Defining Object Types and Options Using MDP Homomorphisms

Alicia Peregrin Wolfe
Andrew G. Barto

PIPPINQCS.UMASS.EDU
BARTOQCS.UMASS.EDU

Computer Science Department, University of Massachusetts, Amherst, MA 01003 USA

Abstract

Agents in complex environments can have a
wide range of tasks to perform over time.
However, often there are sets of tasks that
involve similar goals on similar objects, e.g.,
the skill of making a car move to a destina-
tion is similar for all cars. This paper lays
out a framework for specifying goals that are
parameterized with focus objects, as well as
defining object type in such a way that ob-
jects of the same type share policies. The
method is agnostic as to the underlying state
representation, as long as simple functions of
the state of the object can be calculated.

1. Introduction: Modeling Objects

We typically categorize objects in our environment
into a set of types, defined by their behavior: cars
are objects with wheels that we can drive; cups hold
liquid; chairs can be used to sit on. This kind of object
type definition is particularly useful to an agent learn-
ing to function in a complex environment: the type
labels provide useful abstractions over the details of
each object’s features.

In this work, we use the MDP homomorphism (Ravin-
dran, 2004) framework to determine which objects
have the same type. Type is defined here only relative
to some task or class of tasks: for example, objects
sharing the same type for tasks involving their loca-
tion may not share the same type for color. From this
we show how to construct options that execute over
objects of a variety of types, with one policy stored for
each allowable type of object.

An option defined for a particular type can be reused
on new objects, as long as they fit the criteria for that
object type. Once we know how to pick up a cup and

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

drink, this skill can be applied to any cup.

2. MDP Homomorphisms

A Markov Decision Process (MDP) consists of tuple
(S, A, T, R) comprising a state set (.5), action set (A),
transition function (7°: S x A x S — [0,1]), and ex-
pected reward function (R : S x A — R). The tran-
sition function defines the probability of transitioning
from state to state given the current state and cho-
sen action, while the reward function represents the
expected reward the agent receives for being in a par-
ticular state and executing an action.

An MDP homomorphism (Ravindran, 2004) is a map-
ping, h : S x A — S’ x A’, from the states and ac-
tions of a base MDP, M = (S, A, T, R), to an abstract
model MDP M’ = (S, A’,T", R’). To be an MDP ho-
momorphism, h must preserve both the reward func-
tion and some properties of the transition probabili-
ties of M. Specifically, h consists of a set of mappings:
f:S— S5’ and for each s € S a mapping g, : A — A’
that recodes actions in a possibly state-dependent way.
The following properties must hold for all state and ac-
tion pairs:

R'(f(s).9:(a)) = R(s.a) (1)
T'(f(si).95(a) Fs;) = > Tlsiasw).

(2)

Subgoal options (Sutton et al., 1999) provide a formal-
ism for specifying multiple episodic subtasks. A sub-
goal option adds a termination condition §: S5 x A —
[0,1] which specifies the probability that the option
will terminate in any particular state. Homomor-
phisms for subgoal options add one additional con-
straint over the mapping h (Ravindran & Barto, 2003).

For all s € S and a € A:
B'(f(s),9s(a)) = B(s,a). (3)

When a mapping f can be found that is many-to-one,

Defining Object Types and Options Using MDP Homomorphisms

the abstract MDP M’ has fewer states than M. The
homomorphism conditions mean that M’ accurately
tracks the transitions and rewards of M but at the
resolution of blocks of states and actions. These prop-
erties guarantee that policies optimal for M’ can be
lifted to produce optimal policies of the larger MDP
M (Ravindran, 2004).

Several algorithms exist for finding MDP homomor-
phisms given a model of an MDP. All proceed by par-
titioning the state set S in stages. At each stage,
the states and actions are partitioned into two sets of
blocks: a state (S) partition {Bj,...By,} over states,
and a state/action (SA) partition over (s, a) pairs,
{P,...P,}. The S partition defines an f mapping:
s € B; — f(s) = s,. Similarly, the SA partition de-
fines the set of g5 mappings: (s,a) € P; — gs(a) = al.

The version of the homomorphism finding algorithm
used in this paper is taken from (Ravindran, 2004),
though similar examples exist in (Givan et al., 2003)
and (Boutilier et al., 2001).

3. CMP Homomorphisms

A Controlled Markov Process (CMP) is an MDP with-
out the latter’s reward function. A CMP with output
is a CMP together with an output function that maps
its state set to a set of outputs, or observations, Y
(Wolfe & Barto, 2006). We think of the output func-
tion as singling out some aspect of the CMP as being
of interest for some reason. This function might be as
simple as the location or color of an object in the state.
Thus, a CMP with output is a tuple (S, A, T, y), where
S, A, and T are as in an MDP, and y is the output
functiony : SxA — Y. Given any functionr : Y — R,
(S,A,T,roy) is an MDP whose reward function is the
composition of r and y. We say that this MDP is
supported by y. This means that the reward depends
only on the observations, not on the complete state.
The termination conditions for the family of subgoal
options supported by y have the form §:Y — [0, 1].

A CMP homomorphism is a mapping from a CMP
with output (S, A, T,y) to an abstract CMP with out-
put (8’, A", T",y'). The mapping functions h, f, and
gs are defined as for MDP homomorphisms. The con-
ditions that must be satisfied for this to be a CMP
homomorphism are similar to those for an MDP, with
the constraints over the expected value of the reward
for a state (Equation 1) and termination function 3
(Equation 3) replaced by a single constraint over the
output function, for all s € S and a € A:

y'(f(s),95(a)) = y(s a). (4)

The transition function constraints (Equation 2) re-

main the same. The model formed by a CMP homo-
morphism can be used to learn the value function for
any supported reward (r oy) and termination (5 o y)
functions.

Existing methods for finding MDP homomorphisms
apply with trivial modifications to the case of a CMP
with output. The initial split on average reward must
simply be replaced by a split that clusters the states
according to the output function.

4. CMPs with Objects

At this point, we have most of the basic machinery we
need to model environments with objects. The main
addition made in this section is a transformation of
the way we encode the state space: rather than being
“global”, the output function will now be associated
with some object in the environment. The methods
we have discussed so far enable us to determine which
objects have similar behavior, no matter what state
description we use.

4.1. Object CMPs

An Object CMP consists of a CMP, a set of object
identifiers O, an object description set D (often fac-
tored into a set of features), and a set of functions,
one per object, that maps states to object descrip-
tions: w, : S — D. The output function z in this case
maps object descriptions to outputs: z: D — Y.

Specifying an object yields a CMP with output,
(S,T,A, z o w,), which can be transformed into an
MDP by specifying a reward function (r o z o w,) and
termination function (8 o z o w,) as in the previous
sections.

The object/state specification may be as primitive or
structured as the designer wishes, as long as there
is some way to compute the desired output function,
given an object pointer. Take two examples: one state
space made up of pixels, one of features. The map-
ping w, singles out some subset of pixels or features in
each state as belonging to the object o. The features
that belong to a particular object are typically fixed
and are often named (object!.position, for example),
whereas the set of pixels belonging to an object might
change from state to state. Nonetheless, the mapping
z for object position can be calculated from this set of
pixels as well as it can from a set of features.

Since there is no guarantee that all objects will be
present in all states, the output function z o w, eval-
uates to a special null output function value, L, for
states in which the specified object is not present. Ob-

Defining Object Types and Options Using MDP Homomorphisms

jects can be nested and can overlap.

We assume in this paper that the w, mappings and
function z are given. A homomorphic reduction of
the state space for any individual CMP /object pair
(M;,0;) for an output function z can be found as it
would be for any CMP with output. The interesting
question is: when do multiple objects o; and o; share
the same abstract model, though their state/action
mapping functions h; and h; are different? This equiv-
alence will be key to constructing options that operate
over a class of objects.

4.2. Object Options

Now we are ready to define options with object param-
eters. An object option subgoal consists of a reward
and termination function: (8o z,r o z), defined for a
particular particular object description space, D. For
example, blocks world CMPs would have an object de-
scription space of block descriptions. One option sub-
goal might be to move the focus block to a particular
location in a blocks world. The reward function maps
the output function z = “block position” to a reward
that is positive when the desired location is achieved
and negative otherwise.

All other parts of the option structure follow from the
reward function and termination function. Applying
the subgoal to a CMP M; and object o; yields a sub-
goal option MDP (S;, A;, T;, Bozow,,;,rozow,,), from
which a policy can be calculated. The homomorphic
mapping for the output function transforms the orig-
inal state set to a state set having the correct “point
of view” for the object o;.

An object can be typed by its homomorphic reduc-
tions: if two objects can use the same abstract model
for a given output function z, they have the same type
for that output function. This definition implies that
while the mapping functions h; and h; might be dif-
ferent for two objects o; and oj, they share the same
policy (in the same abstract state/action space) for
any reward function supported by z.

Because it is also possible that one object’s abstract
model is a sub-model of another, our definition of ob-
ject type induces a partial ordering over objects. If the
function v maps objects in O onto a partially ordered
set of type symbols, we would like to find a consis-
tent type mapping for the output function z and set of
CMPs C = {M;}. Consistent type mappings have the
following property: if u(o;) < u(o;) then for any M)
where h; is a homomorphic mapping for z o w,,, there
is a CMP M, for which h; is a homomorphic mapping
for z o w,, and produces a model with the following

Figure 1. Example clusters from a blocks world with 4
blocks. Blocks in (a) all behave the same way, blue blocks
(the dark blocks) in (b) are more slippery. Dashed squares
represent blocks of the two state partitions.

property: h;(Sk, Ar) C h;(Si, A;) (where C indicates
partial or total model isomorphism).

Figure 1 compares partition blocks for two different
blocks world state spaces: one in which all blocks have
identical behavior, and one in which blue blocks are
more slippery than others. One consistent v mapping
for the output function “block position” for Figure 1b
is u(blue blocks) = a, u(other colors) = v, o # 7. In
Figure 1a all blocks have the same type.

Policies learned for one object can be applied to any
object of the same or lesser type. The option may
specify a single type, or a range of types allowable for
the focus object. The option must store a separate
policy for each type of object which is allowable as a
parameter. The generic policies are then mapped back
to the true CMP by the same lifting process used in
MDP homomorphisms.

Despite changes in the policy, the reward function is
consistent across all possible parameter assignments.
The goal of moving a block to position & is the same,
whether the block is blue or green—only the method
of executing that goal and the probability of success
change if the type of the focus object changes.

4.3. Algorithm: Finding Object CMP
Homomorphisms

To find reductions that tell us which objects have
the same type, some modifications to the original
homomorphism-finding algorithms are necessary.

We start with an output function z, and a set of one
or more object CMP models C' = {M;,}, each of which
has a set of objects O;. For each sample CMP M;,
we construct a set of n = ||O;|| CMPs of the form
(Siy Ay, Ty, 2z 0wy,). The essential question is: which
CMP /object pairs are isomorphic?

The algorithms for finding homomorphisms can be ex-

Defining Object Types and Options Using MDP Homomorphisms

ecuted over multiple CMPs at once: the algorithm
simply considers the combination of the two state and
action spaces and proceeds. If, upon termination, the
states and actions of two CMPs map to the same ab-
stract states and actions (see Figure 1), their reduced
models are isomorphic. If one CMP maps to a sub-
model of another, it is partially isomorphic.

The space of all CMP /object pairs is large. It is there-
fore more efficient for the agent to construct a library
of models for different objects as it encounters them,
then match new CMP /object pairs encountered to this
library. New CMPs can be combined with existing ab-
stract models and the algorithm can be run on this
slightly smaller combined CMP.

5. Experiments

All of these experiments used the algorithm above to
create a library of models for 3-block blocks worlds.
In each case the dynamics of the environment were
changed to create a different type mapping.

For the 3-block blocks world with dynamics matching
Figure 1b, the algorithm correctly finds two types of
blocks, with 6 abstract CMP models, 3 used by blue
blocks and 3 by focus blocks of other colors.

For our second example, consider a blocks world in
which all blocks of any given color ¢ stick to blocks
of the same color. When a block sticks to the block
beneath it, the probability of successfully lifting it and
moving it to another pile is lower. While all blocks in
this example have the same type, their abstract state
mapping function is different: two yellow blocks with
a blue focus block yields different dynamics than the
same CMP with a yellow focus block. The algorithm
finds the correct set of 4 abstract CMPs: M/ in which
all three blocks have different colors (30 states), M}
in which the other two blocks match each other but
not the focus block (30 states), M3 in which one other
block matches the focus block color (60 states) and
M} in which all three blocks have the same colors (30
states).

Finally, for a simple example of types which are par-
tially ordered, consider a blocks world in which blue
and green blocks stick to blocks of the same color,
while all other combinations of blocks interact nor-
mally. This results in 4 abstract CMPs, shown in Ta-
ble 1, and two object types. The first type (blue or
green focus blocks) uses all 4 models, while the second
type (other blocks) uses only the two simpler models.

As expected, learning policies for supported reward
functions in the reduced models is faster and has the

Table 1. Abstract CMPs for the blocks world in which blue
and green blocks stick to other blocks of the same color.

Models Used by Focus Block

Focus: | M{ (30) | M (30) | M3 (60) | My (30)
blue v v v v
green v v v v
red v v

yellow v v

same optimality guarantees as learning in the complete
model, however, due to lack of space we do not include
detailed results here.

6. Discussion

In order to use these parameterized options in the con-
text of a higher level task, the agent must learn to
assign objects to the pointers. This (along with the
work in this paper) is closely tied to the notion of
deizis (Agre & Chapman, 1987).

The algorithm used here uses a model of the entire
MDP, which can be difficult to estimate from data. It
would be more efficient to use methods similar to those
in Wolfe and Barto (2006) to learn the model directly.

If there are some features of the object which cannot
be observed which determine its true type (if the color
of blue blocks in Figure 1 was unobserved) the agent
is in a special type of POMDP in which the type of
the object must be discovered through interaction.

References

Agre, P. E., & Chapman, D. (1987). Pengi: An implementation of a the-
ory of activity. Proceedings of the 6th National Conference on Artificial
Intelligence.

Boutilier, C., Reiter, R., & Price, B. (2001). Symbolic dynamic program-
ming for first-order mdps. Proceedings of the 17th International Joint
Conference on Artificial Intelligence (pp. 690—-697).

Givan, R., Dean, T., & Greig, M. (2003). Equivalence notions and model
minimization in markov decision processes. Artificial Intelligence, 147,
163-223.

Kersting, K., & Raedt, L. D. (2003). Logical markov decision programs.
Proceedings of the 20th International Conference on Machine Learning.

Ravindran, B. (2004). An algebraic approach to abstraction in reinforcement
learning. Doctoral dissertation, University of Massachusetts.

Ravindran, B., & Barto, A. G. (2003). Smdp homomorphisms: An al-
gebraic approach to abstraction in semi markov decision processes.
Proceedings of the 18th International Joint Conference on Artificial In-
telligence (pp. 1011-1016). AAAT Press.

Sutton, R. S., Precup, D., & Singh, S. P. (1999). Between mdps and
semi-mdps: A framework for temporal abstraction in reinforcement
learning. Artificial Intelligence, 112, 181-211.

Wolfe, A. P., & Barto, A. G. (2006). Decision tree methods for find-
ing reuseable mdp homomorphisms. Proceedings of the 21st National
Conference on Artificial Intelligence. To appear.

