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Abstract

We demonstrate transfer via an ensemble of
classifiers, where each member focuses on one
data resolution. Lower-resolution ensemble
members are shared between tasks, providing
a medium for the knowledge transfer.1

1. Introduction

Most related objects are similar when viewed at a low
resolution. For example, low-resolution images of most
four-legged farm animals have the same general shape.
Knowledge learned at a low resolution may apply to
all of these animals (e.g., has four legs, eats grass). At
higher resolutions, details begin to emerge that differ-
entiate between them.

Inspired by this idea, we explore the use of multireso-
lution learning for knowledge transfer between tasks.
We claim that by exploiting the similarities between
objects at low levels of detail, learning at multiple res-
olutions can facilitate transfer between related tasks.

Low-resolution representations are simple and there-
fore easy to learn, but the value of what can be learned
from them is limited. High-resolution representations
have a much higher value of what can be learned from
them, but learning is more difficult due to the added
complexity. Learning from low-resolution data may
yield limited amounts of knowledge, but that knowl-
edge will often transfer to other related objects. This
knowledge provides both a foundation for learning
from the higher-resolution data, and a base of general
knowledge applicable to a class of objects.

Learning at multiple resolutions has been shown to
significantly improve generalization and classification
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time in single-task problems (Liang & Page, 1997; He
et al., 2005; Blayvas & Kimmel, 2003). Multiresolu-
tion representations have also been used successfully in
image retrieval systems (Li & Wang, 2003) and image
classification systems (Zhang & Hebert, 1997).

We provide an ensemble framework for providing the
transfer between learning tasks, with each member fo-
cusing on one resolution level. The low-resolution clas-
sifiers are shared between tasks, allowing knowledge
transfer between these tasks.

2. Multiresolution Representations

Our experiments use input in the form of feature vec-
tors, so we represent the instance space at multiple
resolutions. To do this, we use two methods: (1) chop-
ping the space into hypercubes and repeatedly merg-
ing them, and (2) repeatedly merging correlated at-
tributes.

Both methods take as input labeled instance vectors
{xi, yi}N

1 , where each xi belongs to the instance space
X ∈ Rd, and each yi belongs to the set of binary classes
Y = {−1, 1}.

The Hypercubes Representation breaks the in-
stance space X into hypercubes at the highest reso-
lution, then repeatedly combines these hypercubes to
generate successively lower resolutions. This represen-
tation was previously used for multiresolution learning
by He et al. (2005); we use their notation.

Let Ω be a hypercube in Rd that contains the instance
space X.2 For each dimension of Ω, we slice that di-
mension into l equal-size segments. By this method,
Ω is broken into ld hypercubes. For Ωk, the kth reso-

lution, we set l = 2k. Therefore, Ωk =
⋃2kd

i=1 oi
k, where

oi
k denotes the ith hypercube in Ωk. The multireso-

lution representation of the instance space X with r

2We define Ω to be six standard deviations larger than
X in each dimension.
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resolution levels is given by {Ωk}r
k=1.

For each level of resolution, k = 1 . . . r, we can map
instance x ∈ X to the hypercube oi

k containing x via
the function gk : X → Ωk. Each hypercube oi

k is
represented by the coordinates of its center. There-
fore, each x ∈ X has a multiresolution representation
R(x) = {center(gk(x))}r

k=1.

We estimate the label for each hypercube oi
k as the ma-

jority class label of all instances mapped to it by gk();
ties are broken by uniform random selection. The label
for each x ∈ X has the multiresolution representation
S(x) = {label(gk(x))}r

k=1. These labels are used solely
for training purposes; the actual class labels {yi}N

i=1

are used for testing the classifiers.

The Dimension-Merge Representation repeat-
edly merges correlated dimensions of the instance
space X. It determines the most correlated distinct
dimensions of X and then merges those dimensions
by mapping them onto a linear regression fit of the
correlation. This method is similar to the Hierarchi-
cal Dimensionality Reduction algorithm (Duda et al.,
2001), which takes a set of data clusters and repeatedly
merges the most correlated distinct clusters.

The Dimension-Merge algorithm is given in Figure 1.
Each successive lower resolution contains one less di-
mension than the previous resolution, and the pre-
cision of the values along the merged dimension is
reduced naturally by the merging process. The
Dimension-Merge algorithm determines the sequence
of attribute merges from the set of training instances
{xi}N

i=1; during the testing phase, the resolutions of
the test instances are computed using the sequence of
attribute merges determined during training.

Standard Feature Selection Methods (e.g., prin-
cipal components analysis, information gain) can be
used to repeatedly reduce the dimension of the in-
stance space; however, they typically produce succes-
sive resolutions with significant overlap. Consequently,
using them in our ensemble architecture (Section 3)
produces an ensemble of members with highly corre-
lated errors. The ensemble members are not diverse;
therefore, the ensemble will not be more accurate than
any of its member classifiers (Dietterich, 2000), yield-
ing poor results in our experiments (which we omit for
space reasons).

3. The Multiresolution Ensemble

Given a set of multiresolution data R with r resolu-
tions and associated class labels S, we create an ensem-
ble of classifiers {ck}r

k=1 where each member focuses

Given: X = {xi}N
i=1, xi ∈ Rd

Set the array of resolutions R = {}.
Set R[d] = X.
for k from d− 1 downto 1 do

Set R[k] = R[k + 1].
Compute the correlation matrix for all pairs of

distinct dimensions of R[k].
Determine the most correlated distinct attributes

of R[k], say d1 and d2.
Determine the linear regression line l for dimen-

sions d1 and d2 of R[k].
for i = 1 . . . N do

Let ri be the ith element of R[k].
Project the point (ri[d1], ri[d2]) onto l.
Let v be the Euclidean distance between (0, 0)

and the projection of (ri[d1], ri[d2]) onto l.
Set ri[d1] = v.

end for
Delete the dimension d2 of R[k].

end for
return R

Figure 1. The Dimension-Merge algorithm.

on one resolution of the data. Let Rk(X) represent the
instance space X viewed at resolution k, for k = 1 . . . r.

The kth ensemble member, ck, is trained on and out-
puts class predictions based on instances from Rk(X).

The ensemble’s prediction is a weighted majority vote
of the member classifiers’ predictions. We use the Ad-
aboost weighting scheme (Schapire, 1999) to determine
the weight of each member classifier. The weight αk

of classifier ck is inversely proportional to its error εk

on the training data at resolution k:

αk =
1
2

ln
(

1− εk

εk

)
. (1)

3.1. Knowledge Transfer with the Ensemble

In this paper, we assume that transfer occurs between
two tasks. To allow knowledge transfer between the
tasks, we combine two ensembles into a tree. Each task
has a unique multiresolution ensemble, but the lower-
resolution ensemble members are shared between the
tasks and trained on both tasks.

In this paper, the join point of the two ensembles
is manually specified. Also, the weights (α’s) of the
shared ensemble members are determined based on
both tasks and shared between ensembles. We are
currently exploring methods for determining the join
point computationally, and for using unshared weights
for the shared members.
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4. Experiments

4.1. Experimental Setup

We conducted experiments using the letter dataset
from the UCI Machine Learning Repository (Blake &
Merz, 1998). The letter dataset consists of various
fonts of the twenty-six capital letters in the English al-
phabet characterized by 16 features. We use a subset
of the letter dataset consisting of 1,000 instances. We
examine several tasks involving transfer in the recog-
nition of pairs of similar letters: “C” to “G,” “O” to
“Q,” and “M” to “W.” We also tested several pairs
of dissimilar letters, and show results for one pair of
letters that are similar in terms of construction, but
differ when viewed at a low resolution: “F” to “E.”

For example, consider transfer from the task of recog-
nizing “C” to recognizing “G.” We select out all in-
stances of the target concept (“C” and “G”) from the
data set D. We create the following sets:

• C: all “C” instances in D, labeled as positive
• G: all “G” instances in D, labeled as positive
• Gupdate : subsets of G, of various sizes
• Neg : D − (C

⋃
G), labeled as negative.

The sets C, G, and Neg are divided into equal-
sized training and testing portions (Ctrain , Ctest , etc.).
The sizes of Neg train and Neg test are trimmed to
max(|C|, |G|), so the ratio of positive to negative in-
stances in the training and test sets is roughly two-
thirds, with the exception of the training set for the
shared ensemble members.

Suppose that the ensemble tree splits at member
i. Then c1, . . . , ci are shared between the “C” and
“G” portions of the ensemble tree. These shared
classifiers are trained on Ctrain

⋃
Gupdate

⋃
Neg train ;

the other “C” classifiers (ci+1, . . . , cr) are trained
on Ctrain

⋃
Neg train ; and the other “G” classi-

fiers (ci+1, . . . , cr) are trained on Gupdate

⋃
Neg train .

We evaluate the “C” portion of the ensemble
using Ctest

⋃
Neg test and the “G” portion using

Gtest

⋃
Neg test .

As the baseline for transfer, we train a single multires-
olution “G” ensemble using Gupdate

⋃
Neg train . We

compare the learning curves for the “G” ensemble to
the tree ensemble across varying sizes of Gupdate .

We experimented using both the Hypercubes repre-
sentation (with r = 7 resolutions, specified manually
as used by He et al. (2005)) and the Dimension-Merge
representation (r = 16, since the letter data set has 16
dimensions). Our experiments used the J48 implemen-
tation of C4.5 provided in the Weka toolkit (Witten &
Frank, 2005) as the base classifier.

4.2. Results and Discussion

Figure 2 shows the results of our experiments. Con-
sider the learning task “C” to “G,” depicted in Fig-
ures 2(a) and 2(d). The figures show the “C to G
Tree” for learning with transfer against the “G En-
semble” for learning without transfer.

The black lines with round and square markers show
the multiresolution tree ensemble’s performance on the
transfer task (recognizing “G”). The light gray lines
show the multiresolution tree ensemble evaluated on
the background task (recognizing “C”), demonstrating
how the performance on the background task varies as
the shared ensemble members learn the transfer task.

We explored using every possible split point (i) for the
tree, and plot the two that show the greatest trans-
fer in most cases. In every case, as i decreases to
1, the learning curve approaches learning in isolation
using the single ensemble. When all ensemble mem-
bers are shared (i = 7 on Hypercubes and i = 16 on
Dimension-Merge), the tree ensembles show excellent
transfer with small transfer task (update) set sizes (in
some cases, more than shown on the plots). However,
with larger numbers of transfer task instances, the per-
formance may drop below that of the single ensemble,
due to interference between the tasks.

Figures 2(a)–2(e) show that learning using the mul-
tiresolution tree ensemble can outperform learning the
transfer task in isolation. These figures also show that
the optimal number of shared ensemble members may
vary depending on the size of the transfer task set,
and that the tree ensemble’s performance on the back-
ground task may decrease as i increases. These ob-
servations support our future work of making the en-
semble tree dynamic in response to the training data.
We have observed cases where the performance on
the background task increased slightly with additional
transfer task instances – an ideal case for transfer.

From the results on the “C” to “G” and the “O” to
“Q” tasks, it appears that both the Hypercubes and
Dimension-Merge representations are sufficient for al-
lowing task transfer.

Figure 2(f) depicts a situation where the background
task and transfer task are similar from a standpoint of
letter construction (“F” and “E” differ by one stroke);
however, the letters differ from a low-resolution view-
point. Using transfer inhibits learning in this task:
the best results are obtained by sharing only one en-
semble member in the ensemble tree and are identical
to that of learning the transfer task in isolation. We
have tested the transfer between several other pairs of
dissimilar letters and obtained similar results.
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(a) C to G using Hypercubes.
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(b) O to Q using Hypercubes.
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(c) M to W using Hypercubes.
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(d) C to G using Dimension-Merge.
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(e) O to Q using Dimension-Merge.
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(f) F to E using Hypercubes.

Figure 2. Learning curves for the letter recognition transfer over 200 trials using multiresolution ensembles.

5. Conclusion and Future Work

Our results show that the multiresolution ensemble
can successfully transfer knowledge between learning
tasks. Currently, we are exploring methods for com-
putationally selecting the ensemble tree split point i,
adapting the split point dynamically in response to the
training data, and creating ensemble trees for multi-
class problems. Our future work also includes adapting
the multiresolution transfer framework to work with
image data and alternate resolution methods.
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