
A Framework for Transfer in Reinforcement Learning

George Konidaris GDK@CS.UMASS.EDU

Autonomous Learning Laboratory, Computer Science Dept., University of Massachusetts at Amherst, 01003 USA

Abstract
We present a conceptual framework for trans-
fer in reinforcement learning based on the idea
that related tasks share a common space. The
framework attempts to capture the notion of tasks
that are related (so that transfer is possible) but
distinct (so that transfer is non-trivial). We de-
fine three types of transfer (knowledge, skill and
model transfer) in terms of the framework, and
illustrate them with an example scenario.

1. Introduction

One aspect of human problem-solving that remains poorly
understood is the ability to appropriately generalise knowl-
edge and skills learned in one task and apply them to im-
prove performance in another.

Although reinforcement learning researchers study algo-
rithms for improving task performance with experience, we
do not yet understand how to effectively transfer learned
skills and knowledge from one problem setting to another.
It is not even clear which problem sequences allow trans-
fer, which do not, and which do not need to. Although the
idea behind transfer in reinforcement learning is intuitively
clear, no definition or framework exists that usefully for-
malises the notion of “related but distinct” tasks—tasks that
are similar enough to allow transfer but different enough to
require it.

In this paper we present a framework for thinking about the
transfer problem for reinforcement learning agents. The
framework is based on the idea that related tasks share a
common space, and it attempts to capture the notion of re-
lated but distinct tasks.

2. Related Tasks Share a Common Space

Successful transfer requires an agent that must solve a se-
quence of tasks that are related but distinct—different, but

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

not so different that experience in one is irrelevant to expe-
rience in another. We propose that what makes a sequence
of tasks related is the existence of a feature set that is shared
and retains the same semantics across tasks. These features
model the common elements between tasks, and we call
the space generated by them an agent-space because it is
associated with an agent, not an individual task.

The agent also requires a descriptor that is sufficient to dis-
tinguish Markov states in each individual task. This in-
duces a task-specific Markov Decision Process (MDP) with
a set of actions that are common across the sequence (be-
cause the agent does not change) but with a set of states,
transition probabilities and rewards that refer to a particular
task. We call each of these spaces a problem-space.1 The
core idea of our framework is that task learning takes place
in problem-space, but transfer takes place in agent-space.

Consider a class of environments generated by an under-
lying parameterized environmental model (e.g., gridworlds
with size and obstacle location parameters) where the agent
must solve a sequence of task instances E1, ..., En ob-
tained by setting the model parameters. The agent may
employ various observation functions that map an environ-
ment (described by its parameters) and its state to a real-
valued vector. Particularly important are the reward func-
tions, r1, ..., rn, which map each state in each environment
to a single real-valued reward.

An observation function is a problem-space generator for
environment Em if the descriptors (sm

t at time t) it pro-
duces are Markov for Em. In general, we want problem-
spaces to be discrete and small. If we use a function ap-
proximator, we usually also want them to be smooth with
respect to rm (so that similar states have similar values).

An observation function is an agent-space generator if it is
defined over and returns a descriptor of the same form for
all of the environments. This requires an agent-space ob-
servation function that is a function of an environment de-
scription and its state, rather than just state as is standard in

1We recognize that not all solution methods require the
Markov property, but we treat this as the ideal case. More gen-
erally problem-space must provide enough structure to allow a
solution to be found.



A Framework for Transfer in Reinforcement Learning

reinforcement learning. In general, we want agent-spaces
to contain all useful commonalities and do not require them
to be Markov.

We note that in some cases the agent-space and problem-
spaces used for a sequence of tasks may be related, e.g.
each problem-space is formed by appending a task-specific
amount of memory to agent-space. However, in general
it may not possible to recover an agent-space descriptor
from a problem-space descriptor, or vice versa. They are
separate observation functions which must be designed (or
learned outside of the reinforcement learning process) with
different objectives.

We define a sequence of tasks to be related if that sequence
has an agent-space, i.e. if a set of (given or engineered)
features exist in all of the tasks. We define the sequence to
be reward-linked if every task has the same reward obser-
vation function (rm ≡ r,∀m) so that rewards are allocated
for the same types of interactions in all tasks (e.g., reward
is always x for finding food). Note that here r is a function
of an environment description and its state (rather than only
state as is standard in reinforcement learning), so it can be
defined across multiple state spaces.

If a sequence of tasks is related we may be able to per-
form effective transfer by taking advantage of the shared
space. If no such space exists we cannot transfer across
the sequence because there is no view (however abstract or
lossy) from which the tasks are the same.

If we can find an agent-space that is also a problem-space
for every task in the sequence, then we can treat the se-
quence as a set of tasks in the same space and perform
transfer directly by learning about the structure of this
space. If in addition the sequence is reward-linked then
the tasks are not distinct and transfer is trivial because we
can view them as a single problem. However, there may
be cases where a shared problem-space exists but results in
slow learning, and using task-specific problem-spaces cou-
pled with a transfer mechanism is more practical.

3. Types of Transfer

Given an agent solving n problems with respective state
spaces S1, ..., Sn, we view the ith state in Sj as consisting
of the following attributes:

s
j
i = (dj

i , c
j
i , r

j
i ),

where d
j
i is the problem-space state descriptor (sufficient to

distinguish this state from the others in Sj), c
j
i is an agent-

space sensation, and r
j
i is the reward obtained at the state.

3.1. Knowledge Transfer

We can use reinforcement learning during each task Sj to
learn a value function Vj :

Vj : d
j
i 7→ v

j
i ,

where v
j
i is the expected return for action from state s

j
i .

This function is not portable between tasks because the
form and meaning of d (as a problem-space descriptor)
may change from one task to another. However, the form
and meaning of c (as an agent-space descriptor) does not
change, so we can perform knowledge transfer across the
sequence by introducing a function L that estimates return
for a state given the agent-space descriptor received there:

L : c
j
i 7→ v

j
i .

L will only be a useful predictor of reward when there is a
consistent relationship between some aspect of agent-space
and reward across the sequence of tasks. Thus, knowledge
transfer will only work in reward-linked tasks, where we
can expect such a relationship because reward is always
allocated for the same types of interactions.

Once an agent has completed task Sj and has learned Vj , it
can use its (cj

i , v
j
i ) pairs as training examples for a super-

vised learning algorithm to learn L. Alternatively, learning
could occur online during each task.

After training, L can be used to estimate a value for newly
observed states in problem-space, thus providing a good
initial estimate for V that can be refined using reinforce-
ment learning. Alternatively (and equivalently), L could
be used as an external shaping function (Ng et al., 1999).

Konidaris and Barto (2006a) show that such an agent is able
to significantly improve its performance on a reference task
after experience on even a single small training task.

3.2. Skill Transfer

Often, reinforcement learning agents are either given or
learn a set of macro-actions to reduce the time required
to solve their task. The options framework (Sutton et al.,
1999) provides methods for learning and planning us-
ing options (macro-actions) in the standard reinforcement
learning framework (Sutton & Barto, 1998). Each option
o (as usually defined in problem-space) consists of the fol-
lowing components:

πo : (dj
i , a) 7→ [0, 1]

Io : d
j
i 7→ {0, 1}

βo : d
j
i 7→ [0, 1].

where πo is the option policy (giving action probabilities at
each state in which the option is defined), Io is the initiation



A Framework for Transfer in Reinforcement Learning

set, which is 1 for the states the option can be started from
and 0 elsewhere, and βo is the termination condition, which
gives the probability of the option terminating in each state.

We can define portable agent-space options as:

πo : (cj
i , a) 7→ [0, 1]

Io : c
j
i 7→ {0, 1}

βo : c
j
i 7→ [0, 1].

Although the agent then learns its option policies in a dif-
ferent space from its task policy, it receives both agent-
space and problem-space descriptors at each state so both
policies can be updated simultaneously.

Konidaris and Barto (2006b) show that agents learning
portable options are able to improve their performance in
a reference problem through experience in other problems,
until they approach the performance of agent with perfect
prespecified problem-space options.

3.3. Model Transfer

Finally, it may be useful to learn a model of agent-space:

P : (cj
i , a, c

j
k) 7→ [0, 1],

where P is probability of moving from one agent-space de-
scriptor to another, given action a. This would primarily be
useful for using model-based reinforcement learning meth-
ods to compute L or an agent-space option policy offline.
Alternatively, it could be used to predict the results of ex-
ecuting an option and coupled with knowledge transfer to
estimate the value of first executing an option.

4. An Illustrative Example

Consider a mobile robot, equipped with a laser range finder
and pressure, light and temperature gauges, required to be
able to find heat sources in buildings

Because the laser-range finder readings are noisy and non-
Markov, the robot will need to construct a map of the build-
ing as it explores in order to search it efficiently. The
robot’s pose variables in a building’s map are sufficient to
form a problem-space for that building, but since all the
buildings it is likely to see (and the location of the heat
source in them) are different, pose variables cannot be used
for transfer. However, the robot’s sensors retain their mean-
ing across all buildings, so they form an agent-space.

The robot could attempt to learn a relationship between
its sensors and the reward obtained when it finds the heat
source (and hopefully learn that temperature is a heuristic
for distance to the heat source), thus performing knowl-
edge transfer. This would enable it to to find heat sources
in larger buildings in less time, but would not by itself be

enough to find heat sources in new buildings because the
heat sensor reading is not Markov in problem-space.

The robot could also learn options using only the laser
range finder, corresponding to actions like moving to the
nearest door, thus performing skill transfer. Because these
options are based solely on sensations in agent space
without referencing problem-space (any individual metric
map), they can be used to speed up learning and exploration
in any building that the robot encounters in the future.

Finally, the robot could learn a model predicting the change
in sensor outputs given an action, thus performing model
transfer. For example, it could learn a forward model of its
laser-range finder, and thus be able to learn agent-space op-
tions using model-based reinforcement learning methods.

5. Related Work

Most prior research on transfer in reinforcement learn-
ing involves either finding useful options (Bernstein, 1999;
Pickett & Barto, 2002; Thrun & Schwartz, 1995) or build-
ing structured representations (Mahadevan, 2005; Van Roy,
1998) of a single state space, to speed up learning for tasks
in the same state space but with different reward functions.

Taylor and Stone (2005) perform knowledge transfer from
one instance of a multi-agent task to another with more
agents (and hence a different state space). However, their
approach uses a hand-coded transfer function that must be
manually constructed for every pair of tasks in a sequence.

In supervised machine learning, transfer is viewed as an
inductive bias mechanism that speeds learning and im-
proves generality when learning multiple related tasks from
the same feature set, demonstrating performance improve-
ments using several methods (Thrun, 1996; Caruana, 1997;
Evgeniou et al., 2005).

Baxter (2000) provides a theoretical framework for induc-
tive bias learning over a distribution of related tasks. Silver
and Mercer (2001) consider tasks related with respect to
a learning algorithm when multitask learning using them
improves its performance. In contrast, Ben-David and
Schuller (2003) define related tasks to be those generated
from each other under a given set of transformations. These
methods all assume a single feature space for every task.

6. Discussion

Our framework requires the identification of a suitable
agent-space to facilitate transfer, but it does not specify how
that space is identified. This results in a design problem
that is similar to that of standard state space design, but re-
searchers in the reinforcement learning community have so
far developed significant expertise at designing problem-



A Framework for Transfer in Reinforcement Learning

spaces, not agent-spaces. We expect that the two design
problems are equivalently difficult, and that with practice
finding agent-spaces for related tasks will become easier.

It may be possible to automatically construct such spaces
given a sequence of environments, but that will likely re-
quire explicit descriptions of the environments and their
regularities across the sequence of tasks—information that
is not available to reinforcement learning agents.

The idea of an agent-centric representation is closely re-
lated to the notion of deictic or ego-centric representa-
tions (Agre & Chapman, 1987), where objects are rep-
resented from the point of view of the agent rather than
in some global frame of reference. We expect that for
most problems, especially in robotics, agent-space repre-
sentations will be egocentric, except in manipulation tasks,
where they will likely be object-centric. In problems in-
volving spatial maps, we expect that the difference between
problem-space and agent-space will be closely related to
the difference between allocentric and egocentric represen-
tations of space (Guazzelli et al., 1998).

7. Summary

We presented a conceptual framework for transfer in rein-
forcement learning. The framework attempts to capture the
idea that for tasks to be related but distinct they must share
an common space (an agent-space) but have different in-
dividual state spaces (problem-spaces). We defined three
types of transfer (knowledge, skill and model transfer) in
terms of the framework and illustrated them with an exam-
ple transfer scenario.

Acknowledgments

We would like to than Andy Barto, Pippin Wolfe and Özgür
Şimşek for their useful comments. George Konidaris was
supported by the National Science Foundation under Grant
No. CCF-0432143. Any opinions, findings and conclu-
sions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views
of the National Science Foundation.

References
Agre, P., & Chapman, D. (1987). Pengi: An implementation of

a theory of activity. Proceedings of the Sixth National Confer-
ence on Artificial Intelligence (AAAI 87) (pp. 268–272).

Baxter, J. (2000). A model of inductive bias learning. Journal of
Artificial Intelligence Research, 12, 149–198.

Ben-David, S., & Schuller, R. (2003). Exploiting task relatedness
for multiple task learning. Proceedings of the The Sixteenth
Annual Conference on Learning Theory (pp. 567–580).

Bernstein, D. (1999). Reusing old policies to accelerate learn-

ing on new MDPs (Technical Report UM-CS-1999-026). De-
partment of Computer Science, University of Massachusetts at
Amherst.

Caruana, R. (1997). Multitask learning. Machine Learning, 28,
41–75.

Evgeniou, T., Micchelli, C., & Pontil, M. (2005). Learning mul-
tiple tasks with kernel methods. Journal of Machine Learning
Research, 6, 615–637.

Guazzelli, A., Corbacho, F., Bota, M., & Arbib, M. (1998). Af-
fordances, motivations, and the world graph theory. Adaptive
Behavior, 6, 433–471.

Konidaris, G., & Barto, A. (2006a). Autonomous shaping:
Knowledge transfer in reinforcement learning. Proceedings of
the Twenty Third International Conference on Machine Learn-
ing.

Konidaris, G., & Barto, A. (2006b). Building portable options:
Skill transfer in reinforcement learning (Technical Report UM-
CS-2006-17). Department of Computer Science, University of
Massachusetts Amherst.

Mahadevan, S. (2005). Proto-value functions: Developmental re-
inforcement learning. Proceedings of the Twenty Second Inter-
national Conference on Machine Learning (ICML 05).

Ng, A., Harada, D., & Russell, S. (1999). Policy invariance un-
der reward transformations: theory and application to reward
shaping. Proceedings of the 16th International Conference on
Machine Learning (pp. 278–287).

Pickett, M., & Barto, A. (2002). Policyblocks: An algorithm for
creating useful macro-actions in reinforcement learning. Pro-
ceedings of the Nineteenth International Conference of Ma-
chine Learning (ICML 02) (pp. 506–513).

Silver, D., & Mercer, R. (2001). Selective functional transfer: In-
ductive bias from related tasks. Proceedings of the IASTED In-
ternational Conference on Artificial Intelligence and Soft Com-
puting (pp. 182–189).

Sutton, R., & Barto, A. (1998). Reinforcement learning: An in-
troduction. Cambridge, MA: MIT Press.

Sutton, R., Precup, D., & Singh, S. (1999). Between MDPs and
semi-MDPs: A framework for temporal abstraction in rein-
forcement learning. Artificial Intelligence, 112, 181–211.

Taylor, M., & Stone, P. (2005). Behavior transfer for value-
function-based reinforcement learning. Proceedings of the
Fourth International Joint Conference on Autonomous Agents
and Multiagent Systems (pp. 53–59).

Thrun, S. (1996). Is learning the n-th thing any easier than learn-
ing the first? Advances in Neural Processing Systems 8 (pp.
640–646).

Thrun, S., & Schwartz, A. (1995). Finding structure in reinforce-
ment learning. Advances in Neural Information Processing
Systems (pp. 385–392). The MIT Press.

Van Roy, B. (1998). Learning and value function approxima-
tion in complex decision processes. Doctoral dissertation, Mas-
sachusetts Institute of Technology.


