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Abstract

We present new results on the efficiency of no-regret al-
gorithms in the context of multiagent learning. We use
a known approach to augment a large class of no-regret
algorithms to allow stochastic sampling of actions and
observation of scalar reward of only the action played.
We show that the average actual payoffs of the resulting
learner gets (1) close to the best response against (even-
tually) stationary opponents, (2) close to the asymptotic
optimal payoff against opponents that play a converg-
ing sequence of policies, and (3) close to at least a dy-
namic variant of minimax payoff against arbitrary op-
ponents, with a high probability in polynomial time. In
addition the polynomial bounds are shown to be signif-
icantly better than previously known bounds. Further-
more, we do not need to assume that the learner knows
the game matrices and can observe the opponents’ ac-
tions, unlike previous work.

Introduction
Multiagent or concurrent learning is a challenging problem.
There are two major sources of uncertainty in concurrent
learning domains; the uncertainties in sensing and actua-
tion, and the uncertainties due to the changing behaviors
of the other learning agents. Whereas various approaches
like reinforcement learning, POMDPs address the first is-
sue, Game Theory addresses the second. This work belongs
to a line of research that addresses mainly the second kind
of uncertainty and draws inspiration from Game Theory. We
also address part of the first kind of uncertainty since we re-
nounce the assumption that a learner needs to observe the
opponents’ actions.

Recent research in Multiagent Reinforcement Learning
(MARL) has seen a markedly greater focus on the perfor-
mance of concurrent learners than on stability in their be-
haviors. A latest work (Powers & Shoham 2005) proposed
a new set of criteria for MARL agents and devised a Metas-
trategy to achieve these efficiently. In particular, they guar-
antee that a learner will achieve average payoff that is

Property 1: near best response against stationary players,

Property 2: close to the payoff of an equilibrium that is not
Pareto dominated by another equilibrium, in self-play, and
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Property 3: close to the minimax payoff against all other
players,

each with probability1− δ in time polynomial in

(1/δ,K)

and other parameters, whereK is the number of joint actions
of the players. If the number of agents in the domain isn and
the size of the action space of each isk, thenK = O(kn).
Moreover, Metastrategy needs to assume that each learner

Assumption 1: knows its own game matrix,

Assumption 2: knows the opponents’ game matrices,

Assumption 3: can observe the actions of its opponents,

Assumption 4: can observe its own payoffs.

We believe that such strong assumptions are characteristic of
meta-level reasoning and may be unnecessary with a differ-
ent approach. In this paper we take a direct adaptive ap-
proach that significantly improves the polynomial bounds
and at the same time removes assumptions 1, 2 and 3.

Using an approach from (Aueret al. 1998), we provide an
augmentation to any of a large class of no-regret algorithms
that allows them to play actions instead of mixed policies
and observe only rewards of actions played (as is usual in
reinforcement learning) rather than the expected payoffs of
every action in each round. Our contribution is to show that
this version of most no-regret algorithms achieves average
payoff that is (1) near best response against (eventually) sta-
tionary players and (2) close to at least a dynamic (stronger)
variant of minimax payoff against arbitrary opponents, (i.e.,
Property 1 and an improved version of Property 3 above) in
time polynomial in

(ln(1/δ), k ln k)

besides other parameters, which are significant improve-
ments over Metastrategy’s guarantees. In particular our
bounds are independent of the number of players (n) in the
game. Moreover to achieve these two properties we only
need Assumption 4 while Metastrategy uses all 4 assump-
tions.

We do not explicitly handle Property 2, i.e., self-play.
However we do prove, additionally, that if the opponents
play aconverging sequenceof joint policies, then our learner
will get close to its maximal possible asymptotic payoff



quickly. We argue that this indirectly addresses self-play
in the following way. If we choose a no-regret algorithm
(base algorithm) that is known (or can be shown) to con-
verge in policies in self-play to an equilibrium profile, and
if they can choose this profile to be non-Pareto dominated,
then our last result will mean that they get close to such an
equilibrium payoff quickly. This is equivalent to Property 2
of Metastrategy, but again with improved dependence onδ
andk. On the flipside, we will possibly need to bring back
assumptions 1 thru 3 depending on which base algorithm we
choose.

Multiagent Reinforcement Learning
A Multiagent Reinforcement Learning task is usually mod-
eled (Littman 1994) as a Stochastic Game (SG, also called
Markov Game), which is a Markov Decision Process with
multiple controllers. We focus on stochastic games with a
single state, also called repeated games. This refers to a sce-
nario where a matrix game (defined below) is played repeat-
edly between a learner and its opponents. We call the set of
actions available to the learner A, and the set of joint actions
of its n − 1 opponents B. Letk = |A| and potentially all
agents havek actions available, so|B| = O(kn−1).
Definition 1 A matrix game for a learner is given by a|A|×
|B|matrix,R, of real values, such that if the learner chooses
actiona ∈ A and the opponents choose a joint action profile
b ∈ B, then the payoff of the learner will beR(a, b).
Usually each agent will have a different matrix for its own
payoffs, i.e.,ith agent will have its ownRi. A constant-
sum game(a.k.a competitive games; useful in describing
two agent competitive interactions) is a special matrix game
where for every joint action profile chosen by all agents,
the sum of their payoffs is a constant. If this constant
is zero, then it is also called a zero-sum game. We as-
sume (as in many previous work) that payoffs are bounded,
R(a, b) ∈ [0, rmax], for real rmax. Table 1 shows an ex-
ample matrix game for two agents, the Shapley game, with
rmax = 1. Each agent has 3 available actions.

Table 1: The Shapley Game.

R1=

( 1 0 0
0 1 0
0 0 1

)
, R2=

( 0 1 0
0 0 1
1 0 0

)
A mixed policyis a probability distribution over an agent’s

action space. We will represent a mixed policy of the learner
as vectorπ ∈ ∆(A), and a mixed joint policy of its oppo-
nents as the vectorρ ∈ ∆(B). Here∆ stands for the set of
probability distributions. If the entire probability mass of a
mixed policy is concentrated on a single actionj, then it is
also called apure policyrepresented as the vectorδj . When
the learner plays a mixed policyπ and its opponents play a
mixed policyρ, the learner’s expected payoff is given by

V (π,ρ) =
∑

a∈A,b∈B

π(a)ρ(b)R(a, b).

Definition 2 For an n-player matrix game, the best re-
sponse of the learner to its opponents’ joint policy (ρ) is
given byBRρ = {π|V (π,ρ) ≥ V (π′,ρ), ∀π′ ∈ ∆(A)}.

Definition 3 The regret of a learner playing a sequence
of policies{πt}t=Tt=1 , relative to any policyπ, written as
RT (π) is given by

RT (π) =
t=T∑
t=1

V (π,ρt)−
t=T∑
t=1

V (πt,ρt). (1)

If the sum (overt = 1, . . . , T ) of expected payoffs of the
learner against the actual unknown policies played by the
opponent were compared to that of an arbitrary policyπ of
the learner, then the difference would be the learner’s regret.
In hindsight he finds that always playingπ instead of the
sequence{πt}would have yielded a total payoff higher than
his actual payoff byRT (π) (possibly negative).

Related Work
Multiagent Reinforcement Learning has produced primarily
two types of algorithms. One type learns some fixed point
of the game e.g., Nash equilibrium (Minimax-Q (Littman
1994), Nash-Q (Hu & Wellman 1998), FFQ (Littman 2001))
or correlated equilibrium (CE-Q (Greenwald & Hall 2002)).
These algorithms can guarantee a certain minimal expected
payoff asymptotically, but it may be possible to guarantee
higher payoff in certain situations if the learner is adap-
tive to the opponents’ play, instead of learning the game
solution alone. This brings us to the other type of learn-
ers that learn a best response to the opponents’ actual
play e.g., IGA (Singh, Kearns, & Mansour 2000), WoLF-
IGA (Bowling & Veloso 2002), AWESOME (Conitzer &
Sandholm 2003). They assume that the opponents are sta-
tionary, or equivalently, learn best response to the empir-
ical distribution of the opponents’ play. WoLF-IGA and
AWESOME also converge to some equilibrium profile in
self-play thus guaranteeing convergence of payoffs as well.
Simple Q-learning (Sutton & Burto 1998) is also capable
of learning a best response to an arbitrary opponent’s pol-
icy provided that latter is stationary. There has also been
some work on playing team games (where the game ma-
trices of all agents are identical) (Claus & Boutilier 1998;
Wang & Sandholm 2002) with stronger convergence guar-
antees owing to the correlation of the game matrices. Most
of these convergence results are in the limit.

One significant line of work that is being increas-
ingly explored recently in MAL is onregret matching
learners. Algorithms have been proposed that achieve

limT→∞
RTi (πi)

T ≤ 0 (calledno-regretalgorithms) for any
policy πi (Auer et al. 1998; Fudenberg & Levine 1995;
Freund & Schapire 1999; Littlestone & Warmuth 1994).
Their convergence properties were studied in self-play and
found to be incomplete (Jafariet al. 2001), but with addi-
tional information, no-regret learning was found to be con-
vergent (Banerjee & Peng 2004). These algorithms usu-
ally provide guarantees about asymptotic average expected
payoffs but little is known about their efficiency or about
their average actual payoffs in general. Recent work by
Zinkevich shows that a generalized version of IGA called
GIGA (Zinkevich 2003) has a no-regret property. Sim-
ilarly a generalized version of WoLF-IGA called GIGA-



WoLF (Bowling 2005) has no-regret property with addi-
tional policy convergence guarantees against GIGA in small
games. However, these recent algorithms also lack effi-
ciency guarantees as the other no-regret algorithms.

The one work that our paper is most related to (Powers &
Shoham 2005) proposed a new set of properties for a MAL
algorithm, with a greater focus on payoff and efficiency than
policy convergence. We devise a similar learning strategy
based on no-regret algorithms and show that it can provide
efficiency guarantees (for at least 2 of their 3 properties), that
improve significantly upon (Powers & Shoham 2005) with
significantly less assumptions. For the remaining case, we
provide evidence of it being satisfied but possibly at the cost
of similar (large) set of assumptions.

Augmenting a No-regret Algorithm
Usually a no-regret learner observes at each round, a reward
vector that specifies the expected reward of each action if
the mixed policy is played (e.g., GIGA (Zinkevich 2003),
GIGA-WoLF (Bowling 2005),Hedge (Auer et al. 1998)
etc) and outputs a new policy vector,πt+1. Let the reward
vector that the learner observes for his current policy bex̂t.
Usuallyπt+1 is computed from̂xt andπt alone, and no ex-
tra knowledge (whether about the game or the opponents)
is necessary. An augmenting setup was described in (Auer
et al. 1998) to extendHedge to allow stochastic sampling
of actions and observation of the reward for only the action
played (Exp3). This allowed the authors to prove that the
average actual payoffs of the learner can be close to playing
the best action with a minimal probability, i.e., lower bound-
ing the per trial gain of the algorithm probabilistically. Ac-
tually this strategy can be used in a straightforward way to
augment any no-regret algorithm as we show below.

In this paper we consider the class of no-regret algorithms
that haveRT (π) ≤ p

√
T + q for any policyπ and for real

values ofp, q andp > 0. Usuallyp, q are polynomials of
k and rmax. E.g., for Hedge p =

√
2 log k, q = 0, for

GIGA p = (1 + k.r2
max), q = −k.r2

max/2. Most no-regret
algorithms satisfy this form, so the results developed in this
paper apply to a large class of no-regret algorithms. Now
V (πt,ρt) =

∑
j π

t
j x̂
t
j . As a result of this and the assumed

upper bound on regret of this class of no-regret algorithms,
we have from equation 1, for any algorithm of this class

t=T∑
t=1

j=k∑
j=1

πtj x̂
t
j ≥

t=T∑
t=1

j=k∑
j=1

πj x̂
t
j − (p

√
T + q) (2)

for an arbitrary policyπ. Note that the set of policies that
maximize

∑
t

∑
j πj x̂

t
j consists of at least one pure policy,

i.e., the action which if always played would have given this
maximum payoff sum overt. Therefore the above inequality
can be written as∑

t

∑
j

πtj x̂
t
j ≥

∑
t

x̂ti − (p
√
T + q)

for all i = 1 . . . k. The stochastic augmented module sam-
ples the distribution

π̂t = (1− γ)πt +
γ

k
1, (3)

whereγ 1 is the probability of exploration, and plays action
jt at timet. It receives the scalar rewardxjt for executing
that action and returns to the no-regret algorithm the reward
vectorx̂t given by

x̂tj =

{
xjt
π̂t
jt

if j = jt

0 otherwise
(4)

The above compensation scheme for generating a reward
vector based on scalar observation ensures that theexpected
gain (i.e. reward aggregate) of any action is proportional to
its actual gain. We call this augmented scheme NoRA (No-
Regret with Augmentation). It represents a large class of al-
gorithms and all our results apply to all of them. We call any
agent following any algorithm from this class, a NoRA agent
or a NoRA learner.

Now since
∑
j π

t
j x̂
t
j = πjt

xjt
π̂jt
≤ xjt

1−γ (from equa-
tions 3,4), we have from equation 2∑

t

xjt ≥ (1− γ)
∑
t

x̂ti − (1− γ)(p
√
T + q), ∀i.

If
∑
t x

t
i is the actual gain of actioni thru T, then from

lemma 5.1 of (Aueret al. 1998) 2 we know that for1 >
λ, δ > 0 and for anyi, with probability at least1− δ/2∑

t

x̂ti ≥
(

1− kλ

γ

)∑
t

xti −
rmax ln(2k/δ)

λ

This is a slightly weaker bound than (Aueret al. 1998) but
is sufficient for our purpose. It is also slightly more general
because unlike (Aueret al. 1998), we do not need to assume
rmax = 1. Combining the last two inequalities we have for
all i = 1, . . . , k, with probability at least1− δ/2,∑
t

xjt ≥
∑
t

(1− kλ

γ
− γ)xti −

(1− γ)rmax ln(2k/δ)
λ

−(1− γ)(p
√
T + q) (5)

This is a basic property of any NoRA agent. At this point
there is insufficient information to provide tight bounds on
the regret. With further algorithm-specific assumptions,
Exp3 achievesO(T

2
3 ) regret bound. There is also current

interest in gradient estimation (as in equation 4) in partial in-
formation settings. For instance, (Flaxman, Kalai, & McMa-
han 2005) provide an alternate gradient estimation proce-
dure based on scalar feedback similar to our setup, which al-
lows a regret bound ofO(T

3
4 ) for the corresponding version

of GIGA. However, our purpose is not to tightly bound the
regret; rather we wish to establish opponent-dependent poly-
nomial time bounds on the accumulated rewards for which
equation 5 is a sufficient starting point. Using it we show
in the following sections, that the average actual rewards of

1The addition of a uniform exploration component is necessary
to obtain good actual payoffs in any single run, in contrast with just
obtaining good payoffsin expectation.

2The proof of Lemma 5.1 does not depend on the specifics of
Hedge, only those of the augmented module ofExp3, which we
adopt in a general way.



any NoRA learner will satisfy Property 1,3 and also be close
to the the maximum possible asymptotic payoff against con-
verging opponents, with a high probability in polynomial
time.

(Eventually) Stationary Opponents
Eventually stationary opponents are those that play station-
ary policies after some finite (but unknown) timet0. If an al-
gorithm is guaranteed to attain near best response against op-
ponents that are always stationary in polynomial time, then
it should not be harder to guarantee the same against eventu-
ally stationary opponents with at most an extra polynomial
dependence ont0. Hence in the following, we consider sta-
tionary opponents. Letρ be the fixed joint distribution of
the opponents, andVBR be the value of the learner’s best
response.

Theorem 1 For ε > 2γrmax
γ+1/2 , δ > 0, there exists aT0 poly-

nomial in (1/ε, ln(1/δ), rmax, k ln k) such that if the game
is played for at leastT0 rounds, a NoRA agent will achieve
an average actual payoff of at leastVBR − ε againstn − 1
stationary players, with probability at least1− δ.
Proof : If the opponents are sampling actions from fixed
distributions, then thexti ’s in RHS of equation 5 are i.i.d
with mean VBR if δi ∈ BRρ. By Azuma’s Lemma

P ( 1
T1

∑t=T1
t=1 xti ≥ VBR − ε/2) ≥ 1 − exp(−T1ε

2

8r2
max

). Set-

ting this to be at least1 − δ/2, we haveT1 ≥ 8r2
max ln(2/δ)

ε2 ,
a polynomial in(rmax, ln(1/δ), 1/ε). Also for all T2 > 0,
with probability at least(1− δ/2)2 ≥ (1− δ), we have from
equation 5

t=T1+T2∑
t=1

xjt ≥ (1− kλ

γ
− γ)(T1 + T2)(VBR − ε/2)

− (1− γ)rmax ln(2k/δ)
λ

−(1− γ)(p
√
T + q)

Since we are free to choose any admissible value for1 >
λ > 0 we letλ = γ2/k. Taking average from the above, we
see it is at least

(1− 2γ)(VBR − ε/2) − (1− γ)rmaxk ln(2k/δ)
γ2(T1 + T2)

− (1− γ)(p
√
T1 + T2 + q)

T1 + T2

Clearly, it is necessary thatγ < 0.5, i.e., majority of
the probability mass should be concentrated on exploitation
rather than exploration. Actuallyγ should be set to a fixed
small value. Then forε > 2γrmax

γ+1/2 , setting the above expres-
sion for average value at leastVBR − ε, we get a quadratic
of the form ofax2 − bx − c = 0 with a, b, c > 0, for the
minimal value of

√
T1 + T2. So a real solution exists and

the theorem follows forT0 = T1 + T2.
The limitation of this result is that it does not hold forev-

ery ε > 0, only for everyε > 2γrmax
γ+1/2 . This is the price of

never ceasing to explore. We discuss this limitation further

in the conclusion section. Also note that the value ofT0 will
be proportional to1/γ; so if γ is held to a small constant
(which can be done independently of the game or the oppo-
nents) to allow a smallε, the constants of the polynomial ex-
pression will be large. However, the advantages of this result
over Metastrategy are more compelling. The dependence
of NoRA is on ln(1/δ) instead of1/δ and k ln k instead
of kn. 3 Furthermore such a learner does not need to ob-
serve the opponents’ actions or know its own game matrix,
whereas both of these assumptions are needed in (Powers &
Shoham 2005) to produce the guarantees against stationary
opponents, and all of Assumptions 1-4 are used. NoRA only
needs Assumption 4. All these advantages (as well as the
limitation due to exploration) also apply to all results devel-
oped in the rest of the paper.

Converging Opponents
If the opponents’ joint policy converges in Cauchy’s sense,
then for any givenε > 0 there exists a timetε such that
∀t1, t2 > tε, ‖ρt1 − ρt2‖ < ε. In other words, there exists
a region of diameterε in the joint policy space,Nε, such
that∀t > tε, ρt ∈ Nε. The policy sequence converges to the
center of this “ball”, but we do not need to know the location
of this ball in the policy space, just the fact that it exists. We
call πBR(ρ) any best response policy of the learner to the
opponents joint policyρ. Then,

Vmax = max
ρ∈Nε

V (πBR(ρ),ρ)

is asymptotically the optimal payoff the learner might re-
ceive. We show that the average actual payoff of a
NoRA learner will beα-close to this value, in time poly-
nomial in (1/α, tε, ln(1/δ), rmax, k ln k). This is a non-
intuitive result since the opponents are not assumed to settle
to any fixed policy infinite time, only in the limit. The theo-
rem says, regardless of the actual policy that the opponents
approach asymptotically (which will hence be unknown at
all finite times), the learner’s average payoff will be close to
the best possibleasymptoticpayoff inpolynomialtime.

This result is useful, for instance, against opponents that
want to learn some fixed properties of the game through
exploration disregarding how its opponents behave, similar
to the equilibrium learners Minimax-Q, Nash-Q, CE-Q etc.
Here NoRA would efficiently learn the value of the equilib-
rium, depending ontε which is tied to the computational
complexity of the equilibrium. Therefore, NoRA does not
produce a way (per se) to efficiently compute an equilibrium,
the complexity of which remains an open problem. Another
interesting case is when two no-regret algorithms are guar-
anteed to converge in policies, e.g., GIGA-WoLF (Bowl-
ing 2005) (known to converge against GIGA, also a no-
regret algorithm) and ReDVaLeR in self-play (Banerjee &
Peng 2004). Our result implies that in such cases, the av-
erage actual payoffs of both players (augmented to pro-
duce NoRA agents) will be close to the equilibrium payoff
quickly, assuming that convergence continues to hold with

3 (Powers & Shoham 2005) use the symbolk to represent the
size of the joint action space which isO(kn) in our notation.



augmentation. Then this result can also be interpreted as
showing that the rate of convergence of these algorithms
cannot be worse than a polynomial factor of1/tε.

Theorem 2 Let δ > 0, α > 0 and ε < α
rmax(1−3γ) .

This implies atε. Then there exists aT0 polynomial
in (1/α, tε, ln(1/δ), rmax, k ln k) such that if the game is
played for at leastT0 rounds, a NoRA agent will achieve
an average actual payoff of at leastVmax − α againstn− 1
convergent players, with probability at least1− δ.
Proof : Let ρ′ = arg maxρ∈Nε V (πBR(ρ),ρ). Now we
know thatBRρ′ contains at least one pure policy, since any
action in the support of a best response is also a best re-
sponse. Letδi′ ∈ BRρ′ , andT > tε. The main difference
with the previous case of stationary opponents is thatxTi′ are
not i.i.d. All we know is that

EjT [xTi′ |jtε+1, . . . , jT−1] ≥ Vmax − rmaxε,

sinceρTj ≥ ρ′j − ε for all j. But employing the approach of
Lemma 5.1 in (Aueret al. 1998) (adapted from Neveu) we
can show that

ZT = exp

(
λ′

rmax

t=T∑
t=tε+1

(E[xti′ ]− xti′)−
λ′

2

rmax

t=T∑
t=tε+1

E[xti′ ]

)
forms a supermartingale sequence, and thatE[ZT ] ≤ 1.

Then by Markov inequality we haveP (ZT > 2/δ) ≤ δ/2.
Therefore, with probability at least1− δ/2
t=T∑

t=tε+1

xti′ ≥ (1−λ′)
t=T∑

t=tε+1

(Vmax−rmaxε)−
rmax

λ′
ln(2/δ)

Combining with equation 5 (whereλ is replaced byγ2/k
as in previous section) we get with probability at least1− δ,
t=T∑
t=1

xjt ≥ (1− 2γ)
t=tε∑
t=1

xti′

+(1− 2γ)[(1− λ′)(T − tε)(Vmax − rmaxε)

−rmax

λ′
ln(2/δ)]− (1− γ)rmaxk ln(2k/δ)

γ2

−(1− γ)(p
√
T + q)

≥ 0 + (1− 2γ − λ′)(T − tε)(Vmax − rmaxε)

−rmax(1− 2γ) ln(2/δ)
λ′

− (1− γ)rmaxk ln(2k/δ)
γ2

−(1− γ)(p
√
T + q)

Choosingλ′ = γ and setting the RHS of the average from
above, to be at leastVmax − α we again end up with a
quadratic for minimal

√
T of the formax2 − bx − c = 0

whereb, c > 0 anda = −rmaxε− 3γVmax + 3γrmaxε+ α.
Clearly,a > 0 if ε < α

rmax(1−3γ) and hence if alsoγ < 1/3.
Then a real solution exists and the Theorem follows.

Note that we do not assume the exact form of dependence
of tε on ε. If tε is a polynomial of1ε then the Theorem will

involve 1
ε instead oftε. However, iftε happens to be a worse

function of 1
ε then it will dominate any polynomial in1ε ,

therefore our guarantee will be in terms oftε and not1ε .
Since how close the learner gets toVmax cannot be inde-

pendent of how close the opponents’ are to their asymptotic
behavior,ε will have to be chosen smaller than some func-
tion of α. The above theorem allows this function to be no
worse than linear. A more technical way of interpreting this
dependence goes as follows: since it is not guaranteed that
limt→∞ ρ

t = ρ′, the asymptotic payoff of the learner may
be lower thanVmax. Hence the uncertainty in its payoff,α,
must incorporate the uncertainty in the opponents’ asymp-
totic policy relative toρt which cannot be larger thanε for
t > tε.

Arbitrary Opponents
When the opponents can play arbitrary sequence of policies,
no-regret learning ensures that the expected average payoff
will not be much worse than that of the best response to the
opponents’ empirical distribution. Though this can be no
worse than a minimax4 or security value of the game, it can
possibly be better. We define a variant of the minimax so-
lution that depends on the opponents’ policies, calledOppo-
nent Dependent MiniMaxor ODMM. This is produced in the
same way as minimax, but allowing minimization over the
actual sequence of opponent strategies rather than the entire
space of opponent strategies. Therefore, ifVODMM is the
expected ODMM payoff andVMM is the expected minimax
payoff, then

VODMM ≥ VMM .

In this section we show that with a high probability a
NoRA agent will obtain actual payoffs close to at least
VODMM , in polynomial time. Note that this is a stronger
guarantee than Property 3, and is another advantage of our
adaptive strategy over meta-level reasoning that can only use
the knowledge of the game’s fixed minimax solution for se-
curity.

Theorem 3 Let ε > 3γrmax, δ > 0. Then there exists a
T0 polynomial in(1/ε, ln(1/δ), rmax, k ln k) such that if the
game is played for at leastT0 rounds, a NoRA agent will
achieve an average actual payoff of at leastVODMM − ε
againstn − 1 players using arbitrary sequence of policies,
with probability at least1− δ.
Proof : In this case we have even less information about the
opponents’ policies than the previous two sections. Also, the
xti ’s are not necessarily i.i.d. as in the previous section. Let
η be any mixture over the learner’s action space,A. Using
this we can mix equation 5 for alli = 1, . . . , k (with the
previous choice ofλ = γ2/k) to get∑
t

xjt ≥
∑
t

(1− 2γ)(η · xt)− (1− γ)rmaxk ln(2k/δ)
γ2

−(1− γ)(p
√
T + q)

4Although minimax solutions of two player games are well-
defined, it is less concrete forn-player games due to the possibility
of collaboration among opponents. We assume all opponents are
playing individually without forming coalitions.



since
∑
i ηi = 1. Then we note that

Ejt [η · xt|j1, . . . , jt−1] = η ·R · ρt

≥ min
{ρt}

η ·R · ρt

Since this holds for arbitraryη, it also holds for theη that
maximizes the RHS above, which means

Ejt [η · xt|j1, . . . , jt−1] ≥ VODMM

no matter what sequence of policies the opponents play.
Then following the same approach of constructing a super-
martingale sequence as in the last section, we get the result.

Conclusion
We have presented a new class of MARL algorithms,
NoRA , by employing a known appraoch of stochastization
on a large class of no-regret algorithms. We have shown
that its average actual rewards will be close to optimal,
with high probability, for two classes of opponents in time
polynomial with improved bounds relative to existing re-
sults. NoRA also makes minimal assumptions unlike pre-
vious approaches. We have also shown that a NoRA agent
achieves near optimal average reward, with high probability
in polynomial time, against opponents that play converging
sequence of policies. The main limitation of NoRA is that it
needs to use a low probability of exploration to allow mean-
ingful bounds. It may be given the value of exploration prob-
ability with the knowledge ofrmax (which then becomes an
assumption, still significantly weaker than Assumption 1),
and then the values of payoff uncertainties can be lowered
to any desired value thus allowing useful bounds. If this
knowledge is not available, NoRA may select some small
value forγ on its own, without adding to its list of assump-
tions. But then the guarantees only hold for uncertainty (in
payoff) values that are larger than some linear functions of
γ, which might make the bounds less useful. One possible
future work is to try a decaying schedule forγ instead of a
constant. We also intend to test NoRA in repeated games to
estimate the values of the constants involved in the polyno-
mial bounds, and compare with Metastrategy.
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