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ABSTRACT

The design of reinforcement learning solutions to many |enois
artificially constrain the action set available to an agémtorder
to limit the exploration/sample complexity. While explogi if
an agent can discover new actions that can break througtothe c
straints of its basic/atomic action set, then the qualittheflearned
decision policy could improve. On the flipside, consideratigpos-
sible non-atomic actions might explode the exploration plex:
ity. We present a potential based solution to this dilemnmal a
empirically evaluate it in grid navigation tasks. In padtar, we
show that both the solution quality and the sample complenit
prove significantly when basic reinforcement learning isled
with action discovery. Our approach relies on reducing thmn
ber of decisions points, which is particularly suited forltiagent
coordination learning, since agents tend to learn mordyeasth
fewer coordination problems (CPs). To demonstrate thisxienel
action discovery to multi-agent reinforcement learninge $ow
that Joint Action Learners (JALs) indeed learn coordinatimli-
cies of higher quality with lower sample complexity when plad
with action discovery, in a multi-agent box-pushing task.

1. INTRODUCTION

Reinforcement learning is a popular framework for agerselia
solutions to many problems, primarily because of the sicityliof
design and the strong convergence guarantees in the faceerf-u
tainty and limited feedback. In typical on-line reinforcent learn-
ing problems, an agent interacts with an unknown envirorirhgn
executing actions and learns to optimize long-term payofffeed-
backs from the environment) consequent to selecting axfiamm
a given set, A, in every state. In most cases, care is takensiore
that the set of actions is not too large, usually by discirgizon-
tinuous action spaces (see [7] for an exception). This iabse a
large action set can slow down exploratory learning by @ngabo
many alternate trajectories through the state space tofilerex.
However, in order to curtail this exploration space, ofteets, ac-

tion sets are artificially limited (in addition to physicahiitations
of an agent) leading to constraints in the learned behawiersell.
Consider a simple example of this limitation: assume that th
robotic arm in Figure 1(a) is physically limited to rotatity no
less thar® at a time. The goal is to get it to rotate bg°. In-
stead of allowing it to explore every possible acti@i ¢ 359°),
the designer might prefer to allow only 4 actions, viz?, clock-
wise and anti-clockwise, arigf clockwise and anti-clockwise. Al-
though this would enable the robot to learn an action policyahy
integer goal angle, many of those policies would have cairgs
that are imposed by the design choice, not by the robot'sipalys
limitation, e.g., it would have to execute thrg® actions followed
by a2° action in the reverse direction. However, the robot could
have learned to simply turn bA3° in one smooth motiorhad the
learning problem not been artificially constrainedn the other
hand, allowing a full blown action set might slow down leaignto
such an extent that no performance improvement (over a mando
policy baseline) may be observed in any reasonable tinmadra
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Figure 1: Motivating examples

Consider a second example, a grid-world navigation tasshasn
in Figure 1(b). In such worlds, the action set is usually essiito
contain the 8 atomic actions that an agent can take to mowe fro
one state (tile corner) to a (8-connected) neighboringe stelow-
ever, the optimal policies generated by such an action setneke
for unnatural navigation paths, such as the path from statetAe
bottleneck B in solid arrows, in Figure 1(b). The most ndtpeth
from A to B would be the dotted arrow in Figure 1(b), but accemo



dating such actions might make the action set of the agetatge.
This example also highlights the difference between oukveord

the theory ofoptions[13]. An option in this example might allow
an agent to move to the doorway (B) with a temporally extended
action sub-plarthat consists of the same atomic actiqns., the
chain of solid arrows). In contrast, our method adopfisralamen-
tally new action(the dotted arrow), whereby, and agent can move in
a straight line to B, instead of being constrained by the fatomic
actions. However, as mentioned before, it is not immedjatkdar

if such additional actions must come at the cost of reducauhieg
rate.

In this paper, we propose a method to address the tradeoff be-

tween discovering new actions and keeping the learninghigte
We allow a reinforcement learning agent to start exploriisgen-
vironment with the same (limited) basic/atomic action bet, en-
able it to discover new actions on-line that are expectectéal |
to its goal faster. As the agent augments its action set \ghd
newly discovered promising actions, its learning rate rlghex-
pected to fall. However, if only the most promising actionme a
added, then they may actually decrease the time to reaclotie g
thereby accelerating the learning. We experimentallyysthd rel-
ative effects of these two factors in the grid-world navigatdo-
main with single agents. We show that action discovery ceaed
improve the solution qualityvhile significantly reducing the ex-
ploration/sample complexity. Furthermore, the reasorinsethe
success of action discovery, viz., improvement in the cotivigy
of the state-graph, indicates an added benefit to multitagmor-
dination learning. Coordination Problems (CPs) [3] arenpoin
multi-agent sequential decision problems where agents onas-
dinate their actions in order to optimize future global rags With
fewer CPs, the learning problem is simplified, leading tadas
learning. Since action discovery can reduce the number ioft$o
where agents would need to coordinate (i.e., reduce CPspnac
discovery can greatly enhance the learning rates in mgénaco-
ordination learning tasks. In order to verify this intuitiove adapt
the Joint Action Learning (JAL) algorithm [4] with actionstiov-
ery in a multi-agent box pushing task, and show that the beakfi
impact of action discovery does indeed apply.

2. REINFORCEMENT LEARNING

Reinforcement learning (RL) problems are modeled/askov
Decision Processesr MDPs [12]. An MDP is given by the tu-
ple {S, A, R, T}, whereS is the set of environmental states that
an agent can be in at any given timé,is the set of actions it can
choose from at any stat&®® : S x A — R is the reward func-
tion, i.e., R(s, a) specifies the reward from the environment that
the agent gets for executing actiane A in states € S; T :
Sx Ax S [0,1] is the state transition probability function spec-
ifying the probability of the next state in the Markov chaionee-
quential to the agent’s selection of an action in a state.ajemnt’s
goal is to learn a policy (action decision functian} S — A that
maximizes the sum of discounted future rewards from ang stat
given by,

V7(s) = Er[R(s,m(s)) +7R(s', m(s") +7*R(s", m(s")) +.. ]

wheres, s’, s, ... are samplings from the distributiah following
the Markov chain with policyr, andy € (0,1) is the discount
factor.

A common method for learning the value-functidnas defined
above, through online interactions with the environmestpilearn

an action-quality functior®) given by

Q(s,a) = R(s,a) +m3x72T(s,a,s')V”(s') 1)

This quality value stands for the discounted sum of rewatus o
tained when the agent starts from stafeexecutes action, and
follows the optimal policy thereafter. Action quality fuians are
preferred over value functions, since the optimal policy be cal-
culated more easily from the former. Thefunction can be learned
by online dynamic programming using various update rulashs
as temporal difference (TD) methods [12]. In this paper, sethe
on-policy Sarsa rule given by

Q(st,at) — Q(s¢,ar) + areyr +¥Q(st41, asv1) — Q(st, at)]

wherea € (0, 1] is the learning rate;; 41 is the actual environmen-
tal reward ands:+1 ~ T'(s¢, as, .) is the actual next state resulting
from the agent’s choice of actian in states;. We assume that the
agent uses-greedy strategy for action selection: it selects action
a: = argmax; Q(s¢,b) in states; with probability (1 — ¢), but
with probability e it selects a random action.

Sarsa is nhamed after the acronym of its steps: state, ac#en,
ward, state, action. From state, the agent picks action,, re-
ceives a reward;1, transitions to state; 1, and then selects ac-
tion a:y1 in that state. It is only at this point that it can update
Q(s¢,a¢), using the above TD rule.

In reinforcement learning, it is traditional to define a slmpet
of actionsA that an agent can select framhany statesince many
actions are applicable to several states. However, for tinpgse
of this paper we will separate the action setsa per state basis
That is, we will assume that in a statean agent can select from
the setA(s) of actions. This is just for the purpose of presenta-
tion, and there is really no fundamental difference betweertwo
conventions. We assume that the agent is initially givenstirae
action set as basic RL, representedgs) over states. If the
agent discovers a new action in episadbat can be executed from
states on its exploration trajectory, it grows the action set foatth
state,A:(s).

Since we are no longer constrained to a basic/atomic acén s
we must accomodate different execution times (or costsjtidias,
similar to options. The framework @emiMarkov Decision Pro-
cesses (or SMDPs) is the appropriate relaxation for thipgae,
and the only difference it entails in terms of the learningpaithm,
is that the execution time(a) of an actiona, must be used to ex-
ponentiate the discount factor, i.¢%(*) in place ofy.

3. RELATED WORK

While reinforcement learning has seen successes in many no-
table applications [14, 5, 1], experience/sample compidias tra-
ditionally been an issue of concern. More recently, seviereth-
nigues have been proposed to reduce sample complexity.eThes
approaches include the theory of options and temporal atstr
tion [13], reward shaping [9], Lyapunov-constrained atsets [10],
and knowledge transfer [11], among others. In particulgadunov-
constrained action sets [10] seeks to limit the action sahaigent
during exploration by constructing appropriate Lyapunandtions
to guide exploration, while action transfer [11] seeks w@staction
selection in new tasks by exploiting successful actionsmfpre-
vious tasks. Given the significant prior effort in reducirgrple
complexity, some by eliminating or reducing the weight o#iav
able actions, it may sound counterproductive to seek torekpa
agent’s available action set. Our insight is that with thecdiery
of new actions that circumvent policy constraints, moreceffit



policies can be learned and exploited to ultimately learacioieve
the goal faster. As a bonus, the quality of the learned swius
also expected to improve.

The basic insight that learning temporally extended abstnas
of ground behavior can increase the learning rate by reusing
stractions, has been verified before in the context of opt[ds].
However, there is a fundamental difference between our \aork
the theory of options. While options can be loosely thought o
as labels for a series of atomic actions that are useful toutze
in the same sequence in many different states, and are geared
ward reusable knowledge, our work considacsually new actions
When options are considered as additional actions thatemt agn
select in place of an atomic action, they have been shownge-ex
dite learning. However, discovering options is not a sintplk. In
contrast, it may be simple to discover new ground actionsidet
an agent’s set of atomic actions, as we demonstrate in gvigaa
tion tasks. Rather than bank on their reusability as witlioogt, we
rely on the ability of these new actions to improve the poticwl-
ity by connecting topologically distant states in the stigph. It
is not immediately clear if such qualitative enhancemerit also
reduce sample complexity. But our experiments in simplé gav-
igation tasks show that this is indeed possible.

Reinforcement learning in multi-agent sequential decisasks
has been an active area of research [3, 6, 8, 2]. In multitagen
systems the decision complexity (typically the size of theafle)
usually depends exponentially on the number of agents, @itdss
even less intuitive whether worsening the decision conifyldyy
accommodating new actions can help the learning rate ai\él.
answer this question affirmatively, by showing that Jointidw
Learners (JAL) [4] with action discovery do learn betteripials
with lower sample complexity in a multi-agent box pushing task
than regular JALs.

4. ACTION DISCOVERY

In reinforcement learning problems, the atomic action gk,
is usually fixed. Even if new options are discovered, thes®onp
are described in terms of the atomic actions frem However,
in many cases new actions that are neither includedidn nor
precluded by the agent’s capabilities, may be able to imptoe
agent’s performance by

e reducing the number of steps to the goal, or the total salutio
cost

e reducing the cost of exploration by connecting topolodycal
distant states with new actions

e making the goal-directed behavior more natural, i.e., less
constrained from a design perspective

to physical limitations of the agent or the environment,dths, s”.
It is useful to deal with both possibilities uniformly, with cost
function.

We assume that for a given domain, a cost function S x
S +— R, is always available, such thafs, s") gives the cost of
executing an action that would take an agent from stdte state
s’ i.eas.. If ¢(s,8") < oo, this simply means that there is some
action (whether atomic or newly discovered) that takes tjent
from states directly to states’. However, ifc(s, s’) = oo, then no
such action existsc is virtually an oracle that can be enquired by
the agent for pairs of states that it has seen in the past. étimg
is different from regular RL settings in that the agent doatskmow
the state space a priori, but has access to a transitioridararacle
(), whereas in regular RL settings the state space is knowthbut
transition function is unknown.

The cost function also serves as the measure of action cemple
ity, and can be used to exponentiatfor SMDPs. For actions
outside the atomic action setl§), and having a finite cost, we do
not assume that a reward sample for such an action is availabl
less this action is actually executed. Hence the first tirae shich
an action is discovered (line 16, Algorithm 1), the rewaressi-
mated(7 in line 18, Algorithm 1) on the basis of the actual rewards
T1, T2.

Clearly, accepting every newly discovered action into thecs
actions will be expensive for learning. For instance, in ia gf
sizen x n, there may bed(n?) such new actions, per state, i.e.,
potentially O(n?) actions to contend with. Accomodating such a
large number of actions will impact the exploration and kelthe
learning rate. Fortunately, many of these actions may belese
to explore, e.g., if they lead away from the goal. It is pokestb
estimate thevalue potentialof a state,®, precisely for this pur-
pose. Potential functiongp(s), have been used before, to shape
rewards and reduce the sample complexity of reinforcenearht
ing [9]. Such functions can be set by the agent designersroado
designers. In this paper, we use such functions to infoxmiti
select among newly discovered actions. To illustrate owrikgc
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We renounce the innate meaning of an action, and assume it to

simply stand for a vehicle of state transition. As such, waree
sent an action by, to mean that théntendedpurpose of this
action is to transition from stateto states’. To accomodate non-
determinism in the effect of an action, we can now redefine the
transition functionT asT'(s, as.,s”) to stand for the probabil-
ity that if the agent acts with the intention of transitiogifrom s

to s’, then it ends up in stat€’. Therefore,T'(s,as,,s’) is the
probability of success of this action. The fixed point of @fleng,
replacing equation 1, is now,

Q(87 ass’) = R(8> ass’) + max -y Z T(87 QAss’y SN)VTr (SN)

In this paper, however, we focus on the deterministic caises,
whereT (s, a,., s') is either 1, or the action,. is infeasible due

Figure 2: lllustration of the selection procedure for a newly
discovered action.

selection procedure for newly discovered actions, comsidagent
that has transitioned through successive staies,, andss, dur-
ing some episode, (Figure 2). The actions that it has executed to
make these transitions may be atomic actions, or previalistov-
ered new actions, in the st (.). At statess, the agent determines
if there exists an action that could have transitioned ectiy from

s1 10 s3, i.e., whethek(s1, s3) < oco. If this is true and this action
did not exist inA:(s1) (line 16, Algorithm 1), then a new action has
been discovered based on two older actions (either bastheor-
selves discovered). The question is whether this new aetign,,

is worth exploring in the future from statg, compared to the ac-



tion (atomic or otherwise) that had transitioned the agemtfs;

to s2. This question may be heuristically answered by comparing
the potential backup values from both ands;3 to s1. These po-
tential backup values can be estimatedy&§!:°2)®(s2) from sz,
and~°(*1:53)®(s3) from s3. Consequently, we use the following
criterion for accepting a newly discovered actiag, s,

A () > (1407 D ()

whered is a slack variable guiding the degree of conservatism in
accepting new actions. This step is shown in line 16 in Aldponi 1.
Furthermore, new actions merely facilitate reaching thal gbut
they are not necessary for the agent to reach the goal. The age
should be able to find a baseline policy to the goal using just t
atomic actions, in the worst case. Hence, we use the above tes
rather conservativelyd(> 0) to select or reject a newly discovered
action.

Algorithm 1 Sarsa-AD (Sarsa with Action Discovery)
1: Initializee, §, o,y
2: Initialize ¥ < 0, the set of states seen so far

3: for episodet = 0,1,2,3,...do

4:  s1 is the start state. If seen for the first time, add i2X@nd
SetAt(S1) «— A0(81)

5.  Chooser; € A;(s1), with e-greedy

6: Executen; and get next-state; and reward; (unlesss; is
terminal). If s2 is seen for the first time, add it 8 and set
At(SQ) — Ao(Sz)

7:  Chooserz € A;(sz), with e-greedy

8 Q(s1,a1) — Q(s1,a1) + afr1 + 71 Q(s2,a2) —
Q(s1,a1)]

9:  Executen; and get next-state; and reward-2 (unlesss; is
terminal). If s3 is seen for the first time, add it 8 and set
At(SB) — A0(33)

10:  Chooseiz € A;(s3), with e-greedy

11:  Q(s2,a2) «— Q(s2,a2) + afr2 + VC(S2’83)Q(83,CL3) —

Q(s2, az)]

12:  repeat

13: Executeis and get next-state; and reward s (unlessss
is terminal). Ifs4 is seen for the first time, add it 80 and
setA; (84) «— A0(84)

14: Choosews € A(s4), with e-greedy

15: Q(s3,a3) — Q(ss,as) + afrs + 76(53’54)Q(54,a4) —
Q(s3,as)]

16: if (c(s1,83) < 00) A (Gs1s5 & Ai(s1)) A
(7153 B (53) > (1 4 6)7y°51°2)P(s2)) then

17: At(81) — At(Sl) U {aSISS}

18: Q(51, sys5) — F(r1,72) + 71 Q(s3, a3)

19: end if

20: S§1 < 82, So < 83, S3 < 84, T1 < T2, T2 < T3,
a3z <— a4

21:  until sz isterminal

22: At+1(8) «— At(s),Vs cxy

23: end for

4.1 Experiments with a single agent

We have used two grid navigation mags, andG., as shown in
Figure 3. Since the potential functions are based on thmatgd
proximity of a state to the goal, we have consideggdas a test
case to verify the performance of action discovery when tlenta
may need to head away from the goal first, before it can approac
the goal.

al

(G1)

Goal

Stal

(G2)

Figure 3: The two navigation maps (G1,G2) used in the exper-
iments, and the paths found by Sarsa (solid red line, given by
atomic actions only), and action discovery{ = 0; dotted blue
line, in terms of discovered actions.

For each map, we performed 20 runs of each of the following
versions: basic Sarsa (i.e., no action discovery), Sai3avith no
potential test (i.e., only the first two tests in line 16, Aligom 1
are performed) which we call “All actions”, and two versioos
Sarsa-AD with potential tests, for= 0, 1. For each of the above
versions, we study three figures of merit: solution quaigmple
complexity, and the growth rate pfi, — Ao | over all visited states,
as detailed next. All plots sho®% confidence intervals over 20
runs (assuming normal distributions) for each figure of memd
for each version, over the three maps. Also, the first (leétthplot
point in each case is an average over the first 900 episodds, an
the subsequent points are averages over a moving windowGof 90
episodes. Hence the learning performances are not coiricade
the beginning, although all algorithms are essentiallynidal at
the start.

The specific parametric choices made in the runs were:

e A( consists of 8 actions for each state,

e c(s,s') = distance(s,s’) with simple line-tests detecting

blocked paths (i.eq(s, s’) = 00),

rewards are 1 for any action reaching the goal, but 0 other-
wise,

P(s) =

P =1r1+r,
§=0,1,a = 0.125,v = 0.9, ande = 0.15.

All learning algorithms (inclusing basic Sarsa) use the
function for state-action value initialization (which iguav-
alent to online reward shaping [15]).



Figures 4 and 7 show the learned solution qualities on thegsma
in Figure 3, respectively, as total path lengths. As one tregpect,
the quality of the solution that Sarsa-AD learns is signiftbabet-
ter than basic Sarsa. For the m@p in Figure 3, there is no signif-
icant difference between the solution qualitieief 0 andd = 1,
whereas for magr, 6 = 0 is significantly better. This might indi-
cate that obstacles favor lody unless they defeat discovery in the
first place, as in magr2 in Figure 3, where discovery comes into
play only in obstacle free areas.

Usually sample/experience complexity in RL is measurechiy t

number of decisions that the agent has to make in each episode

The problem with this measure in the context of our work ig tha
it is not only affected by learning, but also by action disagv
Clearly, Sarsa-AD will learn to make fewer decisions thams8a
by virtue of action discovery, and so this measure will faSarsa-
AD unduly over Sarsa. However, Sarsa-AD makes fewer detsio
at the expense of increasing the number of choices (i.eilabla
actions) at each decision point. Therefore, a more refinegsme

of sample complexity for Sarsa-AD would be the sum of the num-
ber of choices available across all decision points in epitoee.
Strictly speaking, this measure is a combination of denisiom-
plexity (i.e., number of actions available to choose frorhjch is
fixed in regular RL but increases in Sarsa-AD) and sample com-
plexity (i.e., number of decision points), but here we siynfer

to it as sample complexity. We use this measure to compare the

sample complexities of the different methods in Figures&&n

In Figure 5 we see a statistically significant advantage o$&a
AD over Sarsa as well as “All actions”. Notice that “"All actg’
is not the version thaktnowsall possible actions (atomic or oth-
erwise) in all states. Such a variant of Sarsa would have aevor
sample complexity than even baseline Sarsa, and is noestirdli
our experiments. Rather, “All actionsliscoversactions along the
state trajectories, much like other versions of Sarsa-Aynly
does so most liberally without the potential test. In Fig8reéhe
two versions of Sarsa-ADj(= 0, 1) have significantly lower sam-
ple complexity than basic Sarsa and “All actions”. This s&lg
that even if the potential function is partially uninforrivat (map
G- in Figure 3), Sarsa-AD is still preferable to basic Sarsa.

Another interesting observation about our measure of sampl
complexity (especially in Figure 5) is that the sample caxrjy
of “All actions” becomes afincreasing function This is to be ex-
pected because these versions of Sarsa-AD expand the aet®on
rather liberally, and could get bogged down with explorirgpp
discovered actions. Also notice that the basic Sarsa cgeseto
optimal (near optimal in magr2) paths in terms of basic actions,
with little learning because of the informed initializatiovith the
potential function. Such initialization, however, stidldves the dif-
ferent versions of Sarsa-AD with the task of learning thesgalof
new actions. Hence their convergence is not as fast.

Finally, Figures 6, and 9 show the growth rates of the sizes of
the action sets with newly discovered actions. Althougtréfetive
patterns are not unexpected, what is inspiring is that tbe/tirrate
of Sarsa-AD even fo§ = 0 is quite low compared to the potential
action space siz&)(n)). This is due to the focussed exploration
of a few trajectories compared to the total number of posdita-
jectories. Furthermore, there is a statistically significadvantage
of bothé = 0, 1 over “All actions”, indicating that the potential
test is indeed beneficial to action discovery. The overaittgsion
from these results can be that action discovery with theriate
test and with a (preferably) low can significantly improve both
the solution quality and the sample complexity, in reinfanent
learning. In the future we would like to analyze non-navigiaal
tasks for the scope of action discovery. Conceivably, in Bhy
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problem where state transition constraints are well-ddfiftesould
be possible to discover new actions by constraint progrargmi

4.2 Multi-agent Learning with Action Discov-
ery

Our results so far indicate a beneficial impact of actionaliscy
on exploration complexity even though it comes at a cost ti-de
sion complexity, so much so that the overall sample complesi
significantly lower than in regular reinforcement learningow-
ever, a sterner test for this hypothesis is in a multi-aggstesn
where the decision complexity grows exponentially with tiven-
ber of agents, creating the possibility that any augmesratf the
action set (by discovery) may dominate the sample complexit

In order to test the hypothesis that action discovery is fieiaé
to both solution quality and sample complexity (combinedraadl
agents) in a multi-agent learning (MAL) task, we adopt thmtJo
Action Learning algorithm [4]. For JALs, the decision cormpl
ity is clearly exponential in the number of agents, since each
agent maintains @-value for each joint-stateand the entire joint-
action vector(a1, az, ..., an). Since we intend to test the impact
of action discovery on what Boutilier calls coordinatioroplems
(CPs) [3], in particular whether the number of coordinatob-
lems are reduced or increased, we cleanly separate thecatami
tion sets of agents, so that every decision point is a coatidin
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problem. In our experiments we consider two agents pushbaxa
on a plane, so we allow one agent to exert a force along:theis
only (we call it thez-agent), and the other along thyeaxis only
(the y-agent. By removing overlap in the directionalities of the
forces, we ensure that the agents do not trivially cooréimasome
decision points. This serves the purpose of isolating theairhof
action discovery on CPs, with the impact on accidental doard
tion being removed. Note however, that this is only meanoiar
experimental set-up, and it is not necesasry to precluddapsein
the agents’ atomic action sets. Also, agents can achieveciean
separation of their action sets by prior agreement in caatperdo-
mains. It is worth noting that in this setting, the multi-agelock
pushing task it very closely related to the single agentgetion
task studied earlier.

We allow each agent to test for feasibility of a new actiomgsi
the same method as in algorithm 1. If a new action passesshe te
then all agents discover that action and append their astts
in that joint-state, by the appropriatemponenof the discovered
action. Therefore, if an actiofw’, y") is discovered, the:-agent
appends’ as a new action in its own list of actions in that state, and
also includeg/’ as a new action of the other agent in that state. The
y-agent performs the corresponding actions as well. Thisnsea
that with each discovery, the size of the joint action tabiteng at
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Figure 9: Growth in the size of the setA,(.) — Ao(.) over visited
states, against episodes for tass.

the rate ofO(|A;|" ') whereA, is the largest of the current action
sets ovem agents. Given such a phenomenal growth in decision
complexity, it is unclear if action discovery will benefit ttitagent
learning.

4.3 Experiments in the Box-pushing Task

We use @ x 9 grid for the discrete box-pushing task, as shown in
Figure 10. Each JAL uses action discovery as shown in Algorit
with similar parameters as in the single-agent experimémnith
some differences):

e A consists of 3 actions for each state, for each agettor
0 in its chosen direction,

c(s,s’) = distance(s, s") with simple line-tests detecting
blocked paths (i.eq(s, s') = 00),

rewards are 1 for any action reaching the goal, -1 for hitting
any obstable including the boundary, but 0 otherwise,

P(s) =

o P =11 +72

distance(s,goal)’

e 6 =0.1,a =0.25,v = 0.9, ande = 0.01.



e All learning algorithms (including basic Sarsa JAL) use the
& function for state-action value initialization.

Figures 11 and 12 show the solution quality (i.e., the leraftthe

path along which the agents learn to push the box) and the sam-

ple complexity (sum of the sample complexities as definec® s
tion 4.1, over the two agents) respectively, of JAL Sarsanieg
with and without action discovery. These plots again sha®#¥%
confidence intervals ove&0 runs. Expectedly, action discovery al-
lows the learners to learn a fundamentally shorter pathsigris-
ingly it also improves the sample complexity. This cleargntbn-
strates that the impact of action discovery on the numberRd C
(which is reduced) outweighs the impact on decision conifylex
(which is worsened), such that the net sample complexitigrsfs
icantly lower with action discovery. The result reaffirms dind-
ing that action discovery is indeed a potent tool for reinéanent
learner(s) to improve both solution quality and sample dexity

of learning, through the counter-intuitive process of vemisg the
decision complexity.

Agent 1

4
xd |
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Figure 10: The multi-agent box-pushing task.
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Figure 11: Plot of solution quality against episodes for the
multi-agent box-pushing task.

5. CONCLUSION
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Figure 12: Plot of sample complexity against episodes for #
multi-agent box-pushing task.

We have observed that action sets of agents are often cioestra
in reinforcement learning design, thereby constrainirgyléarned
policies. We have argued in favor of a stragey — calletion Dis-
covery—that incrementally augments the action set with newly dis-
covered actions that appotentially beneficiato explore in the fu-
ture. We have shown simple experiments in grid navigatiskda
for individual agents, as well as a box-pushing task for tJgicr
tion Learners (JALs), that suggest that action discoverngraves
both the solution quality and sample complexity of reintarent
learning. In particular, our result that a reduction in thember of
coordination problems (CPs) by virtue of action discovemglades
multiple agents to learn a fundamentally better coordamagiolicy
with a lower sample complexity than in a regular JAL framekyor
is a fundamental contribution to multi-agent learning eesh.

6. PLAN FOR EXTENSION

Our plan to extend this work is entirely in the domain of multi
agent coordination learning. A comparison of the singleragind
multi-agent plots of sample complexity indicates two tlsing1)
that the convergence rate is much slower in the two-agemtttas
in the one-agent case, and (2) that the advantage of actioowiry
in terms of sample complexity seems to be pronounced in the tw
agent case. While (1) is to be expected, (2) is not quitetiseuand
needs further investigation. Increasing the number of &gerthe
box-pushing task will necessitate overlap in the actiorcepaf the
agents. We will allow all agents to act in bathandy directions,
but at any given time, an agent must pick an action in one dfthe
directions. This means an agent can choose the magnitude of t
force exerted on the box, and the orientation must be eith#ra
z-direction ory. This restriction would ensure that agents do not
discover actions in arbitrary orientations since that wlordduce
the need to coordinate with other agents. A technical diffjcu
arising from not imposing this restriction is that the outmof a
joint action (where each action can be in an arbitrary odtah)
may not fall on a grid point in discrete maps.

We also plan to investigate the impact of increasing the rarmb
of agents on the benefit accrued from action discovermoimtinu-
ousmaps, where an action would be composed of two choices: the
magnitude of the force and the orientation. However, sinahs
domains require some kind of function approximation fortéag
the action values, it is not immediately clear how a newlyadis
ered action could be reconciled with a function approximateit



usually works with a fixed set of discrete actions. There iy ve
little work that consider both continuous action space amttiou-
ous state spaces, and it would be non-trivial to adapt anfiesfet
techniques to accommodate new actions.
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