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Abstract

Despite increasing deployment of agent technologies in
several business and industry domains, user confidence
in fully automated agent driven applications is notice-
ably lacking. The main reasons for such lack of trust in
complete automation are scalability and non-existence
of reasonable guarantees in the performance of self-
adapting software. In this paper we address the latter
issue in the context of learning agents in a Multiagent
System (MAS). Performance guarantees for most exist-
ing on-line Multiagent Learning (MAL) algorithms are
realizable only in the limit, thereby seriously limiting
its practical utility. Our goal is to provide certain mean-
ingful guarantees about the performance of a learner in
a MAS, while it is learning. In particular, we present
a novel MAL algorithm that (i) converges to a best re-
sponse against stationary opponents, (ii) converges to a
Nash equilibrium in self-play and (iii) achieves a con-
stant bounded expected regret at any time (no-average-
regret asymptotically) in arbitrary sized general-sum
games with non-negative payoffs, and against any num-
ber of opponents.

Introduction
Agent technologies are being increasingly deployed in sev-
eral business and industry domains, including B2B ex-
changes, supply chain management, car manufacturing etc,
and are already providing sustained dramatic benefits. De-
mands from e-Commerce, particularly on-line auctions, and
distributed computing communities are also producing rev-
olutionary ideas in the Agents and MAS research domains.
However, user confidence in fully automated agent driven
applications is noticeably lacking and a “human in the loop”
mind set seems hard to overcome. The main reasons for
such lack of trust in complete automation are scalability and
non-existence of reasonable guarantees in performance of
self-adapting software.

Existing on-line learning algorithms in single agent envi-
ronments do provide some performance guarantees during
learning, but such assurances in multiagent environments
are not only lacking but also significantly difficult to pro-
vide. In a MAS, a learning agent also forms a part of the
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environment for every other learning agent. As such, the en-
vironments of the learners are usuallynon-stationarywhich
is the key challenge for MAL. It is apparently also a chal-
lenge for a learner to learn the moving target of a most ben-
eficial behavior through exploration in such environments,
and at the same time ensure “good” performance during the
exploration. So much so that the latter property has not been
investigated in depth so far. In MAS, either such guaran-
tees are realizable only in the limit, thereby seriously limit-
ing its practical interest, or are realizable in polynomial time
(e.g. R-MAX (Brafman & Tennenholtz 2002b)) but only for
limited classes of games (e.g., constant-sum games). Our
goal is to address this aspect of MAL, i.e., to provide certain
meaningful guarantees about the performance of a learner
in a MAS, while it is learningin general-sum games. We
develop a novel algorithm for MAL that maintains the exist-
ing policy convergence properties of MAL, viz.rationality
andconvergence(Bowling & Veloso 2002), and in addition
(i) applies to arbitrary sized general-sum games with non-
negative payoffs, (ii) ensures abounded regretat any time
such that it is asymptoticallyno-regret. This property guar-
antees that a learner cannot perform much worse than the
best fixed policy at any time while it is learning. The current
paper contributes this algorithm with the relevant analyses
and is organized as follows: the next section presents defini-
tions from the domain of Multiagent Reinforcement Learn-
ing in repeated games, followed by a section on the existing
work related to the present endeavor. Thereafter we present
the algorithm, the analysis, and conclude with a short sum-
mary.

Multiagent Reinforcement Learning
A Multiagent Reinforcement Learning task is usually mod-
eled (Littman 1994) as a Stochastic Game (SG, also called
Markov Game), which is a Markov Decision Process with
multiple controllers. We focus on stochastic games with a
single state, also called repeated games. This refers to a sce-
nario where a matrix game (defined below) is played repeat-
edly by multiple agents. We shall represent the action space
of theith agent asAi.

Definition 1 A matrix game withn players is given by ann-
tuple of matrices,〈R1,R2, . . . ,Rn〉 whereRi is a matrix
of dimension|A1| × |A2| . . .× |An|, such that the payoff of



theith agent for the joint action(a1, a2, . . . , an) is given by
the entryRi(a1, a2, . . . , an), ∀i.
A constant-sum game(also called competitive games) is
a special matrix game where

∑
iRi(a1, a2, . . . , an) =

c, ∀(a1, a2, . . . , an) ∈
∏
k Ak, c being a constant. Ifc = 0,

then it is also called a zero-sum game. An example of such a
game with 2 players appears in Table 1. This game is called
Rock-Scissor-Paper. HereA1 = A2 = {R, S, P} and the
game payoffs for any joint action sum to 0 as shown in Ta-
ble 1.

Table 1: Rock-Scissor-Paper Game.(a, b) in the (i, j)th
cell is the tuple of payoffs for Row agent and Column agent
(in that order) for each combination of their actions(i, j) ∈
{R, S, P} × {R, S, P}.

Actions Rock (R) Scissor (S) Paper (P)
Rock (R) (0,0) (1,-1) (-1,1)
Scissor (S) (-1,1) (0,0) (1,-1)
Paper (P) (1,-1) (-1,1) (0,0)

A mixed policy, vectorπi ∈ PD(Ai) for agenti, is
a probability distribution overAi, wherePD is the set
of probability distributions over the action space. If the
entire probability mass is concentrated on a single ac-
tion (some actions), it is also called apure policy (par-
tially mixed policy). The joint policies of the opponents
of the ith agent will be given by the vectorπ−i. We
shall usually refer to theith agent as the learner and the
rest of the agents as the opponents. The expected pay-
off of the learner at any stage in which the policy tuple
〈π1,π2, . . . ,πn〉 is followed is given byVi(πi,π−i) =∑

(a1,...,an)∈
∏

k
Ak
π1(a1) . . . πn(an)Ri(a1, . . . , an).

Definition 2 For an n-player matrix game, the best re-
sponse (BRiπ−i) of the ith agent to its opponents’ joint
policy (π−i) is given byBRiπ−i = {πi|Vi(πi,π−i) ≥
Vi(π′i,π−i), ∀π′i ∈ PD(Ai)}.
Definition 3 A mixed-policy Nash Equilibrium (NE) for a
matrix game〈R1,R2, . . . ,Rn〉 is a tuple of probability vec-
tors 〈π∗1,π∗2, . . . ,π∗n〉 (policy profile) such that each is a
best response to the rest, i.e.,π∗i ∈ BRiπ∗−i ∀i. In terms of

payoffs, these conditions can be restated asVi(π∗i ,π
∗
−i) ≥

Vi(πi,π∗−i) ∀πi ∈ PD(Ai) ,∀i.
No player in this game has any incentive for unilateral de-
viation from the Nash equilibrium policy, given the others’
policy. There always exists at least one such equilibrium
profile for an arbitrary finite matrix game (Nash 1951). As
an example, the only NE for the 2 player RSP game in Ta-
ble 1 is[ 1

3 ,
1
3 ,

1
3 ] and[ 1

3 ,
1
3 ,

1
3 ] for the two agents.

Definition 4 For a given time ranget = 0 . . . T , the re-
gret of a learner (agenti), RgTi is given byRgTi =
maxπi

∑t=T
t=1 Vi(πi,π

t
−i)−

∑t=T
t=1 Vi(π

t
i,π

t
−i).

This means that if the sum of expected payoffs of the learner
in the given time range against the actual unknown policies
played by the non-stationary opponent were compared to
that of an oracle whoknowsthe actual policies to be played

by the opponentahead of timeand can statically compute
a fixed policyπi that maximizes

∑t=T
t=1 Vi(πi,π

t
−i) but is

limited to play only that policy all through the time window
T , then the difference would be the former player’s regret.
In hindsight (aftert = T ) he finds that always playingπi in-
stead of the sequence{πti}would have yielded a total payoff
higher than his actual payoff byRgTi .

Related Work
Multiagent Reinforcement Learning has produced primar-
ily two types of algorithms. One type learns some fixed
point of the game e.g., NE (Minimax-Q (Littman 1994;
Littman & Szepesvari 1996), Nash-Q (Hu & Wellman 1998;
2002), FFQ (Littman 2001)) or correlated equilibrium (CE-
Q (Greenwald & Hall 2002)). These algorithms can guaran-
tee a certain minimal expected payoff asymptotically, but it
may be possible to guarantee higher payoff in certain sit-
uations if the learner is adaptive to the opponents’ play,
instead of learning the game solution alone. This brings
us to the other type of learners that learn a best response
to the opponents’ actual play e.g., IGA (Singh, Kearns,
& Mansour 2000), WoLF-IGA (Bowling & Veloso 2001;
2002), AWESOME (Conitzer & Sandholm 2003a). Since
mutual best response is an equilibrium, two similar best re-
sponding players (such situations referred to asself-play)
should be able to converge to an equilibrium. WoLF-IGA
achieves this in2× 2 games and AWESOME achieves it for
arbitrary sized games. Simple Q-learning (Sutton & Burto
1998) is also capable of learning a best response to an ar-
bitrary opponent’s policy provided that latter is stationary.
Nevertheless, a straightforward application of Q-learning
has been shown to perform well in MAL problems (Tan
1993; Sen, Sekaran, & Hale 1994; Sandholm & Crites 1996;
Claus & Boutilier 1998). There has also been some work on
playing team games (where the game matrices of all agents
are identical) (Claus & Boutilier 1998; Wang & Sandholm
2002) with stronger convergence guarantees owing to the
correlation of the game matrices.

However, the existing literature in MAL seldom provides
any performance guaranteesduring the learning process.
One significant line of work with possible impact on MAL
in this regard is that onregret matchinglearners. Algo-

rithms have been proposed that achievelimT→∞
RgTi
T = 0

(calledno-regretalgorithms) but their convergence proper-
ties in policies are unknown (Aueret al. 1995; Fudenberg &
Levine 1995; Freund & Schapire 1999; Littlestone & War-
muth 1994) or at best limited (Jafariet al. 2001). Thus we
see that existing MAL algorithms either do not provide any
performance assurances during learning or they do without
any convergence assurances. Our goal is to achieve both.
Recent work by Zinkevich (2003) shows that IGA (Singh,
Kearns, & Mansour 2000) has a no-regret property (even
with extension to larger games) but this algorithm is not
guaranteed to converge to Nash policies in self-play. Even
WoLF-IGA cannot guarantee convergence to NE in self-
play in larger games (Bowling & Veloso 2002). A more
recent work (Conitzer & Sandholm 2003b) establishes a
bounded loss learning framework (BL-WoLF) in classes of



zero-sum games allowing an agent to learn the minimax so-
lution of such a game with the least amount of cumulative
loss against the worst possible opponent (one who knows the
game beforehand). Though this does provide performance
assurances during learning, the framework does not address
general-sum games, or learning adaptive best responses.

There is a fundamentally different notion of equilibrium
from a NE of the one-shot game that we address. This is Effi-
cient Learning Equilibrium (ELE) (Brafman & Tennenholtz
2002a), where the players’ learning algorithms are required
to reach an equilibrium in polynomial time, but which may
not exist under imperfect monitoring settings. Though the
computational complexity of a NE is an open problem, its
advantage is its guaranteed existence. Also, we do not as-
sume perfect monitoring for our work since the learner does
not need to observe the opponents’ payoffs.

Performance Bounded Multiagent Learning
No-regret property is of great interest for MAL domains
since it provides a meaningful performance bound for a
learner in a non-stationary environment. We use this notion
of performance bound for our learning algorithm. Our goal
is to present a MAL algorithm that satisfies therationality
andconvergencecriteria of (Bowling & Veloso 2002), i.e.

• Converges to the stationary best response against station-
ary opponents. This is a base case that ensures consis-
tency of a learning algorithm against non-learners.

• Converges to the NE policy profile of the one-shot game
in repeated self-play of a matrix game.

and in addition has the following properties

• Applies to arbitrary sized games, unlike IGA or WoLF-
IGA.

• Achieves no-regret payoff against any opponent.

AWESOME (Conitzer & Sandholm 2003a) also has the first
3 properties but the case where the opponents areneither
stationary nor following the same algorithm as the learner
has not been dealt with explicitly. In (Conitzer & Sandholm
2003a), when such agents are encountered the learner will
reset repeatedly each time starting off with playing its NE
policy and gradually moving toward a best response until
the next reset. This does not provide any guarantee that its
average payoff will be “good” in such cases. The behavior of
WoLF-IGA in such cases is also unspecified. We posit that
a “good” payoff in such cases is theno regretpayoff. We
propose to ensure that in situations where the opponents are
neither stationary, nor following the learner’s algorithm, at
least the learner’s average payoff will approach its no-regret
payoff. This property does not conflict with either rationality
or convergence; in fact they are in agreement since best re-
sponse payoff (achieved asymptotically in rational and con-
vergent play) cannot be worse than no-regret payoff. We
make the following assumptions for the current work,

1. thateither the learner knows its own bounded game pay-
offs (like AWESOME) or the payoffs are unknown but
non-negative and bounded, i.e., in the range[r, r̄] such
that r ≥ 0. We call such gamesnon-negative games. If

a learner knows its game payoffs but they can be nega-
tive, then he can always imaginably transform that game
into a non-negative game, then compute policy using the
transformed game and use it in playing the actual game.
The expected payoffs will differ only by a constant and
the no-regret property will remain unchanged.

2. that the agents can observe each other’s instantaneous
policies and can use vanishing step sizes for policy im-
provement (similar to IGA and WoLF-IGA). It can also
observe the expected payoffs of all of its actions at any it-
eration (trivially computable if game payoffs are known).

3. that the agents are given at the start, their portions of an
equilibrium policy profile which they converge to if all
the agents are following the same prescribed algorithm
(similar to WoLF-IGA and AWESOME).

We write the probability of thejth action of theith agent
at time t as πti(j) and the expected payoff of this action
against the opponent’s current policy asVi(j,πt−i) and note
that ∑

j

πti(j)Vi(j,π
t
−i) = Vi(πti,π

t
−i). (1)

The ReDVaLeR Algorithm
We propose to use theReplicator (Fudenberg & Levine
1998) rule for policy update of our target algorithm
with a WoLF-like modification, which we call ReDVaLeR
(ReplicatorDynamics with aVariableLearningRate).

πt+1
i (j) = πti(j) + ηπti(j)× [lti(j)Vi(j,π

t
−i)−∑

j

lti(j)π
t
i(j)Vi(j,π

t
−i)] (2)

for η being a vanishing step size and base condition:
π0
i (j) = 1

|Ai| , learning rateslti(j) are defined later. As
η → 0, the above difference equation yields the following
differential equation1 for the dynamics of then-player sys-
tem

d

dt
(πti(j)) = πti(j)× [lti(j)Vi(j,π

t
−i)−∑

j

lti(j)π
t
i(j)Vi(j,π

t
−i)] (3)

j = 1 . . . |Ai|, i = 1 . . . n. This is similar to the Replica-
tor rule except for the learning rates,l. The Replicator Dy-
namics (RD) (Fudenberg & Levine 1998) have been exten-
sively studied in population genetics and evolutionary game
theory. It is known that the NE may not be asymptotically
stable for RD in many games, e.g., RSP game in Table 1.
A recent result in (Hart & Mas-Colell 2003) explains why.
They show that if the dynamics are uncoupled (as in RD),
i.e., if the agents do not use the opponents’ payoff infor-
mation in its dynamics, then it is unable to overcome an
“information barrier” and consequently unable to guarantee
convergence. This also explains why IGA (Singh, Kearns,

1The RHS is discontinuous but we do not need to completely
solve the system. Our approach is only to show that a chosen fixed
point can be made asymptotically stable under the dynamics.



& Mansour 2000) fails to guarantee convergence to NE but
WoLF-IGA succeeds. As in WoLF-IGA, the learning ratesl
may be one way to provide the necessary coupling, and we
definelti(j) for ReDVaLeR as

lti(j) =


1 if πt−i is fixed{

1 + σ if πti(j) < π∗ji
1− σ whenπti(j) ≥ π

∗j
i

}
otherwise

(4)
whereπ∗i is an NE policy. We typically require a con-
stant0 < σ � 1. We note that whenπti(j) ≥ π∗i (j),
πti(j)Vi(j,π

t
−i) ≥ π∗i (j)Vi(j,πt−i) since Vi(j,πt−i) ≥

0 ∀j, which is similar to the situation described aswinning
in (Bowling & Veloso 2002), excepting that now it is de-
fined for each action. Thus this scheme of variation in the
learning rate is in the spirit of WoLF (Win or Learn Fast).
Likewise, we call the situationπti(j) ≥ π∗i (j) aswinning,
and the situationπti(j) < π∗i (j) aslosing.

Analysis of ReDVaLeR
For the sake of brevity, we writeVi(j,πt−i) simply asV ji .
LetDi(π̃i,πti) be the Kullback Leibler divergence between
theith agent’s policy at timet and anarbitrary distribution
π̃i, given by

Di(π̃i,πti) =
∑
j

π̃i(j) log
(
π̃i(j)
πti(j)

)
(5)

Lemma 1 The following holds,

d

dt
(Di(π̃i,πti)) =

∑
j

lti(j)π
t
i(j)V

j
i −

∑
j

lti(j)π̃i(j)V
j
i

Proof : Differentiating both sides of equation 5 and using
equation 3 we get the result.

Corollary 1 If πti follows RD instead of ReDVaLeR, then
the derivative of the corresponding divergence measure can
be given byddt (D

RD
i (π̃i,πti)) =

∑
j(π

t
i(j)− π̃i(j))V

j
i

The following theorem establishes therationality prop-
erty (Bowling & Veloso 2002) of ReDVaLeR.

Theorem 1 If the opponents are playing stationary policies,
then the policy sequence of ReDVaLeR converges to the best
response to the opponents’ policy.

Proof : Let π̄i be the best response of theith agent to the
opponents’ fixed joint policy, given byπ−i. Then putting
π̄i in place of the arbitrary policy in Lemma 1, we have

d

dt
(Di(π̄i,πti)) =

∑
j

lti(j)π
t
i(j)V

j
i −

∑
j

lti(j)π̄i(j)V
j
i

=
∑
j

πti(j)V
j
i −

∑
j

π̄i(j)V
j
i , by (4)

= Vi(πti,π−i)− Vi(π̄i,π−i) , by (1)

≤ 0 , sinceVi(πti,π−i) ≤ Vi(π̄i,π−i)

ThatVi(πti,π−i) ≤ Vi(π̄i,π−i) is evident since otherwise
πti would have been the best response toπ−i. Now since

the divergence measure (Di) is not strictly decreasing, it is
possible thatDi(π̄i,πti) converges to a non-zero positive
value and thus the sequence{πti} converges to a policy other
thanπ̄i, sayπ′i. But even in that caseVi(π′i,π−i) must be
equal toVi(π̄i,π−i), which implies thatπ′i must also be a
best response.

The following theorem establishes that ReDVaLeR pro-
duces performance bounded learning.
Theorem 2 The following holds,∫ T

0

Vi(πti,π
t
−i)dt ≥

(
1− σ
1 + σ

)
max
πi

∫ T

0

Vi(πi,πt−i)dt

− log |Ai|
(1 + σ)

That is, asσ → 0+, the maximum regret of theith agent
playing againstn − 1 arbitrary opponents who play fixed
sequences of non-stationary policies in the firstT steps is
RgTi ≤ log |Ai|.
Proof : Note that the integrals exist sinceVi is continuous
and bounded. We writeDi(π̃i,π0

i ) i.e., the initial diver-
gence asD0. Integrating the expression in Lemma 1 in the
given time range and noting thatDi(π̃i,πTi ) ≥ 0 we have

−D0 ≤
∫ T

0

∑
j

lti(j)π
t
i(j)V

j
i −

∑
j

lti(j)π̃i(j)V
j
i

dt
≤ (1 + σ)

∫ T

0

Vi(πti,π
t
−i)dt−

(1− σ)
∫ T

0

Vi(π̃i,πt−i)dt , by (1), the

bounds onlti(j), and non-negative games

≤ (1 + σ)
∫ T

0

Vi(πti,π
t
−i)dt−

max
πi

(1− σ)
∫ T

0

Vi(πi,πt−i)dt

sinceπ̃i was arbitrarily chosen. Rearranging and noting that
D0 ≤ log |Ai| if the initial policy is uniform, we get the
result.

This result is obtained along the same line as the no-regret
property of the multiplicative weight algorithm in (Freund
& Schapire 1999). It tells us that the player can ensure a
constant bound expected regret at any time provided it uses

σ → 0+ and that the average regret of the learner isRgTi
T ≤

log |Ai|
(1+σ)T , thus ensuring no-regret asymptotically. Using the
technique of Freund & Schapire (1999) we can extend this
result to arbitrary adaptive (non-oblivious) opponents in a
discrete version of ReDVaLeR (future work).

Finally the following theorem establishes the crucialcon-
vergenceproperty (Bowling & Veloso 2002) of ReDVaLeR.
Theorem 3 When all then agents are following ReDVaLeR
algorithm, the sequence of their policies converge to their
NE in non-negative games of any size, provided they choose
their portions of the same equilibrium, and they all choose
σ = 1 (this requirement may be relaxable).



Proof : The goal is to prove that players using the ReD-
VaLeR algorithm on a repeated matrix game can converge
to a NE of the one-shot game. That they need to choose
their portions of thesameequilibrium (for rule 4) is not re-
ally an extra burden, as discussed in (Conitzer & Sandholm
2003a), for agents sharing a single algorithm. We define the
sum of the divergence measures of then agents (from equa-
tion 5) from their respective equilibriaπ∗i , for ReDVaLeR
and Replicator Dynamics respectively as

S =
n∑
i=1

Di(π∗i ,π
t
i) andSRD =

n∑
i=1

DRD
i (π∗i ,π

t
i)

Note that just asDi, D
RD
i ≥ 0 and differentiable at all

times, so areS, SRD ≥ 0. The general strategy of the proof
is to show thatddt (S) < 0 under appropriate assumptions at
any timet. We accomplish this by comparingddt (S) with
d
dt (S

RD) at that time had RD been using the same instanta-
neous policies. SinceS ≥ 0 andS = 0 holds only when all
agents have reached their respective equilibria,d

dt (S) < 0
implies thatS is a Lyapunov function2 for the dynamic sys-
tem, i.e., the system converges to the equilibrium. Now at
any timet we consider two distinct cases

Case 1 : d
dt (S

RD) ≤ 0. Then we have,

dS

dt
≤ d

dt
(S)− d

dt
(SRD)

=
∑
i

d

dt
(Di(π∗i ,π

t
i))−

∑
i

d

dt
(DRD

i (π∗i ,π
t
i))

=
∑
i

∑
j

(πti(j)− π∗i (j))(lti(j)− 1)V ji

=
∑
i

∑
j,πt

i
(j)≥π∗

i
(j)

(πti(j)− π∗i (j))(−σ)V ji

+
∑
i

∑
j,πt

i
(j)<π∗

i
(j)

(πti(j)− π∗i (j))(σ)V ji

=
∑
i

(< 0) < 0.

It can easily be seen why the
∑
j terms above must be

strictly negative. Ifπti 6= π∗i then∃j s.t. 0 < πti(j) <
π∗i (j). The contribution of this term could be zero only if
V ji = 0, otherwise this term contributes a strictly negative
term to the sum. But note that the opponents are all using
ReDVaLeR which allows only mixed policies while learn-
ing, and partially mixed or pure policies only in the limit.
Given this constraint,V ji can be zero only if all the pay-
offs for actionj in Ri are zeroes. This means thejth ac-
tion of the learner must be dominated by all other actions
and strictly dominated by at least one other action (unless
of course all the payoffs are zero, which is a degenerate
case that we ignore). This means the equilibrium prob-
ability for the jth action must be zero, i.e.,π∗i (j) = 0.
2This is true only for internal starting policies since all pure

policies are fixed points of (3). SoS cannot be global Lyapunov.

But this contradicts the fact thatπti(j) < π∗i (j) for some
πti(j) > 0. Hence the contribution of termj in the

∑
j

must be strictly negative, and consequently the entire sum
must be strictly negative. Note that in this case, we do not
need to assumeσ = 1, but any0 < σ � 1 will do, thus
ensuring asymptotic no-regret payoffs by Theorem 2.

This case actually encompasses all non-negative games
where NE is stable under RD but not asymptotically sta-
ble, including all non-negative2× 2 games with a unique
mixed equilibrium. For all other types of non-negative
2×2 games, we also have convergence as simplifying the
ReDVaLeR update rule (equation 3) for two action games
shows that it is identical to a gradient ascent rule (albeit
an extra multiplicative term involving the product of both
action probabilities, which changes only the magnitude,
not the direction of the gradient in such games), which
we know converges in policies in these games (Singh,
Kearns, & Mansour 2000). That result also extends to
ReDVaLeR.

Case 2 : d
dt (S

RD) > 0. Then we have,

dSRD

dt
− dS

dt
=

∑
i

d

dt
(DRD

i (π∗i ,π
t
i))−∑

i

d

dt
(Di(π∗i ,π

t
i))

=
∑
ij

(πti(j)− π∗i (j))(1− lti(j))V
j
i

= σ
∑
ij

∣∣πti(j)− π∗i (j)
∣∣V ji , by (4)

>
d

dt
(SRD), if σ = 1, ∀i

This implies again thatddt (S) < 0. The strict inequality
in the last step is explained as in case 1. Thus we see that
S is Lyapunov for the system of ReDVaLeR adaptation,
though in case 2, it needsσ = 1 which is counterproduc-
tive to Theorem 2.

Whenσ = 1, the player essentiallystopslearning (learn-
ing rate is 0) when it is winning but continues when losing
(learning rate is 2). This principle has been explored before
under the title ofWin Stay, Lose Shift(Posch & Brannath
1997; Nowak & Sigmund 1993). We note that this assign-
ment of learning rates ensures that KL divergence is Lya-
punov, i.e., divergence decreases monotonically. However,
monotonic convergence is not essential for convergence, and
the original schedule of learning rates (0 < σ � 1) may also
produce convergence, though KL divergence may some-
times increase in that case. Figure 1 shows that in a non-
negative version of the RSP (produced by adding +1 to all
payoffs) game, where Case 2 always applies, convergence
can be achieved in self-play using0 < σ � 1. However,
in the Shapley game where no-regret algorithms usually cy-
cle exponentially (Jafariet al. 2001), ReDVaLeR has been
found to converge (not shown) in self-play only ifσ ≥ 1

3 .



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 1e+06 2e+06 3e+06 4e+06

Su
m

 of
 K

L 
Di

ve
rg

en
ce

s

Time

RD
ReDVaLeR (σ = 0.0005)

Figure 1: The sum of KL Divergences (S) in the non-
negative version of RSP game of Table 1.

Summary
This paper introduces a novel MAL algorithm, ReDVaLeR,
which unlike the previous algorithms has a specific desir-
able property against opponents that are neither stationary
nor using the same algorithm as the learner. It does not at-
tempt to explicitly identify the opponents’ algorithms, and as
such are unaware of any desirable point of convergence (in
policies) against such opponents. Therefore, instead of pol-
icy convergence, it achieves constant bounded regret at any
time (no-regret payoff asymptotically) against such oppo-
nents, while preserving the earlier properties of convergence
against stationary opponents and in self-play. We have es-
tablished the following properties of ReDVaLeR in arbitrary
sized general-sum non-negative games: (i) It converges to a
stationary best response against an arbitrary number of sta-
tionary opponents, (ii) It achieves no-regret payoff against
an arbitrary number of opponents playing arbitrary fixed se-
quences of non-stationary policies, and (iii) If all the players
are following ReDVaLeR, then they converge to their por-
tions of a NE, but one case requires a learning rate sched-
ule that conflicts with property (ii). A simple experiment
shows that even in this case, the learning rates sometimes
can be such that convergence in self-play is maintained and
no-regret payoff is achieved.
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