
Enabling MDP Solution Transfer by Abstraction

Abstract

We consider the problem of transferring a
learned optimal policy between MDPs. We
describe a method that views the task of rep-
resenting the solution as a supervised learn-
ing problem. Our method determines the
new abstract policy by Decision Tree learn-
ing over values of features on various levels
of abstraction. We provide empirical results
that show acceleration in learning due to the
solution instantiation in the target problem.

1. Introduction

Recent efforts (Sherstov & Stone 2005, Gabel & Ried-
miller 2005, von Hessling & Goel 2005) on transfer-
ring learned solution knowledge between Markov De-
cision Processes (MDPs) acknowledge the benefits of
this re-use, such as the ability to handle previously un-
seen, similar problems. A naive approach is to trans-
fer the learned optimal policy of the source problem
to the target problem by directly mapping these prob-
lems to each other. However, this requires that every
state/action pair in the target problem must have an
identical counterpart in the source problem in order
to assume the policy’s optimality label. In this paper,
we propose to generate a mapping on a higher level of
abstraction between the two problems. Our goal is to
reformulate the optimal policy to take on a form that
is based on aspects pertaining to the entire problem
class rather than merely to instances of this class. To
achieve this effect, we use Decision Tree learning over
environmental feature values on various levels of ab-
straction in order to identify expressive and appropri-
ate features for describing the solution. If a sufficiently
abstract solution to a representative problem instance
is found, it can be instantiated in the new problem
by classification, thus completing the policy mapping
process. Using the transferred policy on new problems
can significantly speed up subsequent learning.

Appearing in Proceedings of the 23 rd International Con-
ference on Machine Learning, Pittsburgh, PA, 2006. Copy-
right 2006 by the author(s)/owner(s).

2. Example Domain and Experiment

Setup

The turn-based strategy game ”C-Evo” (Gerlach 2005)
serves as the testbed for our experiments. The agent
takes the role as a player whose task is to solve one
problem involving the moving of a ground unit, and to
transfer solution knowledge to a similar, but unidenti-
cal target problem. In the first illustrative experiment,
the agent is to steer a randomly placed land unit to
the goal on map tile with number 583 by moving it to
any adjacent non-water tile in the North, East, South
or West in a deterministic fashion. Once the agent has
learned the solution to the source problem depicted in
figure 1, it is supposed to apply this knowledge on the
similar target problem shown in figure 2.

Figure 1. The illustrative source problem.

Figure 2. The illustrative target problem

For reasons that become apparent in subsequent sec-
tions we select the Policy Iteration algorithm (Sutton
& Barto 1998) to solve the source problem. It requires
the knowledge engineer to create the agent’s mental
model of the problem - an MDP defined by a set of



Enabling MDP Solution Transfer by Abstraction

states {s}, actions {a}, a transition model T(s, a, s’)
as well as terminality and reward values R(s) for every
state. While states and actions are usually enumerated
explicitly, we take a feature-based perspective on this
process: the engineer selects environmental features
which distinguish between elements in the state space.
The same is true for the elements of the action space,
and we call all these features defining features. In our
scenario, it is reasonable to select the Map Tile Num-
ber on which the unit is located as a criterion to distin-
guish between states. Similarly, the motion’s Compass
Direction is an intuitive choice for distinguishing ac-
tions. Positive reward is only obtained when the unit
reaches the goal tile. Given these definitions, the agent
can explore the environment and solve the source prob-
lem by assigning every state-action pair a boolean op-
timality value, where every state has exactly one op-
timal action that maximizes the expected discounted
cumulative reward. In this paper, we focus on fully
observable, infinite-horizon and discounted MDPs in
discrete-valued domains.

3. Transferring Abstract Solutions

between MDPs

3.1. Recording Additional Feature Values

We view both states and actions as having a set of
features associated with them. While state features
describe static aspects of the agent’s situation, ac-
tion features specify dynamic aspects - the perceived
changes in environmental values when executing a par-
ticular action. In that sense, we endow the agent with
a redundant knowledge representation that acknowl-
edges the fact that states and actions may have as-
pects on various levels of abstraction. We assume that
the agent can perceive or infer these additional val-
ues of so-called non-defining features. Instead of in-
fluencing the process of solving the MDP like defining
features do, non-defining features facilitate the knowl-
edge transfer between similar MDPs. All feature val-
ues for both states and actions are recorded every
time the agent executes an action during the explo-
ration of the environment, and some examples of those
recordings, or snapshots, are shown in table 1. The
four columns are headed by the the names of the four
features, consisting of two state features followed by
two action features. The three snapshots themselves
are described by the values of defining features (bold-
faced) and some manually selected non-defining fea-
tures. While defining features may describe primarily
problem-instance specific aspects of the environment,
non-defining features should be designed to state ex-
pressions that are typical to the particular problem

Table 1. Three exemplary snapshots.

Map Relative Compass Change
Tile Position Direction Distance
No. ToGoal ToGoal

581 WestOf GoWest MoveAway
584 EastOf GoNorth DontChange
584 EastOf GoWest MoveCloser

class (here: moving to the goal tile). It is up to the
knowledge engineer to come up with a vocabulary of
non-defining features that might ”make a difference”
for the entire problem class. In the simple move-to-
goal scenario, the change in distance between unit and
goal tile is an obvious choice.

3.2. Abstracting Solution Representations

using Decision Tree Learning

Decision Trees can be used for abstracting the solution
representation based on the vocabulary of the recorded
feature values. As stated above, solving the source
MDP results in a boolean optimality label for each
state-action pair. As every snapshot is a subset of only
one state-action pair, it is possible to assign exactly
one optimality value to every snapshot in the source
problem (1:n mapping). This allows to associate al-
ternative explanations (i.e. set of features) with the
optimality labels. Within the space of possible expla-
nations of the optimal policy, it is desirable that this
reformulation step produces a form which is applicable
to similar MDPs in order to support policy transfer.
The goal is to find abstract explanations that can be
transferred from source to target problem. This prob-
lem can be posed as a classification task to select a set
of features that can sufficiently predict the optimality
label. In this paper, we use Quinlan’s ID3 algorithm
with Gain Ratio (Quinlan 1993) as the ranking crite-
rion, which supports our goal of simple explanations.
As opposed to the commonly used Information Gain
criterion, Gain Ratio discourages susceptible distinc-
tions by features with many uniformly distributed val-
ues. In addition to that, a cost function discourages
features whose values are only present in the source
but not the target problem. As a result, the Decision
Tree tends to incorporate those features whose values
in the target problem have identical counterparts in
the source problem. The subsequent section describes
how this enables the instantiation of the solution. But
first, we illustrate how this ranking criterion affects the
solution representation for our exemplary scenario.



Enabling MDP Solution Transfer by Abstraction

Table 2. An exemplary subset of labeled snapshots in the
source problem.

Map Relative Compass Change Optimality
Tile Position Direction Distance Label
No. ToGoal ToGoal

581 WestOf GoEast MoveCloser OPT.
581 WestOf GoWest MoveAway SUBOPT.
581 WestOf GoNorth DontChange SUBOPT.
581 WestOf GoSouth DontChange SUBOPT.

training data is the set of all snapshots in the source
problem, labeled according to their degree of optimal-
ity. A subset of the scenario’s source problem dataset
is depicted in table 2. The resulting Decision Tree
reads like ”whatever state the agent is in, moving
closer to the goal is the (only) optimal action”. For our
example scenario, this solution representation shows
that this modified ID3 algorithm suits the intended
purpose for a variety of reasons. First of all, it is inde-
pendent of the original MDP representation involving
map tile numbers and compass directions. Secondly,
the solution is concise not only in that it includes a
few expressive features (e.g. ChangeDistanceToGoal is
better than the combination of MapTileNumber and
CompassDirection), but also those with fewer values
(e.g. RelativePositionToGoal is preferred over Map-
TileNumber). Last but not least, the cost function de-
motes problem-instance specific features such as Map-
TileNumber, because the range overlap of the per-
ceived feature values in source and target problem is
very small. Thus, although lacking the guarantee of
global optimality, our ranking criterion tends to prefer
simple and expressive explanations that are common
to both source and target problem.

3.3. A note on Relational Reinforcement

Learning

The learning of abstract solution representations bears
some similarity to the field of Relational Reinforce-
ment Learning (RRL), so a short note on this relation-
ship is in order. RRL is interested in generalization
over objects and relations (Kaelbling et al. 2001, Van
Otterlo and Kersting 2004). Originally, Dzeroski, De
Raedt and Blockeel (1998) adopted an inductive ap-
proach to RRL, in which a relational regression tree is
used to learn an abstract Q-function from the sampled
traces. More recently, Guestrin et al (2003) have used
a probabilistic model-based approach which models an
abstraction over the relational MDP and uses samples
to learn parameters of the models.

While RRL approaches learn a solution for MDPs
whose states and actions are described by objects and
relations, our work determines an optimal policy for
propositional MDPs and subsequently converts it into
a more abstract and perhaps relational representation.

3.4. Instantiating Abstracted Solutions in

Other MDPs

To complete the policy transfer process, each
state/action pair in the target MDP needs to obtain
the proper optimality label from the Decision Tree.
Thus, the set of snapshots is recorded in the target
problem and each element is classified by its degree of
optimality. The degree of overlap between the fea-
ture values in the Decision Tree and in the set of
snapshots is one of the factors determining transfer
success - in case the Decision Tree’s feature does not
contain the value in a snapshot a random optimality
value is assigned to the snapshot. A Nearest Neighbor
re-discretization approach can be employed for non-
nominal features to reduce the steep labeling accuracy
drop-off for small differences. The set of labeled snap-
shots can then be generalized to labeled state/action
pairs. As this operation is an n:1 mapping, we se-
lected majority voting to handle discrepancies in the
suggested optimality values. Once a policy has been
devised for the target MDP, it can be used as an ini-
tial solution approximation for the Policy Iteration al-
gorithm. The success of the policy transfer step can
then be expressed in terms how much this initial ap-
proximation speeds up the subsequent solving of the
target MDP as compared to a random policy. In our il-
lustrative target problem the instantiation step labels
optimal exactly those state-action pairs which move
the agent closer to the goal tile. This produces an
optimal policy for the target problem - the agent can
find the goal tile in an optimal manner, without being
required to execute the Policy Iteration algorithm for
the target MDP. Obviously, this hand-crafted scenario
has prototypical results for illustrative purposes, but in
the following evaluation section we show that our ap-
proach can also enable speed-up in more complicated
problems.

4. Empirical Evaluation

To show the benefits of our approach in a more com-
plex example with an indeterministic transition model,
we created a combat scenario in which the agent’s
unit’s task is to defeat a stationary enemy unit. In
this scenario, the unit may move multiple times in
one turn, hereby depleting the amount of movement
points it has remaining for this turn, which again de-



Enabling MDP Solution Transfer by Abstraction

creases the unit’s strength for carrying out an attack
in this turn. The enemy unit, on the other hand, re-
mains passively at its location, waiting for the agent
to attack by moving onto its map tile. This combat
scenario requires abstracting the solution in order to
perform knowledge transfer, because the problems are
distinct in terrain and continent characteristics and
the type of enemy unit. As opposed to the previous
example, the source and target problem setup both
additionally include the defining features Remaining
Movement Points, Combat Outcome, End Turn Now
and a multitude of non-defining features such as Dis-
tance to Enemy. To make the transfer problem more
challenging, the environment exploration is stopped af-
ter approximately 130 attacks each for source and tar-
get problem. This allows the agent to perceive the two
problems (particularly their indeterministic transition
models) only to a limited extent. However, the algo-
rithm is able to generate and instantiate an abstract
solution that significantly speeds up the solving of the
target attack-problem as figure 3 demonstrates. While
the sum of state utilities of the random policy is only
10.69% of the global optimum, the transferred solution
creates a policy that has 91.49% of the optimal policy’s
value. Although Policy Iteration converges in both
cases to the global optimum, initializing it with the
transferred solution requires only 11 iterations instead
of 20 iterations in the random policy case. In order to
examine the kind of abstract solution the agent might
come up with for the source-attack problem, it was
allowed to fully explore the environment in another
run of this experiment. This enabled the subsequent
abstraction process to generate a relatively simple so-
lution that essentially says ”close in on the enemy, but
rest in the tile adjacent to it, in case you have only few
movement points left”.

Figure 3. Progress comparison of solving the target attack-
problem using a random initial policy versus utilizing the
transferred solution.

5. Conclusion

The feature-based view on MDPs enables novel
possibilities for solution transfer. Most importantly,
features are used for a purpose, and the distinction
between the two purposes of ”solving the source
problem” and ”transferring the solution” let to the
discrimination between defining and non-defining
features. Our approach transfers the reformulated
optimality labels between MDPs, and relies on the
modified ID3 algorithm to perform the solution
abstraction. We have shown that this idea can
enable speed-up for problems which are dissimilar
on a problem-instance level, but are akin on a
problem-class level. In general, if the knowledge
engineer can devise appropriate problem-class wide
features in addition to formulating an adequate MDP
representation, and the two problems are sufficiently
similar, then our algorithm can successfully transfer
the solution.

References

Dzeroski S., DeRaedt, L., & Blockeel, H. (1998). Rela-
tional reinforcement learning. Proceedings of ICML
(pp. 136–143).

Gabel, T., & Riedmiller, R. (2005). Cbr for state func-
tion approximation in reinforcement learning. Pro-
ceedings of ICCBR.

Gerlach, S. http://c-evo.org/. .

Guestrin, C., K. D. G. C., & Kanodia, N. (2003).
Generalizing plans to new environments in relational
mdps. Proceedings of IJCAI.

Kaelbling, L., O. T. H. N., & Finney, S. (2001). Learn-
ing in worlds with objects. The AAAI Spring Sym-
posium.

Quinlan, R. (1993). C4.5: Programs for machine
learning. Morgan Kaufmann.

Sherstov, A., & Stone, P. (2005). Improving action se-
lection in mdp’s via knowledge transfer. Proceedings
of NCAI.

Sutton, R., & Barto, A. (1998). Reinforcement learn-
ing: An introduction. MIT Press.

Van Otterlo, M., & Kersting, K. (2004). Challenges
for reinforcement learning. Proceedings of ICML.

von Hessling, A., & Goel, A. (2005). Extracting
reusable cases from reinforcement learning. Proceed-
ings of ICCBR.


