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Abstract

Decision makers that employ state abstrac-
tion (or state aggregation) usually find solu-
tions faster by treating groups of states as
indistinguishable by ignoring irrelevant state
information. Identifying irrelevant informa-
tion is essential for the field of knowledge
transfer where learning takes place in a gen-
eral setting for multiple domains. We provide
a general treatment and algorithm for trans-
ferring state abstractions in MDPs.

1. Introduction

The fields of “transfer learning” and state abstrac-
tion are closely related. In transfer learning, an agent
attempts to reuse knowledge from several source do-
mains in one or more target domains that may not be
represented in the set of source domains. This goal
requires some notion of a “generalized” or “abstract”
state space where reasoning can be done and applied to
any domain in the set. Thus, deciding what knowledge
to transfer between domains can be construed as de-
termining the correct state abstraction scheme for a set
of source domains and then applying this compaction
to a target domain. In this paper, we present an al-
gorithm for accomplishing this abstraction transfer in
structured Markov Decision Processes (MDPs) (Put-
erman, 1994) based on prior work that formalized ab-
straction in MDPs (Li et al., 2006) and prior work in
transferring information for acting optimally in multi-
ple MDPs (Guestrin et al., 2003; Jong & Stone, 2005).

2. Definitions
MDPs can be described as a five-tuple 〈S,A, P, R, γ〉
where S is a finite set of states; A is a finite set of
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actions; P is the transition function; R is a bounded
reward function; and γ ∈ [0, 1] is a discount factor.
In this paper we deal with structured MDPs, where
the state space is comprised of n multi-valued fea-
tures f1...fn. A policy is a mapping from states to
actions: π : S 7→ A. The state-action value func-
tion, Qπ(s, a), is the expected cumulative reward re-
ceived by taking action a in state s and following π
thereafter. A reinforcement-learning agent (Sutton &
Barto, 1998) attempts to learn an optimal policy π∗

with value function Q∗(s, a). An abstraction will be
defined as a function φ : S 7→ S̄; φ(s) ∈ S̄ where S is
the ground state space and S̄ the abstract state space.

We define “transferring learning” in structured MDPs
in terms of a distribution D over possible target MDPs,
which share some common features (such as states de-
fined in terms of the same variables or relations). Us-
ing a set Ms of m source MDPs sampled from D, we
wish to uncover some information that allows us to
maximize the following speedup ratio:

EMt∼D {T (Mt)}
EMs∼D,Mt∼D {T (Mt|Ms)}

where T (Mt) is the time needed to find an optimal
policy in a target MDP, Mt, and T (Mt|Ms) is the
time needed to find an optimal policy if information
is transferred from Ms. In this paper, we focus on
learning and transferring MDP abstractions.

3. Prior Work

In this section we review several intuitive definitions of
abstraction for MDPs, present several key properties
of these abstractions and discuss previous attempts to
achieve knowledge transfer via abstractions.

3.1. Five Types of Abstraction

Defining state-abstraction rules for MDPs has been
the focus of previous work, culminating in a unified
treatment of the problem (Li et al., 2006), which pro-
vides an exhaustive list of previously proposed ab-
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straction techniques as well as defining five abstrac-
tion schemes based on seemingly important features of
MDPs: : φmodel, φQπ , φQ∗ , φa∗ , and φπ∗ . Intuitively,
φmodel preserves the one-step model (e.g., bisimula-
tion (Givan et al., 2003)); φQπ preserves the state-
action value function for all policies; φQ∗ preserves
the optimal state-action value function (e.g., stochas-
tic dynamic programming (Boutilier et al., 2000), the
G-algorithm (Chapman & Kaelbling, 1991)), Symbolic
Dynamic Programming (Boutilier et al., 2001; Groß-
mann et al., 2002), or Q-RRL (Dzeroski et al., 2001);
φa∗ preserves the optimal action and its value (e.g.,
utile distinction (McCallum, 1995)); and φπ∗ preserves
the optimal action (e.g. Policy Irrelevance (Jong &
Stone, 2005) or P-RRL (Dzeroski et al., 2001)). 1

3.2. Abstraction Properties

Here, we present several known theoretical results for
the five abstraction schemes, focusing on how they af-
fect planning and learning algorithms. We refer the
reader to previous work (Li et al., 2006) for the proofs.

First, we consider whether standard dynamic-
programming algorithms such as value iteration and
policy iteration, when applied to the abstract MDP
M̄ yield an optimal policy π̄∗ that maps to an optimal
policy in the ground MDP.

Theorem 1 With abstractions φmodel, φQπ , φQ∗ , and
φa∗ , the optimal abstract policy π̄∗ is optimal in the
ground MDP. However, examples exist where the op-
timal policy with abstraction φπ∗ is suboptimal in the
ground MDP.

Next, we consider the problem of learning the value
function, where the agent estimates the optimal value
function based on experience. We extend the standard
Q-learning update to the abstract MDP as:

Q(φ(st), at)
αt←− rt + γ max

a′
Q(φ(st+1), a′).

Theorem 2 Q-learning with abstractions φmodel,
φQπ , or φQ∗ converges and yields a policy that is op-
timal in the ground MDP. Q-learning with abstraction
φa∗ does not necessarily converge, but will converge
with a fixed behavior policy; in either case, it yields
a value function whose greedy policy is optimal in the
ground MDP. Q-learning with abstraction φπ∗ can con-
verge to an state-action value function whose greedy
policy is suboptimal in the ground MDP.

A more detailed discussion of this result, with exam-
1We note that several of these examples are not the

coarsest possible implementations of their respective ab-
stractions, including those listed for φQ∗ and φπ∗ .

ples and an extension to model-based reinforcement
learning, is provided in previous work (Li et al., 2006).
We note that since these abstractions are defined inde-
pendently of the language used to represent the state
space, these results are applicable to domains speci-
fied in any language, including logical ones (Dzeroski
et al., 2001; Boutilier et al., 2001). The preceding re-
sults are consistent with the negative results for φπ∗

in the state abstraction (Gordon, 1996; Jong & Stone,
2005) and relational reinforcement learning (RRL) lit-
erature (Dzeroski et al., 2001).

3.3. Abstraction Transfer in Prior Work

Many of the positive results in the transfer-learning
setting have appeared in the RRL literature, in envi-
ronments from Blocks World (Dzeroski et al., 2001) to
Freecraft (Guestrin et al., 2003). RRL uses relational
or even full first-order languages to describe the state
space. Although it is true that these richer representa-
tions facilitate the transfer of knowledge, the practical-
ity of these measures is incumbent upon the abstrac-
tion techniques used to compact these potentially large
representations. That is, in the relational extensions of
value iteration (Boutilier et al., 2001; Großmann et al.,
2002) and Q-learning (Dzeroski et al., 2001), a variant
of φQ∗ is used to keep the backups from expanding the
state space far beyond the size needed to represent the
value function.

Our algorithm for abstraction transfer is closely re-
lated to previous work on discovering irrelevant state
variables with policy irrelevance (Jong & Stone, 2005).
Our main contribution is extending this work to the
complete range of abstractions discussed in Section 3.1
and developing theoretical guarantees for the behav-
ior of traditional planning and learning algorithms in
the induced abstract target domains, dependent on the
choice of abstraction φ.

4. The GATA Algorithm

4.1. Motivation and Overview

In RRL, abstract value functions are often transferred
to new domain instances, so in essence, both the value
function and the abstraction are transferred. But,
transferring the source values themselves often just
bootstraps the value function in the target domain,
where learning or planning algorithms must still be
used to find an optimal policy. Previous work has in-
dicated that transferring value functions may not be
very general in the real world, as they depend critically
on problem sizes (Dzeroski et al., 2001). Instead, we
can induce a speedup by just transferring the learned
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Figure 1. (a) GATA: The General Abstraction Transfer Algorithm; (b) The example world used in section 5.

abstraction scheme from the source domains to the
target, and then planning or learning in this smaller
space. More formally, given a set of m source MDPs
as described earlier, we wish to apply an abstraction
technique to compact each source domain without sac-
rificing the ability to plan or learn. Then, we wish to
unify these source abstractions and apply this unified
abstraction to the target domain. The General Ab-
straction Transfer Algorithm (GATA), illustrated in
Figure 1 (a) implements this abstraction transfer.

4.2. Implementation

In Step (1) the source MDPs are solved using a plan-
ning or learning algorithm. In Step (2), an abstraction
scheme, such as φQ∗ , is applied to each of the solved
source domains to produce abstract source MDPs. We
note that if Step (2) involves an abstraction scheme
that does not require solving or learning the MDP
(e.g. φmodel given the MDP) then Step (1) is not neces-
sary, but value-function-based abstraction schemes of-
ten yield greater compaction (Li et al., 2006). In Step
(3), we examine each of the abstract MDPs, and de-
termine what features the applied abstraction scheme
deems relevant. A feature f is considered relevant
with respect to abstraction φ if and only if the ab-
straction that ignores f (φf ) is finer than φ. That is,
φf (s1) = φf (s2) implies φ(s1) = φ(s2). Notice we are
finding the minimum features consistent with φ, not
necessarily the minimum features needed to preserve
the ability to learn or plan. In Step (4), we resolve
conflicts over relevance between the multiple source
domains in a “safe” manner where a feature is deemed
“relevant” for the target domains if it was tagged as
relevant in any of the source domains. In Step (5), the
resulting feature-based abstraction function is used to

compact a target MDP. The applicability of the opti-
mal policy learned in such reduced target domains is
discussed below.

4.3. Discussion and Theoretical Results

As long as m (the number of source domains), is large,
the following theorems hold (proofs omitted due to
space constraints):

Theorem 3 Replacing φ in GATA with abstractions
φmodel, φQπ , φQ∗ , or φa∗ , the optimal policy in the ab-
stract target MDP, π̄∗, is optimal in the ground target
MDP. However, there exist examples with abstraction
φ∗π in place of φ where π̄∗ is suboptimal in the ground
target MDP.

Theorem 4 Using Q-learning in the abstract target
MDP produced by GATA we have the following cases:

1. If φ is replaced by φmodel, φQπ , or φQ∗ , Q-learning
in the resulting abstract target MDP converges to
the optimal state-action value function and policy
in the ground target MDP.

2. If φ is replaced by φa∗ , Q-learning in the result-
ing abstract target MDP does not necessarily con-
verge. However, it converges if the behavior policy
is fixed. In either case, it yields a value function
whose greedy policy is optimal in the ground target
MDP.

3. If φ is replaced by φπ∗ Q-learning in the result-
ing abstract target MDP can converge to an state-
action value function whose greedy policy is subop-
timal in the ground target MDP. However, policy
search methods may still be effective.
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These results help justify the admittedly daunting dis-
covery times for φQ∗ and φa∗ (which involve determin-
ing the optimal value function for the ground source
MDPs). Essentially, we are willing to pay the high
price for discovery of φQ∗ or φa∗ if this provides infor-
mation on what state variables (in the factored case)
or relations (in the RRL case) can be ignored for plan-
ning or learning in the target domains.

5. An Example Domain

We demonstrate the power of GATA and the pitfalls
promulgated in the previous two theorems using a sim-
ple grid world and three of our abstraction schemes
(φQ∗ ,φa∗ ,and φπ∗). The source instance is depicted
in Figure 1 (b). All MDPs in this class have four
state variables and four actions, but each instance has
a different limit, d, on the dimensionality of Color and
Counter. The actions CounterUP and ColorUP are
available at any location. We denote the feature-based
abstraction scheme developed by GATA with para-
meter φ as A(φ). The relevant variables uncovered
by A(φQ∗),A(φa∗),and A(φπ∗) were [Color, Y, X],[Y,
X] and [X] respectively. Since the targets can have
d values for Color and Counter, the state space sizes
for the abstractions are: none O(d2); A(φQ∗) O(d);
A(φa∗) O(1); A(φπ∗) O(1). Although A(φπ∗) actually
gives the greatest compaction, when this abstraction
(“only use X”) is applied to a target domain, stan-
dard dynamic programming algorithms used on the
abstract space will yield a policy that is suboptimal in
the ground targets, forcing our speedup ratio to 0. In
contrast, and consistent with Theorem 3, A(φQ∗) and
A(φa∗) will yield abstraction schemes such that plan-
ning in the abstract target space yields a policy op-
timal for the ground target, and ensures our speedup
ratio is no less than 1. More generally, we note that
A(φa∗) provides the smallest abstract models consis-
tent with guaranteed optimal planning. Learning re-
sults are similar (Theorem 4).

6. Conclusions & Future Work
We have presented an algorithm for transferring ab-
stractions learned in source MDPs to target MDPs.
We also provided results concerning the soundness of
planning and learning algorithms in the abstract tar-
get domains induced by this algorithm.

Studying the effectiveness of GATA based on the size
of the sample set, m, is an area for future research.
For example, when m is small, or the chosen target
MDP is rare, the variables selected by GATA may not
be sufficient for finding the optimal policy. Also, the
feature-selection algorithm we outlined is very simplis-
tic. Investigating the complexity and benefits of more

sophisticated feature-selection schemes is another av-
enue of future research. Replacing φ in GATA with an
abstraction scheme that allows for inexact matching
(e.g. Bisimulation metrics (Ferns et al., 2004)) could
produce an abstraction that results in a bounded loss
in the abstract value function for the target domains.
Similarly, a less cautious combination of relevant fea-
tures in Step (4) could result in a lossy but still gen-
erally effective abstraction scheme.
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