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ABSTRACT
The design of reinforcement learning solutions to many problems
artificially constrain the action set available to an agent,in order
to limit the exploration/sample complexity. While exploring, if
an agent can discover new actions that can break through the con-
straints of its basic/atomic action set, then the quality ofthe learned
decision policy could improve. On the flipside, consideringall pos-
sible non-atomic actions might explode the exploration complex-
ity. We present a potential based solution to this dilemma, and
empirically evaluate it in grid navigation tasks. In particular, we
show that both the solution quality and the sample complexity im-
prove significantly when basic reinforcement learning is coupled
with action discovery. Our approach relies on reducing the num-
ber of decisions points, which is particularly suited for multiagent
coordination learning, since agents tend to learn more easily with
fewer coordination problems (CPs). To demonstrate this we extend
action discovery to multi-agent reinforcement learning. We show
that Joint Action Learners (JALs) indeed learn coordination poli-
cies of higher quality with lower sample complexity when coupled
with action discovery, in a multi-agent box-pushing task.

1. INTRODUCTION
Reinforcement learning is a popular framework for agent-based

solutions to many problems, primarily because of the simplicity of
design and the strong convergence guarantees in the face of uncer-
tainty and limited feedback. In typical on-line reinforcement learn-
ing problems, an agent interacts with an unknown environment by
executing actions and learns to optimize long-term payoffs(or feed-
backs from the environment) consequent to selecting actions from
a given set, A, in every state. In most cases, care is taken to ensure
that the set of actions is not too large, usually by discretizing con-
tinuous action spaces (see [7] for an exception). This is because a
large action set can slow down exploratory learning by creating too
many alternate trajectories through the state space to be explored.
However, in order to curtail this exploration space, oftentimes, ac-

tion sets are artificially limited (in addition to physical limitations
of an agent) leading to constraints in the learned behaviorsas well.

Consider a simple example of this limitation: assume that the
robotic arm in Figure 1(a) is physically limited to rotatingby no
less than2◦ at a time. The goal is to get it to rotate by13◦. In-
stead of allowing it to explore every possible action (2◦ – 359◦),
the designer might prefer to allow only 4 actions, viz.,2◦ clock-
wise and anti-clockwise, and5◦ clockwise and anti-clockwise. Al-
though this would enable the robot to learn an action policy for any
integer goal angle, many of those policies would have constraints
that are imposed by the design choice, not by the robot’s physical
limitation, e.g., it would have to execute three5◦ actions followed
by a2◦ action in the reverse direction. However, the robot could
have learned to simply turn by13◦ in one smooth motion,had the
learning problem not been artificially constrained. On the other
hand, allowing a full blown action set might slow down learning to
such an extent that no performance improvement (over a random
policy baseline) may be observed in any reasonable time-frame.
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Figure 1: Motivating examples

Consider a second example, a grid-world navigation task, asshown
in Figure 1(b). In such worlds, the action set is usually assumed to
contain the 8 atomic actions that an agent can take to move from
one state (tile corner) to a (8-connected) neighboring state. How-
ever, the optimal policies generated by such an action set can make
for unnatural navigation paths, such as the path from state Ato the
bottleneck B in solid arrows, in Figure 1(b). The most natural path
from A to B would be the dotted arrow in Figure 1(b), but accomo-



dating such actions might make the action set of the agent toolarge.
This example also highlights the difference between our work and
the theory ofoptions[13]. An option in this example might allow
an agent to move to the doorway (B) with a temporally extended
action sub-planthat consists of the same atomic actions(i.e., the
chain of solid arrows). In contrast, our method adopts afundamen-
tally new action(the dotted arrow), whereby, and agent can move in
a straight line to B, instead of being constrained by the set of atomic
actions. However, as mentioned before, it is not immediately clear
if such additional actions must come at the cost of reduced learning
rate.

In this paper, we propose a method to address the tradeoff be-
tween discovering new actions and keeping the learning ratehigh.
We allow a reinforcement learning agent to start exploring its en-
vironment with the same (limited) basic/atomic action set,but en-
able it to discover new actions on-line that are expected to lead
to its goal faster. As the agent augments its action set with these
newly discovered promising actions, its learning rate might be ex-
pected to fall. However, if only the most promising actions are
added, then they may actually decrease the time to reach the goal,
thereby accelerating the learning. We experimentally study the rel-
ative effects of these two factors in the grid-world navigation do-
main with single agents. We show that action discovery can indeed
improve the solution qualitywhile significantly reducing the ex-
ploration/sample complexity. Furthermore, the reason behind the
success of action discovery, viz., improvement in the connectivity
of the state-graph, indicates an added benefit to multi-agent coor-
dination learning. Coordination Problems (CPs) [3] are points in
multi-agent sequential decision problems where agents must coor-
dinate their actions in order to optimize future global returns. With
fewer CPs, the learning problem is simplified, leading to faster
learning. Since action discovery can reduce the number of points
where agents would need to coordinate (i.e., reduce CPs), action
discovery can greatly enhance the learning rates in multi-agent co-
ordination learning tasks. In order to verify this intuition we adapt
the Joint Action Learning (JAL) algorithm [4] with action discov-
ery in a multi-agent box pushing task, and show that the beneficial
impact of action discovery does indeed apply.

2. REINFORCEMENT LEARNING
Reinforcement learning (RL) problems are modeled asMarkov

Decision Processesor MDPs [12]. An MDP is given by the tu-
ple {S, A,R, T}, whereS is the set of environmental states that
an agent can be in at any given time,A is the set of actions it can
choose from at any state,R : S × A 7→ ℜ is the reward func-
tion, i.e.,R(s, a) specifies the reward from the environment that
the agent gets for executing actiona ∈ A in states ∈ S; T :
S×A×S 7→ [0, 1] is the state transition probability function spec-
ifying the probability of the next state in the Markov chain conse-
quential to the agent’s selection of an action in a state. Theagent’s
goal is to learn a policy (action decision function)π : S 7→ A that
maximizes the sum of discounted future rewards from any state s,
given by,

V π(s) = ET [R(s, π(s))+γR(s′, π(s′))+γ2R(s′′, π(s′′))+. . .]

wheres, s′, s′′, . . . are samplings from the distributionT following
the Markov chain with policyπ, andγ ∈ (0, 1) is the discount
factor.

A common method for learning the value-function,V as defined
above, through online interactions with the environment, is to learn

an action-quality functionQ given by

Q(s, a) = R(s, a) + max
π

γ
X

s′

T (s, a, s′)V π(s′) (1)

This quality value stands for the discounted sum of rewards ob-
tained when the agent starts from states, executes actiona, and
follows the optimal policy thereafter. Action quality functions are
preferred over value functions, since the optimal policy can be cal-
culated more easily from the former. TheQ function can be learned
by online dynamic programming using various update rules, such
as temporal difference (TD) methods [12]. In this paper, we use the
on-policy Sarsa rule given by

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

whereα ∈ (0, 1] is the learning rate,rt+1 is the actual environmen-
tal reward andst+1 ∼ T (st, at, .) is the actual next state resulting
from the agent’s choice of actionat in statest. We assume that the
agent usesǫ-greedy strategy for action selection: it selects action
at = arg maxb Q(st, b) in statest with probability (1 − ǫ), but
with probabilityǫ it selects a random action.

Sarsa is named after the acronym of its steps: state, action,re-
ward, state, action. From statest, the agent picks actionat, re-
ceives a rewardrt+1, transitions to statest+1, and then selects ac-
tion at+1 in that state. It is only at this point that it can update
Q(st, at), using the above TD rule.

In reinforcement learning, it is traditional to define a simple set
of actionsA that an agent can select fromat any state, since many
actions are applicable to several states. However, for the purpose
of this paper we will separate the action setson a per state basis.
That is, we will assume that in a states, an agent can select from
the setA(s) of actions. This is just for the purpose of presenta-
tion, and there is really no fundamental difference betweenthe two
conventions. We assume that the agent is initially given thesame
action set as basic RL, represented asA0(s) over statess. If the
agent discovers a new action in episodet that can be executed from
states on its exploration trajectory, it grows the action set for that
state,At(s).

Since we are no longer constrained to a basic/atomic action set,
we must accomodate different execution times (or costs) of actions,
similar to options. The framework ofSemi-Markov Decision Pro-
cesses (or SMDPs) is the appropriate relaxation for this purpose,
and the only difference it entails in terms of the learning algorithm,
is that the execution time,t(a) of an actiona, must be used to ex-
ponentiate the discount factor, i.e.,γt(a) in place ofγ.

3. RELATED WORK
While reinforcement learning has seen successes in many no-

table applications [14, 5, 1], experience/sample complexity has tra-
ditionally been an issue of concern. More recently, severaltech-
niques have been proposed to reduce sample complexity. These
approaches include the theory of options and temporal abstrac-
tion [13], reward shaping [9], Lyapunov-constrained action sets [10],
and knowledge transfer [11], among others. In particular, Lyapunov-
constrained action sets [10] seeks to limit the action set ofan agent
during exploration by constructing appropriate Lyapunov functions
to guide exploration, while action transfer [11] seeks to bias action
selection in new tasks by exploiting successful actions from pre-
vious tasks. Given the significant prior effort in reducing sample
complexity, some by eliminating or reducing the weight of avail-
able actions, it may sound counterproductive to seek to expand an
agent’s available action set. Our insight is that with the discovery
of new actions that circumvent policy constraints, more efficient



policies can be learned and exploited to ultimately learn toachieve
the goal faster. As a bonus, the quality of the learned solution is
also expected to improve.

The basic insight that learning temporally extended abstractions
of ground behavior can increase the learning rate by reusingab-
stractions, has been verified before in the context of options [13].
However, there is a fundamental difference between our workand
the theory of options. While options can be loosely thought of
as labels for a series of atomic actions that are useful to execute
in the same sequence in many different states, and are gearedto-
ward reusable knowledge, our work considersactually new actions.
When options are considered as additional actions that an agent can
select in place of an atomic action, they have been shown to expe-
dite learning. However, discovering options is not a simpletask. In
contrast, it may be simple to discover new ground actions outside
an agent’s set of atomic actions, as we demonstrate in grid naviga-
tion tasks. Rather than bank on their reusability as with options, we
rely on the ability of these new actions to improve the policyqual-
ity by connecting topologically distant states in the stategraph. It
is not immediately clear if such qualitative enhancement will also
reduce sample complexity. But our experiments in simple grid nav-
igation tasks show that this is indeed possible.

Reinforcement learning in multi-agent sequential decision tasks
has been an active area of research [3, 6, 8, 2]. In multi-agent
systems the decision complexity (typically the size of the Q-table)
usually depends exponentially on the number of agents, and so it is
even less intuitive whether worsening the decision complexity by
accommodating new actions can help the learning rate at all.We
answer this question affirmatively, by showing that Joint Action
Learners (JAL) [4] with action discovery do learn better policies
with lower sample complexity in a multi-agent box pushing task
than regular JALs.

4. ACTION DISCOVERY
In reinforcement learning problems, the atomic action set,A0,

is usually fixed. Even if new options are discovered, these options
are described in terms of the atomic actions fromA0. However,
in many cases new actions that are neither included inA0, nor
precluded by the agent’s capabilities, may be able to improve the
agent’s performance by

• reducing the number of steps to the goal, or the total solution
cost

• reducing the cost of exploration by connecting topologically
distant states with new actions

• making the goal-directed behavior more natural, i.e., less
constrained from a design perspective

We renounce the innate meaning of an action, and assume it to
simply stand for a vehicle of state transition. As such, we repre-
sent an action byass′ to mean that theintendedpurpose of this
action is to transition from states to states′. To accomodate non-
determinism in the effect of an action, we can now redefine the
transition functionT asT (s, ass′ , s

′′) to stand for the probabil-
ity that if the agent acts with the intention of transitioning from s
to s′, then it ends up in states′′. Therefore,T (s, ass′ , s

′) is the
probability of success of this action. The fixed point of Q-learning,
replacing equation 1, is now,

Q(s, ass′) = R(s, ass′) + max
π

γ
X

s′′

T (s, ass′ , s
′′)V π(s′′)

In this paper, however, we focus on the deterministic cases,i.e.,
whereT (s, ass′ , s

′) is either 1, or the actionass′ is infeasible due

to physical limitations of the agent or the environment, forall s, s′.
It is useful to deal with both possibilities uniformly, witha cost
function.

We assume that for a given domain, a cost functionc : S ×
S 7→ ℜ, is always available, such thatc(s, s′) gives the cost of
executing an action that would take an agent from states to state
s′, i.e.,ass′ . If c(s, s′) <∞, this simply means that there is some
action (whether atomic or newly discovered) that takes the agent
from states directly to states′. However, ifc(s, s′) =∞, then no
such action exists.c is virtually an oracle that can be enquired by
the agent for pairs of states that it has seen in the past. Our setting
is different from regular RL settings in that the agent does not know
the state space a priori, but has access to a transition function oracle
(c), whereas in regular RL settings the state space is known butthe
transition function is unknown.

The cost function also serves as the measure of action complex-
ity, and can be used to exponentiateγ for SMDPs. For actions
outside the atomic action set (A0), and having a finite cost, we do
not assume that a reward sample for such an action is available un-
less this action is actually executed. Hence the first time that such
an action is discovered (line 16, Algorithm 1), the reward isesti-
mated(r̂ in line 18, Algorithm 1) on the basis of the actual rewards
r1, r2.

Clearly, accepting every newly discovered action into the set of
actions will be expensive for learning. For instance, in a grid of
sizen × n, there may beO(n2) such new actions, per state, i.e.,
potentiallyO(n4) actions to contend with. Accomodating such a
large number of actions will impact the exploration and reduce the
learning rate. Fortunately, many of these actions may be needless
to explore, e.g., if they lead away from the goal. It is possible to
estimate thevalue potentialof a state,Φ, precisely for this pur-
pose. Potential functions,Φ(s), have been used before, to shape
rewards and reduce the sample complexity of reinforcement learn-
ing [9]. Such functions can be set by the agent designers or domain
designers. In this paper, we use such functions to informatively
select among newly discovered actions. To illustrate our heuristic
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Figure 2: Illustration of the selection procedure for a newly
discovered action.

selection procedure for newly discovered actions, consider an agent
that has transitioned through successive statess1, s2, ands3, dur-
ing some episode,t (Figure 2). The actions that it has executed to
make these transitions may be atomic actions, or previouslydiscov-
ered new actions, in the setAt(.). At states3, the agent determines
if there exists an action that could have transitioned it directly from
s1 to s3, i.e., whetherc(s1, s3) <∞. If this is true and this action
did not exist inAt(s1) (line 16, Algorithm 1), then a new action has
been discovered based on two older actions (either basic, orthem-
selves discovered). The question is whether this new action, as1s3

,
is worth exploring in the future from states1, compared to the ac-



tion (atomic or otherwise) that had transitioned the agent from s1

to s2. This question may be heuristically answered by comparing
the potential backup values from boths2 ands3 to s1. These po-
tential backup values can be estimated asγc(s1,s2)Φ(s2) from s2,
andγc(s1,s3)Φ(s3) from s3. Consequently, we use the following
criterion for accepting a newly discovered action,as1s3

,

γc(s1,s3)Φ(s3) > (1 + δ)γc(s1,s2)Φ(s2)

whereδ is a slack variable guiding the degree of conservatism in
accepting new actions. This step is shown in line 16 in Algorithm 1.
Furthermore, new actions merely facilitate reaching the goal, but
they are not necessary for the agent to reach the goal. The agent
should be able to find a baseline policy to the goal using just the
atomic actions, in the worst case. Hence, we use the above test
rather conservatively (δ > 0) to select or reject a newly discovered
action.

Algorithm 1 Sarsa-AD (Sarsa with Action Discovery)

1: Initialize ǫ, δ, α, γ
2: InitializeΣ← ∅, the set of states seen so far
3: for episodet = 0, 1, 2, 3, . . . do
4: s1 is the start state. If seen for the first time, add it toΣ and

setAt(s1)← A0(s1)
5: Choosea1 ∈ At(s1), with ǫ-greedy
6: Executea1 and get next-states2 and rewardr1 (unlesss1 is

terminal). Ifs2 is seen for the first time, add it toΣ and set
At(s2)← A0(s2)

7: Choosea2 ∈ At(s2), with ǫ-greedy
8: Q(s1, a1) ← Q(s1, a1) + α[r1 + γc(s1,s2)Q(s2, a2) −

Q(s1, a1)]
9: Executea2 and get next-states3 and rewardr2 (unlesss2 is

terminal). Ifs3 is seen for the first time, add it toΣ and set
At(s3)← A0(s3)

10: Choosea3 ∈ At(s3), with ǫ-greedy
11: Q(s2, a2) ← Q(s2, a2) + α[r2 + γc(s2,s3)Q(s3, a3) −

Q(s2, a2)]
12: repeat
13: Executea3 and get next-states4 and rewardr3 (unlesss3

is terminal). Ifs4 is seen for the first time, add it toΣ and
setAt(s4)← A0(s4)

14: Choosea4 ∈ At(s4), with ǫ-greedy
15: Q(s3, a3) ← Q(s3, a3) + α[r3 + γc(s3,s4)Q(s4, a4) −

Q(s3, a3)]
16: if (c(s1, s3) < ∞) ∧ (as1s3

/∈ At(s1)) ∧

(γc(s1,s3)Φ(s3) > (1 + δ)γc(s1,s2)Φ(s2)) then
17: At(s1)← At(s1) ∪ {as1s3

}

18: Q(s1, as1s3
)← r̂(r1, r2) + γc(s1,s3)Q(s3, a3)

19: end if
20: s1 ← s2, s2 ← s3, s3 ← s4, r1 ← r2, r2 ← r3,

a3 ← a4

21: until s3 is terminal
22: At+1(s)← At(s),∀s ∈ Σ
23: end for

4.1 Experiments with a single agent
We have used two grid navigation maps,G1 andG2, as shown in

Figure 3. Since the potential functions are based on the estimated
proximity of a state to the goal, we have consideredG2 as a test
case to verify the performance of action discovery when the agent
may need to head away from the goal first, before it can approach
the goal.
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Figure 3: The two navigation maps (G1,G2) used in the exper-
iments, and the paths found by Sarsa (solid red line, given by
atomic actions only), and action discovery (δ = 0; dotted blue
line, in terms of discovered actions.

For each map, we performed 20 runs of each of the following
versions: basic Sarsa (i.e., no action discovery), Sarsa-AD with no
potential test (i.e., only the first two tests in line 16, Algorithm 1
are performed) which we call “All actions”, and two versionsof
Sarsa-AD with potential tests, forδ = 0, 1. For each of the above
versions, we study three figures of merit: solution quality,sample
complexity, and the growth rate of|At−A0| over all visited states,
as detailed next. All plots show95% confidence intervals over 20
runs (assuming normal distributions) for each figure of merit, and
for each version, over the three maps. Also, the first (leftmost) plot
point in each case is an average over the first 900 episodes, and
the subsequent points are averages over a moving window of 900
episodes. Hence the learning performances are not coincident at
the beginning, although all algorithms are essentially identical at
the start.

The specific parametric choices made in the runs were:

• A0 consists of 8 actions for each state,

• c(s, s′) = distance(s, s′) with simple line-tests detecting
blocked paths (i.e.,c(s, s′) =∞),

• rewards are 1 for any action reaching the goal, but 0 other-
wise,

• φ(s) = 1
distance(s,goal)

,

• r̂ = r1 + r2,

• δ = 0, 1, α = 0.125, γ = 0.9, andǫ = 0.15.

• All learning algorithms (inclusing basic Sarsa) use theΦ
function for state-action value initialization (which is equiv-
alent to online reward shaping [15]).



Figures 4 and 7 show the learned solution qualities on the 2 maps
in Figure 3, respectively, as total path lengths. As one might expect,
the quality of the solution that Sarsa-AD learns is significantly bet-
ter than basic Sarsa. For the mapG2 in Figure 3, there is no signif-
icant difference between the solution qualities ofδ = 0 andδ = 1,
whereas for mapG1, δ = 0 is significantly better. This might indi-
cate that obstacles favor lowδ, unless they defeat discovery in the
first place, as in mapG2 in Figure 3, where discovery comes into
play only in obstacle free areas.

Usually sample/experience complexity in RL is measured by the
number of decisions that the agent has to make in each episode.
The problem with this measure in the context of our work is that
it is not only affected by learning, but also by action discovery.
Clearly, Sarsa-AD will learn to make fewer decisions than Sarsa,
by virtue of action discovery, and so this measure will favorSarsa-
AD unduly over Sarsa. However, Sarsa-AD makes fewer decisions
at the expense of increasing the number of choices (i.e., available
actions) at each decision point. Therefore, a more refined measure
of sample complexity for Sarsa-AD would be the sum of the num-
ber of choices available across all decision points in each episode.
Strictly speaking, this measure is a combination of decision com-
plexity (i.e., number of actions available to choose from, which is
fixed in regular RL but increases in Sarsa-AD) and sample com-
plexity (i.e., number of decision points), but here we simply refer
to it as sample complexity. We use this measure to compare the
sample complexities of the different methods in Figures 5 and 8.

In Figure 5 we see a statistically significant advantage of Sarsa-
AD over Sarsa as well as “All actions”. Notice that “All actions”
is not the version thatknowsall possible actions (atomic or oth-
erwise) in all states. Such a variant of Sarsa would have a worse
sample complexity than even baseline Sarsa, and is not studied in
our experiments. Rather, “All actions”discoversactions along the
state trajectories, much like other versions of Sarsa-AD; it only
does so most liberally without the potential test. In Figure8, the
two versions of Sarsa-AD (δ = 0, 1) have significantly lower sam-
ple complexity than basic Sarsa and “All actions”. This suggests
that even if the potential function is partially uninformative (map
G2 in Figure 3), Sarsa-AD is still preferable to basic Sarsa.

Another interesting observation about our measure of sample
complexity (especially in Figure 5) is that the sample complexity
of “All actions” becomes anincreasing function. This is to be ex-
pected because these versions of Sarsa-AD expand the actionsets
rather liberally, and could get bogged down with exploring poor
discovered actions. Also notice that the basic Sarsa converges to
optimal (near optimal in mapG2) paths in terms of basic actions,
with little learning because of the informed initialization with the
potential function. Such initialization, however, still leaves the dif-
ferent versions of Sarsa-AD with the task of learning the values of
new actions. Hence their convergence is not as fast.

Finally, Figures 6, and 9 show the growth rates of the sizes of
the action sets with newly discovered actions. Although therelative
patterns are not unexpected, what is inspiring is that the growth rate
of Sarsa-AD even forδ = 0 is quite low compared to the potential
action space size (O(n4)). This is due to the focussed exploration
of a few trajectories compared to the total number of possible tra-
jectories. Furthermore, there is a statistically significant advantage
of both δ = 0, 1 over “All actions”, indicating that the potential
test is indeed beneficial to action discovery. The overall conclusion
from these results can be that action discovery with the potential
test and with a (preferably) lowδ can significantly improve both
the solution quality and the sample complexity, in reinforcement
learning. In the future we would like to analyze non-navigational
tasks for the scope of action discovery. Conceivably, in anyRL
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Figure 4: Plot of solution quality against episodes for taskG1.
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Figure 5: Plot of sample complexity against episodes for task
G1.

problem where state transition constraints are well-defined, it sould
be possible to discover new actions by constraint programming.

4.2 Multi-agent Learning with Action Discov-
ery

Our results so far indicate a beneficial impact of action discovery
on exploration complexity even though it comes at a cost to deci-
sion complexity, so much so that the overall sample complexity is
significantly lower than in regular reinforcement learning. How-
ever, a sterner test for this hypothesis is in a multi-agent system
where the decision complexity grows exponentially with thenum-
ber of agents, creating the possibility that any augmentation of the
action set (by discovery) may dominate the sample complexity.

In order to test the hypothesis that action discovery is beneficial
to both solution quality and sample complexity (combined over all
agents) in a multi-agent learning (MAL) task, we adopt the Joint
Action Learning algorithm [4]. For JALs, the decision complex-
ity is clearly exponential in the number of agents,n, since each
agent maintains aQ-value for each joint-states and the entire joint-
action vector〈a1, a2, . . . , an〉. Since we intend to test the impact
of action discovery on what Boutilier calls coordination problems
(CPs) [3], in particular whether the number of coordinationprob-
lems are reduced or increased, we cleanly separate the atomic ac-
tion sets of agents, so that every decision point is a coordination
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Figure 6: Growth in the size of the setAt(.)−A0(.) over visited
states, against episodes for taskG1.
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Figure 7: Plot of solution quality against episodes for taskG2.

problem. In our experiments we consider two agents pushing abox
on a plane, so we allow one agent to exert a force along thex-axis
only (we call it thex-agent), and the other along they-axis only
(the y-agent. By removing overlap in the directionalities of the
forces, we ensure that the agents do not trivially coordinate at some
decision points. This serves the purpose of isolating the impact of
action discovery on CPs, with the impact on accidental coordina-
tion being removed. Note however, that this is only meant forour
experimental set-up, and it is not necesasry to preclude overlaps in
the agents’ atomic action sets. Also, agents can achieve such clean
separation of their action sets by prior agreement in cooperative do-
mains. It is worth noting that in this setting, the multi-agent block
pushing task it very closely related to the single agent navigation
task studied earlier.

We allow each agent to test for feasibility of a new action using
the same method as in algorithm 1. If a new action passes the test,
then all agents discover that action and append their actionsets
in that joint-state, by the appropriatecomponentof the discovered
action. Therefore, if an action(x′, y′) is discovered, thex-agent
appendsx′ as a new action in its own list of actions in that state, and
also includesy′ as a new action of the other agent in that state. The
y-agent performs the corresponding actions as well. This means
that with each discovery, the size of the joint action table grows at
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Figure 8: Plot of sample complexity against episodes for task
G2.
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Figure 9: Growth in the size of the setAt(.)−A0(.) over visited
states, against episodes for taskG2.

the rate ofO(|At|
n−1) whereAt is the largest of the current action

sets overn agents. Given such a phenomenal growth in decision
complexity, it is unclear if action discovery will benefit multi-agent
learning.

4.3 Experiments in the Box-pushing Task
We use a9×9 grid for the discrete box-pushing task, as shown in

Figure 10. Each JAL uses action discovery as shown in Algorithm 1
with similar parameters as in the single-agent experiments(with
some differences):

• A0 consists of 3 actions for each state, for each agent:±1 or
0 in its chosen direction,

• c(s, s′) = distance(s, s′) with simple line-tests detecting
blocked paths (i.e.,c(s, s′) =∞),

• rewards are 1 for any action reaching the goal, -1 for hitting
any obstable including the boundary, but 0 otherwise,

• φ(s) = 1
distance(s,goal)

,

• r̂ = r1 + r2,

• δ = 0.1, α = 0.25, γ = 0.9, andǫ = 0.01.



• All learning algorithms (including basic Sarsa JAL) use the
Φ function for state-action value initialization.

Figures 11 and 12 show the solution quality (i.e., the lengthof the
path along which the agents learn to push the box) and the sam-
ple complexity (sum of the sample complexities as defined in sec-
tion 4.1, over the two agents) respectively, of JAL Sarsa learning
with and without action discovery. These plots again show the95%
confidence intervals over20 runs. Expectedly, action discovery al-
lows the learners to learn a fundamentally shorter path, butsurpris-
ingly it also improves the sample complexity. This clearly demon-
strates that the impact of action discovery on the number of CPs
(which is reduced) outweighs the impact on decision complexity
(which is worsened), such that the net sample complexity is signif-
icantly lower with action discovery. The result reaffirms our find-
ing that action discovery is indeed a potent tool for reinforcement
learner(s) to improve both solution quality and sample complexity
of learning, through the counter-intuitive process of worsening the
decision complexity.

Figure 10: The multi-agent box-pushing task.
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multi-agent box-pushing task.

5. CONCLUSION
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Figure 12: Plot of sample complexity against episodes for the
multi-agent box-pushing task.

We have observed that action sets of agents are often constrained
in reinforcement learning design, thereby constraining the learned
policies. We have argued in favor of a stragey – calledAction Dis-
covery– that incrementally augments the action set with newly dis-
covered actions that arepotentially beneficialto explore in the fu-
ture. We have shown simple experiments in grid navigation tasks
for individual agents, as well as a box-pushing task for Joint Ac-
tion Learners (JALs), that suggest that action discovery improves
both the solution quality and sample complexity of reinforcement
learning. In particular, our result that a reduction in the number of
coordination problems (CPs) by virtue of action discovery enables
multiple agents to learn a fundamentally better coordination policy
with a lower sample complexity than in a regular JAL framework,
is a fundamental contribution to multi-agent learning research.

6. PLAN FOR EXTENSION
Our plan to extend this work is entirely in the domain of multi-

agent coordination learning. A comparison of the single-agent and
multi-agent plots of sample complexity indicates two things: (1)
that the convergence rate is much slower in the two-agent case than
in the one-agent case, and (2) that the advantage of action discovery
in terms of sample complexity seems to be pronounced in the two-
agent case. While (1) is to be expected, (2) is not quite intuitive and
needs further investigation. Increasing the number of agents in the
box-pushing task will necessitate overlap in the action spaces of the
agents. We will allow all agents to act in bothx andy directions,
but at any given time, an agent must pick an action in one of thetwo
directions. This means an agent can choose the magnitude of the
force exerted on the box, and the orientation must be either in the
x-direction ory. This restriction would ensure that agents do not
discover actions in arbitrary orientations since that would reduce
the need to coordinate with other agents. A technical difficulty
arising from not imposing this restriction is that the outcome of a
joint action (where each action can be in an arbitrary orientation)
may not fall on a grid point in discrete maps.

We also plan to investigate the impact of increasing the number
of agents on the benefit accrued from action discovery incontinu-
ousmaps, where an action would be composed of two choices: the
magnitude of the force and the orientation. However, since such
domains require some kind of function approximation for learning
the action values, it is not immediately clear how a newly discov-
ered action could be reconciled with a function approximator that



usually works with a fixed set of discrete actions. There is very
little work that consider both continuous action space and continu-
ous state spaces, and it would be non-trivial to adapt any of these
techniques to accommodate new actions.
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