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Abstract

An ambitious goal ofransfer learnings to learn

a task faster after training on a different, but re-
lated, task. In this paper we extend a previously
successfutemporal difference(Sutton & Barto,
1998) approach to transferiieinforcement learn-
ing (Sutton & Barto, 1998) tasks to work with
policy search. In particular, we show how to con-
struct a mapping to translate a population of poli-
cies trained via genetic algorithms (GAs) (Gold-
berg, 1989) from aourcetask to atarget task.
Empirical results in robot soccer Keepaway, a
standard RL benchmark domain (Stone et al.,
2006), demonstrate thatansfer via inter-task
mappingcan markedly reduce the time required
to learn a second, more complex, task.

We evaluate this method in robot soccer Keepaway, a stan-
dard RL benchmark domain (Stone et al., 2006). Results
demonstrate that transfer via inter-task mapping redumes t
time a GA takes to learn a target task. Furthermore, the total
training time of both source and target tasks is less than the
training time needed to learn the target task from scratch.

2. NEAT

GAs are search and optimization methods with signifi-
cant empirical success evolving policies to solve RL tasks.
This paper uses NeuroEvolution of Augmenting Topologies
(NEAT) (Stanley & Miikkulainen, 2002) as a representative
GA. NEAT, which trains populations of neural networks, is
an appropriate choice because of past empirical successes
on difficult RL tasks such as pole balancing (Stanley & Mi-
ikkulainen, 2002), robot control (Stanley & Miikkulainen,
2004), and Keepaway (Bar, 2006). Additionally, unlike

1. Introduction many other optimization techniques, NEAT automatically

Reinforcement learningRL) (Sutton & Barto, 1998) prob- 1€arNs appropriate representations for the solutionnafie-
lems are characterized by agents making sequential de&tgvering small networks that learn relatively quickly.

sions with the goal of maximizing total (possibly delayedPince NEAT is a general purpose optimization technique, it
reward. Recent work (Taylor et al., 2005) has focused &#@n be applied to a wide variety of problems. When used for
speeding up learning across tasks with different state ap@licy search in RL problems, NEAT typically evolvas-
action spaces vimansfer learning Transfer learning allows tion selectorswhich directly map states (input nodes) to the
agents to first learn an initi@ource taskand then in a sec- action (an output node) the agent should take in that state.
ond, typically more complexarget task Transfer learning The agent performs the action whose corresponding output
is successful if the target task can be learned faster (br witas the highest activation.

better final performance) after using knowledge Iearneds'l? M DP Ter minology

the source task than if learners train only on the target ta

One approach to transfer learning is to construct a tra 'gr_ansfer via inter-task mapping relies on leveraging rela-

lation functional that maps the final value function IearneélonShlps between pairs of RL tasks. To define such a rela-

in the source task to an initial value function in the tar etlonship, we use standard notation for Markov decision pro-
9 cesses (MDPs) (Puterman, 1994). An agent’s knowledge of

task (Taylor et al., 2005). This method, which works evef . . :
: . he state of its environment, € S is a vector of kstate
when the two tasks have different state and action Spac%sétures <o thats — 21z zx. The agent has a set
= L1,L2y..., Lk

effectively transferred knowledge learned wigmporal dif- of actions, A, from which to choose. A reward function,

ference(TD) methods (Sutton & Barto, 1998). While it has . . .
. . : . R : s — R, defines the instantaneous environmental re-
succeeded with several different kinds of function approxi . .
. X ward of a state. A policyr : S — A defines how an agent
mators, it has not been shown to work with RL methods that . . ,
. Interacts with the environment. The success of an agent’s

do not learn value functions.

) o policy is defined by how well it maximizes the total reward
In this paper, we extend the approachtrainsfer via inter- i oceives in the long run while following that policy. The

task mappingind show how to construct a mapping 10 transseion selectors evolved by NEAT thus havénputs, one

late a set policies (populationof organismgtrained via a ¢ each state feature, and| outputs, one for each action.
genetic algorithm(GA) (Goldberg, 1989) on a source task

to form the initial population for training on a target task.1



4. Constructing an Inter-Task Mapping Algorithm 1 APPLICATION OF p

To perform transfer via inter-task mapping with NEAT, we 1 forceacht ”etworkftsow? € popglationlsotwce do here #
. . ONStruct a NetWOorkqrget poputationiarget WNEIre
nee(:] a way to conk\/(_art the popullat_}oof r}etworksktraln(_ad bl of input and output nodes are determined by the target task.
on the source task into a population of networks suitablg:  Add the same number of hidden nodes g..oc: as
for training on the target task. However, we cannot simply 7., .,ce.
transfer the policies unaltered because, in the genera| cag: for each pair of nodes;, n; € miarge: do
the state and actions spaces may be different for the twd if 'Z‘é(((jllfl_(nlé)ﬂ/}(nj)) € Tsource t_hﬁ” aht identical
tasks. In this section we define a translation mappisgch ink(n, 15) 10 miarger With weight identical to

link(<h (), 1 (n;
that p(Tsource) — Trarger 10 properly perform this transfer. Ink((n:), ¥ (n5))

Given an arbitrary pair of unknown tasks, one could not

hope to correctly defing, the inter-task mapping. For trans-

fer to succeed, not only must the two tasks be related, ot Testbed Domain: Keepaway

the human designer must understduv they are related. 1q test the efficacy of transfer via inter-task mapping we
Hence, when constructingwe assume that a human famil-csiger the RoboCup simulated soccer Keepaway domain
iar with the two tasks has provided two mapping®ind.  sing a setup similar to past research (Stone et al., 2005;

v maps each state feature in the target task to the most siggis, 2006). The agents on one team —kkepers- choose

lar state feature in the source taskii source) = j target-  from a set of macro-actions so as to maintain control of

Similarly, 3 maps each action in the target task to the mog{e pall. Macro-actions can last more than one time step
similar action in the source task§(ai source) = @jtarget-  and agents make decisions only when a macro-action termi-
In this paper we will be applying and/3 to neural network 5165 The macro-actions are Hold Ball, Get Open, Receive,

action selectors and thus we substitute network input nodgsy pass (Stone et al., 2005). The opposite teamtakiees
for the state features and output nodes for actions. Note thayq not learn and follow a static hand-coded policy while
p is a mapping from the source task to the target task, Wh%ﬁtempting to steal the balll.

/ andy are mappings from the target task to the source tas;&s more players are added to the task, Keepaway becomes

Given, 3, and a networkrsource trained by NEAT, We  harder for the keepers because the field is more crowded
can create a new networl, 4., using the following proce- ang the average pass distance is shorter, forcing more er-
dure.marge; DEGINS with no links but has one input for eachyrs que to noisy sensors and actuators. As more takers
state feature in the target t.ask, one output for each aa’uondre added there are more players to block passing lanes and
the target task, and one hidden node for each such node e down any errant passes. For these reasons, keepers in
Tsource- |f @ functiond represents the correspondence berys 3 Keepaway (i.e. 4 keepers and 3 takers) take longer to
tween these hidden node¥Krarget) = hsource), then €ach |earm an optimal control policy than in 3 vs. 2 and the best
noden € Tiarger CAN be mapped back to a noderfurce  policies in 4 vs. 3 have lower performance than the best 3

viay: vs. 2 policies. The addition of an extra taker and keeper to
~v(n), if nis an input the 3 vs. 2 task also results in a qualitative change: in 4 vs.
¥(n) =< B(n), ifnisan output 3 a third taker is now free to roam the field and attempt to
§(n), if nis a hidden node i(jntergl:ept passes. See our past work (Bar, 2006) for further
etails.

By using, we can now add links ta,,4.: by copying
the links that connect the corresponding nodes.n..... 6. Learning Keepaway with NEAT

For every pair of nodes;, n;, iN Tyarger, If @ Nk €XISIS 51 Keepaway players are based on version 0.6 of the

betweeny(n;) andy(n;) i Tsource, & NEW link with the o chmark players distributed by UT-AugtifStone et al.,
same weight is created betweenandn;. By applying this 5506 The keepers learn in a constrained policy space: they
method to all policies in the source population, we can inkaye the freedom to decide which action to take only when
tialize a population of policies in the target task. Thi®a# i, nssession of the ball. A keeper in possession may either
all networks in the target task to be given structure and lifl,|§ the ball or pass to one of its teammates. Therefore, in
weights Iearneq from the source task; this knowledge biasggg - Keepaway, a keeper with the ball may choose from 3
Fhe population in policy space so th_at NEAT can learn faStﬁEtions,A = {hold, passToTeammatel, passToTeammjate2
Lﬂ;?neltz?ﬁz[gﬁgetz?Qiswé];:;ienair:g;%;f drgnicgfézr;'ssp‘lgofhe keepers’ states comprise distances and angles of the
T " keepersK; — K,, the takersI} — T,,, and the center of
'Transferring a population, rather than a single policy, allowghe playing regionC. Keepers and takers are ordered by

search to begin in the target task from a variety of locations in pGhycreasing distance from the ball and states are rotatjonal
icy space, which increases the chances of finding a good starting

F?O'”t for learning. In.formal results Showed transferring a POP‘!"’J“ 2Flash file demonstrations, source code, documentation, and mailing list-are |
tion was more effective than transferring a few of the best policiesated ahttp://www.cs.utexas.edu/users/AustinVilla/sim/keepaway/



invariant. Note that as the number of keepeasd the num-

Partial Description ofy

4'vs. 3 state feature

3 vs. 2 state featuré

h

ber of takeram increase, the number of state features also
increases so that the more complex state can be fully de
scribed. S must change (e.g. there are more distances to
players to account for) andl| increases as there are more

dist(Kl, C) diSt(Kl, C)
diSt(KQ, C) diSt(Kg, C)
dist(Kg, C) d’iSt(Kg,, C)
diSt(K4, C) d’iSt(Kg,, C)

teammates for the keeper with possession of the ball to pas
to. Full details of the Keepaway domain are documented
elsewhere (Stone et al., 2005).

5 dist(K2, T3))

Min(dist(Kz, T1), diSt(Kz, Tg),

Min(dist(Kg, T1), diSt(Kg, Tg),
diSt(Kg, T3))
Min(dist(K4, T1), diSt(K4, Tg),

Min(dist(KQ, T1),
diSt(KQ, TQ))
Min(dist(Kg, T1),
dist(Kg, TQ))
Min(dist(Kg, T1),

When playing 3 vs. 2 Keepaway, keepers’ states are defined dist(K4, Ts))
by 13 features, comprised of distances and angles to other _ _
players. Keepers receive a reward of +1 for every time sté’ﬁble 1.This table de;cnbes seven example corres.pondences be-
the ball remains in play. The episode finishes when a talgé‘feec'; sta; featubresFlzn lKeepaW"’?y' We derzlote the d|?ta[11nc;_e£etween
gains control of the ball or the ball is kicked out of boundi} and b aglist(a, b). Relevant points are the center of the field

Wi d NEAT t Ve t fh eeperd(;-K4, and takerd-T5. Keepers and takers are ordered

. € use. . 0 evo Ve. eams of homogeneous agen|Ir§increasing distance from the ball and state values not present in

in any given episode, copies of the same neural networkd$,q 5 are bold.

used to control all three autonomous keepers on the field.
4 vs. 3 Keepaway has the same size field but an additiona

diSt(Kg, TQ))

Training Times for Performance Thresholds

Threshold Scratch  ps pio | Total ps | Total p1o

keeper and taker. Hence| = {hold, passToTeammatel, 70| 873 | 302 | 50.1 | 963 199.3
passToTeammate2, passToTeammgt81S is composed 75| 152.1| 40.2 | 80.9 | 106.4 | 230.2
of 19 state features due to the added players. Every networ 8.0 | 286.7| 64.8 | 116.7 | 130.9 | 250.9
i ing i 85| 416.6 | 124.3| 168.4| 183.0 302.6

needs to have 19 inputs, 1 bias input, and 4 outputs. 0.0 | 4744 | 2290| 2205 | 2812 | 3638

7. Transfer via Inter-Task Mapping in Table 2.This table shows the average source and total training

Keepaway times (in hours) for players learning from scratch, via transfer after
In this section we define the mappingsand 3, used for 5 source generations, and via transfer after 10 source generations.
transferring between 3 vs. 2 and 4 vs. 3 Keepawaand . .
S change when the number of players is increased but \ﬁeReSUITS and Discussion
are able to easifydefine these mappings between states a@he measure of success for evaluating transfer learning is
actions to transfer knowledge between the two tasks. Ctlne time required to learn in the target task. By setting a
definitions of these mappings is the same as used by ptseshold level of performance in the target task, we are abl
transfer work in this domain (Taylor et al., 2005). to measure the amount of training time needed to achieve
We defines, the mapping between actions in the two task#)is performance. By this measure, transfer learning is ef-
by identifying actions that have similar effects on the worl fective if we learn the target task faster by utilizing pe&
state in both tasks. For the 3 vs. 2 and 4 vs. 3 tasks, tHained in the source task than by learning from scratch. A
action “Hold ball” is equivalent, i.e. this action has a simstronger criterion of transfer success is that the traitimg
ilar effect on the world in both tasks. Likewise, the actioffor the source and target tasks combined is shorter than the
“Pass to closest keeper” is analogous in both tasks, adrgining time to learn the target task from scratch. We will
“Pass to second closest keeper.” We map the novel targépw that transfer via inter-task mapping with NEAT is able
action, “Pass to third closest keeper,” to “Pass to secoffimeet both of these transfer goals.
closest keeper” in the source task. To quantify how fast the agents learn, we set threshold per-
The state feature mapping, is handled with a similar strat- formance values for the 4 vs. 3 task. We analyze the cham-
egy. Each of the 19 state features in the 4 vs. 3 taskR#ns of each generation after learning and determine when
mapped to a similar state feature in the 3 vs. 2 task. F#te organism identified as the best by NEAT has learned to
instance, “Distance to closest keeper” is the same in bdipld the ball for at least the threshold value, averaged over
tasks. “Distance to second closest keeper” in the sourke tds000 episodes. If a NEAT trial does not reach the threshold
is similar to “Distance to second closest keeper” in the tayalue within 500 hours, we assign it a time of 500 hdurs
get task, and “Distance to third closest keeper” in the targ€able 2 shows that the time it takes sets of 4 agents to learn
task. See Table 1 for more examples of state feature map-hold the ball for some amount of time in the target task
pings. can be reduced by utilizings andp;o, which respectively

3Note that other domains may not have such straightforwaFa’preS(':‘ntS applying the _inte_r-task mappjngfter five and
mappings between tasks of different complexity. ten generations of learning in the source task. Each result

4500 hours of training time corresponds to approximately 30
generations (300,000 episodes) of Keepaway.



is averaged over ten independent runs. A Student's T-Tested to speed up learning in transfer (Torrey et al., 2005)
confirms that the difference betwegrand scratch is statis- by utilizing a human to provide a mapping for this advice
tically significant at the 95% level for all points graphed. into the new task, similar tp. Other work in transfer learn-
Table 2 also shows the total training time (3 vs. 2 plus &g (Fernandez, 2005; Konidaris, 2005) allows speedup be-
vs. 3), which is also reduced when usipg The differ- tween tasks but does not allosvand A to differ between
ence between scratch apdrom five 3 vs. 2 generations the two (or more) tasks.

is significaqt fo_r all test thre_zs_hold_times above_: 7.0 seconqi)_ Conclusions

when considering total training time. The difference be- o )

tween scratch ang using ten 3 vs. 2 generations is sig-_We have extended transfer via inter-task mapping to pol-

nificant for all points graphed except 8.0 seconds. icy search methods and empirically shown that it can sig-

Transferring from five 3 vs. 2 episodes was more benefici{%'llf'camly speed up learning in pairs of related RL tasks.

ran o ton 3152 epsodes and v potesize s L5 NEAT, 200 el e n et
due to two factors. Networks for five generations in 3 vs]_r paway P '

2 had more links and nodes than those evolved for ten g ng;_m_sferr_mg I_earned policies the two tasks redgc_es not onl
. raining time in the target task, but also total trainingdim
erations, and more complex networks have been shown'to

train slower. Secondly, training for ten generations in 3 viReferences
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