummy anomalous segment k′ to k but naming no anomalous sensor (i.e., X = ∅). The
sensor predictions had high accuracies and no predicted anomaly was flagged in these nominal runs, as one
would expect. However, even on the test run with the known anomaly 66A, the predictions matched the
nominal runs and again no predicted anomaly was flagged. We observe that the outcome of prognosis in this
particular data set may be acceptable, since the anomaly was known (in retrospect) to be caused by a clog
in a sensor line rather than a system failure. Therefore no further anomaly was actually expected (although
the test was automatically aborted since it was a redline sensor). But the fact that the neural nets failed to
learn any useful pattern makes the outcome unreliable for other data.

VI.B. Particle Filtering Approach

With the machine learning approach being inconclusive, we attempted to directly implement equation 4, but
with an eye to the possibility of snowballing errors. One solution to the short-range prediction problem is to
purposely set the particles up for long-range predictions. For each choice of κ and each nominal test 63B–D,
we localize a set of particles that give predictions κ frames into the future, i.e., z̃t+κ = xt,κ.z̃t, where xt,κ

are long-range predictor particles. This is achieved by applying particle filtering to sensor readings every
κ frames, in each nominal run, for different choices of κ. In other words, we apply the following crude
approximation of equation 4:

p(xk+(T−k)|z1:k) = p(xk|z1:k) · p(xk,k+κ1) · p(xk+κ1,k+κ1+κ2) . . . · p(xk+κ1+...+κy−1,T ) (5)

where κ1 + κ2 + . . . + κy = T − k, such that the chain of κs is as short as possible to minimize the impact of
the independence assumption (i.e., the assumption that p(xj |xj−1) = p(xj) within the main test segment,
in equation 4). The symbols k, T were introduced in the previous subsection.

Given the length of 11046 adjusted frames in the main segment of the engine tests, we used κ =
2500, 2000, 1500, 1000, 500, 250 to be able to fit any length between the last frame of the anomaly and the
end of the main test segment (analogous to the coin-changing problem) with an accuracy of within 250
frames (equivalent to ∼ 4 secs of test time). In the actual test ID 66A, the anomaly ends at 55.978 secs
(see section V.D), which corresponds to frame number k = 3294. From there to T = 11046, there are 7752
frames, and to cover these the fewest steps yield κ1 = κ2 = κ3 = 2500, and κ4 = 250, leaving out the
last two frames (≈ 0.03 secs). The resulting predicted sensor readings z̃T in test ID 66A flagged a gaseous
hydrogen pressure sensor (ID 1481) as expected to redline at 135 secs after ignition (predicted by nominal
test ID 63D), or at 179 secs after ignition (predicted by nominal tests ID 63B,C). We also ran a sanity check
as described in the previous subsection, which flagged no predicted anomaly in the nominal tests. However,
sensor ID 1481 appears to be unlikely to be affected by the anomalous sensor (ID 1491), since it is upstream
from the latter, and could rather affect it instead of the other way around. We conclude that this prediction
is an artifact of the correlation structure that particle filtering succeeds in capturing, but that the predicted
anomaly is unlikely to materialize. Thus no further anomaly is expected, which supports the claim that this
test could have been safely concluded and the redline was unnecessary. This was the conclusion of the test
engineers, therefore this approach to prognosis appears to have succeeded, at least on the available data set.

VII. Conclusions and Future Work

We have presented a new approach to detect anomalies in sensor readings, and predict their future
impact during an engine test. Our approach is model based; we employ machine learning to capture nominal
behavior from known normal test runs, and then apply a non-parametric Bayesian filtering approach, viz.,
particle filtering, to detect anomalous behavior in a new test. Once an anomaly is detected, we apply an
approximate smoothing approach (equation 5) to predict future anomalies in redline and blueline sensors
to identify possibly impending shutdown. Our system was applied to a data set where one test contained a
known anomaly that did abort the test but was later determined to be innocuous. The outcome is that our
anomaly detection module successfully identified the known anomaly, and the prognosis module effectively
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concluded that it was innocuous. Therefore, we conclude that if this system was operational during this test,
an unnecessary (and costly) shutdown could have been averted.

Although our system was developed with careful consideration for general applicability to different engine
test data sets, we were constrained by the availability of data sets. We were only able to test our system on
one data set, and plan to test it on more data sets in the future.
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