
Transfer Learning for Reinforcement Learning through Goal- and
Policy Parametrization

Kurt Driessens kurt.driessens@cs.kuleuven.be
Jan Ramon jan.ramon@cs.kuleuven.be
Tom Croonenborghs tom.croonenborghs@cs.kuleuven.be

Department of Computer Science, Katholieke Universiteit Leuven, Leuven, Belgium

Abstract

Relational reinforcement learning has allowed
results from reinforcement learning tasks to
be re-used in other, closely related, tasks.
This transfer of knowledge is made possible
by the use of parameters in the representa-
tions of the task-description and the learned
policy.

In this paper, we will give a description of the
current state of the art of transfer learning
with relational reinforcement learning, make
some observations about the usefulness and
limitations of this current state and discuss
some directions for future research. We also
present a first small step along one of those
directions.

1. Introduction

Relational reinforcement learning (Džeroski et al.,
1998; Džeroski et al., 2001) has received a lot of at-
tention over the last few years. The use of relational
representations for both the world (i.e., states and ac-
tions) and the learned value-functions and policies al-
lows reinforcement learners to look at larger and more
complex problem domains. It raised the level of possi-
ble applications of reinforcement learning substantially
and, most importantly, allowed learned results to be
applied in worlds or tasks closely related to, but differ-
ent from, the world that was initially learned in. This
was a first step of solving one of the biggest draw-
backs of reinforcement learning, i.e., that a standard
reinforcement learner has to be retrained from scratch
if anything changes in the specification (task or repre-
sentation related) of the learning problem. Because a
reinforcement learner constructs a policy through in-

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

teraction with its environment, this is usually an ex-
pensive operation.

The advantages of relational reinforcement learning
are mainly due to the use of goal- (and policy-)
parametrization in the contruction of the policy1. By
forcing the learned policy to be expressed in terms
of variables instead of allowing it to reference concrete
objects and by making it rely on the structural aspects
of the task, it becomes natural and easy to transfer
the learned knowledge to learning problems that ex-
hibit the same structure, but might differ in respect of
the identity of certain objects or even the number of
objects involved.

In this paper, we give some illustrations of how
parametrization can be handled in relational reinforce-
ment learning and discuss the opportunities it creates
for transfer of knowledge to related tasks as well as the
limitations it still has to deal with. We also propose
some directions that can be investigated to overcome
these limitations and a possible first step along one of
those directions.

The rest of the paper is structured as follows: sec-
tion 2 discusses the current possibilities for transfer
learning with relational reinforcement learning. Sec-
tion 3 makes some observations on possible directions
for future work. Section 4 concludes.

2. Current State of the Art

To be able to illustrate the state of the art in goal-
and policy-parametrization, we will rely on the blocks
world as an application example. The blocks world
has been adopted as a standard testbed for relational

1Another way of looking at the abstractions obtained
with relational representations is to start from a logical
abstraction of the MDP, also referred to as RMDP (for
Relational MDP). We will not discuss that viewpoint in
this paper. Interested readers can consult (van Otterlo,
2005) for a very recent overview of work in relational rein-
forcement learning starting from that approach.



Transfer Learning for Reinforcement Learning through Goal- and Policy Parametrization

reinforcement learning. We use a blocks world with a
varying number of blocks, where blocks can only be
stacked neatly on top of each other and the table or
floor is of infinite size, i.e., it is always clear and ready
to store an extra block.

Instead of solving problems such as: “Put the block
with id 3 on the block with id 5”, relational reinforce-
ment learning is used to learn goals such as: “Put
block X on block Y ”, where X and Y are variables.
This parametrization of goals automatically allows the
learned results to be applied to the problem of stack-
ing any two blocks in the studied world. Other “rela-
tional” goals include for example “Build one tall stack”
where the order of the blocks in the stack does not
matter. Referencing specific blocks in a policy for this
goal makes little sense.

To learn these parametrized goals, relational rein-
forcement learning uses representations for the utility-
functions or policies that do not refer to specific ob-
jects. Instead it uses the structure of the problem to
predict utility values or to decide which actions to take.
Two different approaches have been used to handle
this.

One direct way of referencing blocks without using
their specific identity, is to build a logical model of
the value-function or policy and restricting the gener-
alization algorithm to refer to objects only indirectly,
through the use of variables. One example of such an
approach is the RRL-tg algorithm (Driessens et al.,
2001), which uses a first-order decision tree to approxi-
mate the value function or the policy.2 Figure 1 shows
an example of a policy in the shape of a first-order de-
cision tree for the “on(A,B)” goal that works for any
number of blocks. As well as solving the “on”-problem
for any two blocks in the world, the abstraction made
by such a parametrized policy, also works in worlds
with a different number of objects. By focussing only
on the blocks that are featured in the goal or the cur-
rent action the constructed policy becomes indifferent
to other objects (or distractions) that might or might
not be present. However, to be able to do this, the
use of the above(X,Y) predicate was required. While
RRL-tg will be able to construct an optimal policy
using only clear(X) and on(X,Y) predicates, the re-
sulting tree will not transfer so easily to worlds with
different numbers of blocks. The success of the knowl-
edge transfer will often depend on the representations
used.

Other forms of abstraction used for relational rein-
2Other approaches that use e.g. first-order rules exist as

well. Examples include the work by Fern et al. (2003) and
Kersting et al. (2004).

forcement learning make use of structural represen-
tations of states, actions and goals, that explicitly
try to remove object identity. Examples of this are
instance based methods that use relational distances
(Driessens & Ramon, 2003) or kernel approaches that
work of graph-representations (Gärtner et al., 2003).
The relational distance, for example, can take possible
mappings for related blocks in different states (or even
worlds) into account. This requires the design of suit-
able distances or kernels, but this is not much different
from the definition of background predicates such as
above in the previously discussed example.

3. Observations and Directions for
Further Research

The previous section showed how transfer of knowl-
edge is incorporated in relational reinforcement lear-
ing. Given a good goal-parametrization and the cor-
rect representation language, this becomes almost triv-
ial and the generalized policy can be learned at almost
no extra cost. These parametrized policies seem well
suited for use in e.g. hierarchical reinforcement learn-
ing, where they can be used as parametrized options
(Sutton et al., 1999).

However, the discussed transfer is limited to problems
that are very similar, i.e. the goals need to be struc-
turally identical. As soon as the structure of the goal
changes (according to the used representational lan-
guage), results of previous learning tasks are a lot more
difficult to transfer to the new task.

It is possible to apply the same approach as discussed
before to further abstract reinforcement learning prob-
lems. Where parametrization is up to now only used
to abstract over specific object identities, it could also
be used to abstract over structural differences in tasks.
Instead of starting the tree of Figure 1 with the pred-
icate goal on(A,B), we could have initiated the root
with the predicate goal(X). This would make abstrac-
tion of the exact structure of the goal, so that e.g.
the reinforcement learning algorithm could learn both
”Build one large stack” and ”Put block X on block Y”
in the same tree.

A trade-off emerges here which allows for some transfer
of difficulty between two steps of transfer learning: the
initial learning process and the transfer of knowledge
to a related task. Learning a policy for a very gen-
eral problem could be hard, but would greatly reduce
the work that still needs to be done when transferring
the learned knowledge to another task. On the other
hand, learning a more specific policy will reduce the
complexity of the initial step, but will require more



Transfer Learning for Reinforcement Learning through Goal- and Policy Parametrization

clear(A)

clear(B)

above(C,B)

above(D,A) non−optimal

optimalnon−optimal

above(D,B)

non−optimal optimal

equal(A,C) above(C,B)

optimal non−optimal

non−optimalequal(B,D) equal(A,D) non−optimal

non−optimal optimal

above(C,A)

goal_on(A,B), move(C,D)

Figure 1. A first-order decision tree describing a general policy for stacking any two specific blocks.

work during the transfer. We will briefly look at the
specifics of both.

3.1. Parametrization of the Goal Structure

Learning a general policy for a set of tasks in related
worlds seems like the holy grail of learning in control
problems. Depending on the generality of the set of
tasks, this problem ranges from relatively easy to very
hard.

Although some existing approaches already try to
solve this kind of problems — for example in the blocks
world, by using predicates such as inGoal(X) and in-
Place(X) (Khardon, 1999) — it is our belief that a
taxonomy will have to be defined on the encountered
tasks. Such a taxonomy will allow the generalized pol-
icy to discover e.g. actions that are usefull in a large
subset of tasks, which tasks are subtasks of others, etc.
For the algorithm to be able to exploit such a taxon-
omy to the fullest, it will beneficial to relate the repre-
sentation of the goal, to the representation of the states
and actions. A goal description using onTopOf(X,Y)
predicates will be of less use to a learning agent using
the on(X,Y) predicate in state descriptions if it doesn’t
know that the two are related (identical in this case).

3.2. Partial Reuse of Learned Results

Instead of trying to solve all possible learning problems
in the first step, one can also take a look at related
work in the field of Theory Revision. The biggest dif-
ference in the problem definition of transfer learning
and theory revision is that for transfer learning, it is
often known that the results from the first step will
have to be revised later on in the experiment. This
knowledge can be used to develop algorithms that cre-
ate more easily transformable models.

Since learning policies for a large variety of tasks comes
close to learning actual programs, transfer learning
could benefit from modular representations of policies,

where some sub-modules could be usefull for several
tasks. This relates again to hierarchical reinforcement
learning and the use of options to enable the transfer
of learned skills to related tasks.

A Small First Step To be able to recycle some
of the obtained knowledge when the structure of the
problem (or the solution) changes, we need an algo-
rithm that can re-use parts of the learned structure
and alter those parts that no longer apply. This is dif-
ficult to imagine for instance-based approaches such as
the discussed RRL-rib and RRL-kbr systems, that
use implicit structural knowledge that can not be di-
rectly altered. However, the explicit and interpretable
structural knowledge contained in a first-order regres-
sion or classification tree such as built by the RRL-tg
algorithm, can be addressed and altered where neces-
sary.

For this, tree-restructuring operators are necessary
that can be applied to first-order decision trees. Be-
cause of the dependencies between tests in different
nodes of a first-order tree, this is not trivial. Four
tree-restructuring operators that can be defined for
first-order trees are the following:

1. Splitting a leaf: This operator splits a leaf
into two subleafs, using the best suited test.
This is the only operator used by standard (non-
restructuring) TDIDT algorithms such as the tg
algorithm mentioned above.

2. Pruning a leaf: This is the inverse operator of
the first. When predictions made in two sibling-
leafs (leafs connected to the same node) become
similar, this operator will join the two leafs and
remove the internal node.

3. Revising an internal node: The revision oper-
ator is a bit more complex than the two previous
ones. When a chosen test in a node becomes non-
optimal and it turns out that another test would



Transfer Learning for Reinforcement Learning through Goal- and Policy Parametrization

be better suited to distinguish between examples
at that level, the dependencies between tests in
first-order trees make it impossible to make a
straightforward swap of the two tests. Depen-
dencies between tests in first-order trees originate
from the use of variables. Any node can introduce
new variables that can be referenced elsewhere in
the tree. Removing such a node can change the se-
mantics of the tests referring to the (also) deleted
variables. E.g. the semantics of the tree shown
in Figure 1 would change substantially if we re-
moved the initialization conjunction at the top.
One option is to prune the tree completely start-
ing from the deleted test, putting a new two-leaf
tree with the new test at the root in its place, but
a lot of information would be lost in this way. In-
stead, we will opt to use a copy of the subtree that
starts with the old test as both the left and the
right subtree of the new node. This will allow the
re-use of the information stored in the previously
built subtree, and, if the new test is chosen wisely,
a large portion of the two subtrees will be pruned
again at later stages by operators 2 and 4.

4. Pruning a subtree: This operator is related to
the previous one, but will shrink the tree instead
of enlarging it. This operator will be called when
a node can (or should) be deleted. Because of the
dependencies between tests in a first-order tree,
the choice of subtrees to replace the original tree
starting at the deleted node is limited to the right-
side one. As before, the left subtree can contain
references to variable introduced by the test used
in the deleted node.

To use these restructuring operators, an algorithm will
have to be designed that collects suited statistical evi-
dence to decide when and where the operators should
be applied.

4. Conclusions

We’ve presented the current state of the art in goal-
and policy-parametrization in relational reinforcement
learning. For structurally identical tasks (with struc-
tural identity defined in relation to the used represen-
tation) goal-parametrization offers a very easy way to
do knowledge transfer in reinforcement learning.

For tasks with structural differences, we looked at ex-
panding the level of goal-abstraction to incorporate
different structures and at re-using partial knowledge
by using approaches related to theory revision. We
presented some initial thoughts on a first-order tree-
restructuring algorithm that could be used for trans-

fer learning in reinforcement learning tasks when only
parts of the learned structure are appropriate for the
new task.

References

Driessens, K., & Ramon, J. (2003). Relational instance
based regression for relational reinforcement learn-
ing. Proceedings of the Twentieth International Con-
ference on Machine Learning (pp. 123–130). AAAI
Press.

Driessens, K., Ramon, J., & Blockeel, H. (2001).
Speeding up relational reinforcement learning
through the use of an incremental first order de-
cision tree learner. Proceedings of the 13th Euro-
pean Conference on Machine Learning (pp. 97–108).
Springer-Verlag.

Džeroski, S., De Raedt, L., & Driessens, K. (2001). Re-
lational reinforcement learning. Machine Learning,
43, 7–52.

Džeroski, S., De Raedt, L., & Blockeel, H. (1998). Re-
lational reinforcement learning. Proceedings of the
15th International Conference on Machine Learning
(pp. 136–143). Morgan Kaufmann.

Fern, A., Yoon, S., & Givan, R. (2003). Approximate
policy iteration with a policy language bias. Pro-
ceedings of the Seventeenth Annual Conference on
Neural Information Processing Systems. The MIT
Press.

Gärtner, T., Driessens, K., & Ramon, J. (2003). Graph
kernels and Gaussian processes for relational rein-
forcement learning. Inductive Logic Programming,
13th International Conference, ILP 2003, Proceed-
ings (pp. 146–163). Springer.

Kersting, K., van Otterlo, M., & De Raedt, L. (2004).
Bellman goes relational. Proceedings of the 21st In-
ternational Conference on Machine Learning (pp.
465–472).

Khardon, R. (1999). Learning to take actions. Machine
Learning, 35, 57–90.

Sutton, R., Precup, D., & Singh, S. (1999). Between
MDP’s and semi-MDP’s: A framework for tempo-
ral abstraction in reinforcement learning. Artificial
Intelligence, 112, 181–211.

van Otterlo, M. (2005). A survey of reinforcement
learning in relational domains (Technical Report
TR-CTIT-05-31). CTIT Technical Report Series,
ISSN 1381-3625.


