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Abstract

An important aspect of learning is the abil-
ity to transfer knowledge from one domain
to another. Recent transfer research has fo-
cused on the basic problem of how knowledge
structures may be transferred and reused. In
this paper, we consider the larger problem
of how a learner can select the appropriate
knowledge structures to transfer when many
are available. We propose that previously
acquired knowledge must be organized, and
demonstrate one possible approach.

1. Introduction

The ability to transfer knowledge from one domain to
another is an important aspect of learning. Knowledge
transfer helps to increase learning efficiency by freeing
the learner from duplicating past efforts. Transfer also
allows the learner to acquire knowledge that may oth-
erwise be unattainable or intractable. A learner can
use previously acquired knowledge to bootstrap itself
toward increasingly complex knowledge.

Recent research into knowledge transfer focuses on the
basic problem of how to transfer knowledge structures
from one domain to another. In this paper, we consider
a longer view. Suppose an agent has many existing
knowledge structures from which it can draw while
learning in a new domain. The problem then becomes
one of deciding which existing knowledge is relevant.

Moreover, suppose the learner is to perform on many
interrelated learning tasks. The transfer problem then
expands to selecting relevant knowledge from an ex-
panding knowledge base. The learner must consider
all previously acquired knowledge as potential sources
for transfer. The number of possible transfer combina-
tions considered by the learner grows, and the transfer
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learning problem becomes more computationally ex-
pensive, with each new task. Learning based on this
method cannot scale up. In this paper, we propose
that the results of prior learning must be organized
in order for the agent to take full advantage of its ac-
quired knowledge.

2. The Memory Organization Problem

The purpose of memory organization is to reduce the
complexity of learning without reducing the learner’s
ability transfer knowledge among domains. The goal
then is to provide a set of candidate knowledge de-
pendencies for the learner. In this paper, dependency
refers to a “uses” relationship between two concepts,
and knowledge structure refers to a concept hierarchy.
Transfer of a knowledge structure implies discovering
a dependency between source and target concepts.

To allow for useful redundancy in representation and
flexibility in learning, the definition of related should
be relatively broad. In other words, we are not con-
cerned with finding a minimal set of knowledge struc-
tures for transfer. This places two constraints on mem-
ory organization methods.

The first constraint stems from the goal of designing a
system capable of long-term learning. The number of
existing knowledge structures may become quite large,
so the organizational method must scale up. Specif-
ically, the set of candidates available for transfer is
equal to the set of all existing knowledge structures
times the number of ways that the learner can manip-
ulate these structures to fit the new domain. This size
of this set can quickly become quite large. Explicit
comparisons between all possible candidates and the
new target becomes impractical.

The second constraint arises from the learning and or-
ganizational process itself. The set of candidate knowl-
edge structures is drawn from a variety of sources
and changes regularly as the learner adds new knowl-
edge. Thus, there may be little common information
among the individual instances of the knowledge trans-
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fer problem. This rules out or renders inefficient many
popular organizational strategies, such as clustering
(see Dempster et al., 1977) and feature selection (see
Kohavi & John, 1997).

3. A Memory Organization Method

In this section we present the scale algorithm, which
is designed to learn a hierarchy of relational concepts
from an online stream of data (Stracuzzi, 2005). Each
training point in the stream includes one supervised
example of one concept, such that examples of all con-
cepts in the hierarchy arrive in random order. The
goal then, is to learn this concept hierarchy, including
definitions for and dependencies among the concepts.

A key aspect of scale is that each concept must be
representable as a simple function (for example, a lin-
ear threshold unit) of its inputs. Here, inputs refers
to both input variables and to the other concepts on
which a given concept depends. This restriction to
simple functions forces the learner to acquire concepts
in a bottom-up fashion, from simple to complex (Ut-
goff & Stracuzzi, 2002). With respect to knowledge
transfer, this means that knowledge is always trans-
ferred vertically in the concept hierarchy.

3.1. Learning Environment

We state the specific transfer learning problem consid-
ered by scale as follows. The agent is situated in an
environment described by m input variables α1 · · ·αm.
The task is to learn n relational Boolean concepts
β1 · · ·βn. Supervised training data X arrives in an
online fashion. Each Xt ∈ X provides values for the
input variables ~α and the desired output of exactly
one target concept βi(~α). Examples for the n target
concepts arrive in random order. From this stream
of data, the learner must produce a representation of
the concept hierarchy which may be used to predict
accurately the values of novel, unlabeled examples.

3.2. Algorithm

We include here a brief summary of the scale algo-
rithm. A more complete description may be found in
Stracuzzi (2005). We begin by defining two important
terms. A relational concept (predicate) Pi is consid-
ered learned if it has successfully acquired its target
concept βi. Likewise, Pi is unlearnable if it cannot ac-
quire βi given its current set of dependencies (one or
more necessary dependencies is missing). In practice,
the metrics that support these definitions have been
determined empirically, and depend on the number of
Pi’s dependencies, and the number of examples seen.

Table 1. The scale algorithm.

Given:
Example Xt for concept βi

Algorithm: scale-update(Xt)
Pi ← predicate for target concept βi

while Pi 6∈ L do
if Pi not learned then

update Pi using Xt

if updated Pi learned then
L ← L+ {Pi}

else if updated Pi unlearnable then
select new dependency from Pj<i ∈ L

else
infer all concepts Pj<i ∈ L
update conditional probabilites for Pj<i

else if Pi not done removing inputs then
eliminate-irrelevant-inputs(Pi, Xt)

else
end while

Scale begins by initializing the set of learned predi-
cates L = ∅, and then receiving the training data X .
For each training example Xt (which describes some
βi) scale updates the corresponding predicate Pi. Ini-
tially Pi has no dependencies on other predicates, and
learns from only the input variables ~α. After Pi is
updated, the output values of all predicates Pj<i ∈ L
are inferred based on Xt. Using these inferred values,
a simple memory organization metric, computed as
conditional probability measures Pr[Pi = true|Pj<i =
true,Data] and Pr[Pi = true|Pj<i = false,Data], are
updated for each Pj<i.

If Pi is unlearnable, scale selects one or more new
dependencies according to the conditional probability
measures (larger values preferred). Pi then continues
to train using the new, expanded set of dependen-
cies. This process continues until Pi is learned. At
this point, Pi is added to L. Subsequent training ex-
amples for concept βi are used to remove any unnec-
essary or redundant dependencies from Pi using the
randomized variable elimination algorithm (Stracuzzi
& Utgoff, 2004). Removing unnecessary dependencies
improves Pi’s generalization, and makes subsequent in-
ference computations run faster.

Training in scale stops when all predicates are both
learned and pruned, or if every predicate that is not
learned is also unlearnable. The first condition signi-
fies that both learning and memory organization are
complete, while the second condition signifies that the
learner is unable to find a viable representation for all
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club(x)heart(w)

colorsDiffer(a1, a2)

spade(y) diamond(z)

black(u) red(v)

redBlack(c1, c2)

{a1/c1, a2/c2} {a1/c2, a2/c1}

{c1/u} {c2/v}

{u/x} {v/w}

{u/y}

{w/y} {x/z}

{v/z}

Figure 1. Partial concept hierarchy for solitaire.

of the concepts. The scale update algorithm for an
individual training example is shown in Table 1.

Note that scale attempts to learn all target con-
cepts simultaneously. Simpler concepts are acquired
first, and become available as possible dependencies
for more complex concepts. The algorithm therefore
explores possible transfer options between all learned
predicates and all unlearned predicates.

4. Experiments

The objective of the following experiments is to
demonstrate the importance and effects of memory or-
ganization on knowledge transfer. Using a card stack-
ability domain based on freecell solitaire, we demon-
strate that even the simple organizational methods
used by scale improve transfer of knowledge from one
concept to another by reducing dimensionality and in-
creasing the accuracy of acquired knowledge.

Toward this end, the performance of scale is com-
pared against an alternate version of the algorithm,
called cumulus, which considers all learned predicates
as possible sources for transfer. Cumulus therefore
attempts to perform the same transfer learning task
as scale, but without any memory organization.

4.1. Card Solitaire Domain

The card solitaire domains consists of 19 concepts.
The two high-level concepts test whether one card may
be stacked on top of another in freecell solitaire under
two different circumstances. Other concepts in the hi-
erarchy play supporting roles by testing for relations
among the suit, color and rank of card pairs.

The low-level input variables are rudimentary. Each
card in the deck is represented by a single integer in
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Figure 2. Number of knowledge structures considered.

the range 0–51. The cards are indexed such that the
spades ace through king are indexed 0–12, the hearts
ace through king are indexed 13–25, and likewise for
clubs and diamonds. The learner must therefore learn
concepts to map this integer representation into suits,
colors and ranks. We choose this representation be-
cause it adds depth to the concept hierarchy and makes
the learning problem more complex. Figure 1 shows a
subset of the solitaire concept hierarchy.

There are a total of 34788 unique examples for the 19
solitaire concepts. Recall that each example is a su-
pervised instance of exactly one of the 19 target con-
cepts. We set aside approximately five percent of this
data (1751 examples) for training, and reserved the
remainder for testing purposes. The training exam-
ples were given to scale and cumulus one at a time,
in random order. We then tested the accuracy of the
algorithms on all 19 concepts at regular intervals dur-
ing training to establish learning curves. We also kept
track of the number of distinct knowledge structures
(hypotheses) considered by each algorithm, along with
the complexity of each knowledge structure.

4.2. Results

Figure 2 plots the number of knowledge structures con-
sidered by scale and cumulus against time. Scale
considers 466 unique hypotheses over the course of
training, while cumulus considers just 38. This dif-
ference follows directly from the absence of memory
organization in cumulus. All learned predicates are
immediately added as dependencies to any unlearnable
predicate. This means that cumulus does not con-
sider many hypotheses in which a predicate depends
on only a subset of the learned predicates.

Although a smaller search space can be enviable in
machine learning, the lack of breadth is detrimen-
tal here. Cumulus only manages to learn 15 of the
19 concepts; the remaining four are determined to
be unlearnable. The learner is bogged down by the
large number of (mostly irrelevant) dependencies in
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Figure 3. Knowledge structure complexity.

the knowledge structure.

Figure 3 illustrates this point by showing the num-
ber of dependencies in the knowledge structures used
by the two algorithms. Notice how cumulus works
with very large and complex structures almost imme-
diately. In contrast, scale adds dependencies slowly,
and ultimately manages to remove almost half of the
dependencies added.

Generalization results were somewhat surprising. Fig-
ure 4 suggests that memory organization may slow
down the learning process in the short term. Scale
takes more time (and more examples) to reach the
early performance levels achieved by cumulus. How-
ever, in the longer term, scale reaches higher accu-
racy rates when cumulus becomes bogged down by
the combinatorics of its learning problem. We expect
that the importance of memory organization increases
with the number of target concepts.

5. Discussion and Future Work

Flexibility is a critical aspect of memory organization.
The structure of a learner’s knowledge must permit a
broad range of relationships among target problems.
The alternative is redundant learning and recreation
of existing knowledge. In scale, knowledge structures
are not explicitly clustered or physically configured,
although dependencies among concepts are explicitly
represented. This approach has the advantage of be-
ing both sufficiently structured to provide learning ef-
ficiency, yet unrestrictive with respect to opportunities
for knowledge transfer.

One important direction for future research concerns
scale’s inability to revise the representation of ac-
quired knowledge. After a concept is learned, its repre-
sentation remains fixed. Although this approach does
not preclude scale from learning any needed struc-
ture, this lack of flexibility may prevent the algorithm
from finding the most compact representation. Alter-
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Figure 4. Comparison of learning curves.

nate dependency structures may be possible and may
lead to more efficient structures, or a wider range of
knowledge transfer.

6. Conclusion

Memory organization plays a critical role in knowledge
acquisition. A learner must be able to transfer existing
knowledge to new learning problems. However, distin-
guishing related and unrelated knowledge is a chal-
lenging task. In the absence of memory organization,
every piece of existing knowledge must be considered
as a possible source for transfer. The result is a situa-
tion in which each new learning problem becomes more
complex than the previous. The scale algorithm uses
a combination of implicit and explicit organizational
techniques to improve the learner’s ability to use ex-
isting knowledge to acquire new knowledge.
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