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Abstract

This paper presents SMILe (Self-Motivated
Incremental Learning), an intrinsically moti-
vated learning framework in which an agent
autonomously identifies interesting subgoals
independently from any task prescription,
and, driven by self-motivation, incrementally
learns a hierarchy of more and more com-
plex skills. Preliminary experimental activi-
ties show that learned skills can be profitably
reused when the agent faces different tasks.

1. Introduction

One of the key factors that would enable intelligent
agents to achieve autonomy, is the ability to operate
without any external (e.g., human) intervention and
to progressively learn optimal solutions for a given
task. Up to now, research in the field of Reinforcement
Learning (RL) has led to agents that are able to act
autonomously in simple and limited environments. To
operate in real-world environments, an agent should
be able to exploit its knowledge and adapt its skills to
situations different from (but similar to) the ones that
the agent already faced. The lack of methods for an
effective reuse of the knowledge acquired during the
learning process to novel situations implies a waste of
experience that may be not affordable in many real
applications.

Several approaches that involve the transfer of learned
knowledge make use of hierarchical representations to
structure concepts and solutions. Decomposing the
solution of complex problems into simple loosly cou-
pled activities helps to build basic blocks that may
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be reused within different contexts. The introduc-
tion of higher levels of abstraction reduces the search
space, thus making the learning process more effective.
The decomposition of a problem into subtasks can
be effectively used to improve the performance of RL
algorithms, as in Hierarchical Reinforcement Learn-
ing (HRL) (Barto & Mahadevan, 2003). In general,
these approaches exploit particular task decomposition
structures and define specific learning processes, that
are performed on simple tasks whose solutions can be
composed to solve the global problem.

Some works studied how to exploit the hierarchical
task decomposition to transfer solutions learned for
subtasks to different tasks. (Ravindran & Barto, 2003)
define subtask solutions without an absolute frame of
reference, so that, after suitable transformations, they
can be reused within different contexts. (Mehta et al.,
2005) propose a model-based HRL method to trans-
fer the knowledge learned for a specific MDP to other
MDPs that share the same dynamics, but that have
different reward structures. These approaches need a
decomposition given by the designer in advance and,
although the learning speed-up obtained by using HRL
is relevant, it is often difficult to find an effective task
decomposition and long hand-tuning is needed.

Recently, many proposals for the automatic discovery
of subgoals have been presented (Simsek et al., 2005;
McGovern & Barto, 2001). Most of the automatic sub-
goal discovery techniques identify regions of the envi-
ronment that are strategic for the solution of a specific
problem and learn new skills designed to reach those
regions. Although the discovered skills are useful to
solve the given problem, they may not always be effec-
tively reused in different tasks, since region identifica-
tion is task specific. A goal independent approach has
been recently proposed by (Mahadevan, 2005). Start-
ing from the analysis of data about the environment
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dynamics, proto-value functions are build and are lin-
early combined to learn any value function that may
be defined over the same environment.

On the other hand, Intrinsically Motivated Learning
(IML) (Singh et al., 2004) enables agents to develop,
without any externally imposed goal, new skills that
can be reused to solve many different tasks. Since
no goal is provided, the agent should be able to au-
tonomously identify situations that may be relevant
for the accomplishment of different tasks and, at the
same time, an intrinsic motivation should guide the
agent to learn new skills to achieve those situations.

In this paper, we propose SMILe (Self-Motivated In-
cremental Learning), an intrinsically motivated learn-
ing framework in which a hierarchy of skills are au-
tonomously learned by iterating a three phase process
aimed at exploring the environment, identifying inter-
esting situations, and acquiring skills to reach these sit-
uations. The identification of particular configurations
in the environment as the goal for the new skills leads
to the definition of a hierarchy of goal-independent and
general skills. Therefore, unlike hand-coded skills that
are often strictly related to a specific task, the knowl-
edge acquired during the development process (i.e. the
skills) can be used to solve many different tasks in a
short time.

2. Self-Motivated Development Process

SMILe implements a self-motivated development pro-
cess aimed at learning a set of skills that could be used
to face different tasks. Each skill is learned through
a development process that is divided into three main
phases: babbling, motivating and skill acquisition.

2.1. Option Framework

The hierarchy of skills developed during the learn-
ing process is described using the option frame-
work (Sutton et al., 1999) and the environment is for-
mally described as a Semi-Markov Decision Process
(SMDP). An option-SMDP is characterized by the tu-
ple (§,0,P,R,~), where S is the state space, O is the
set of options, P(s, 0, s’) is the transition model, R(s)
the reward function and + is the discount factor.

When the development process starts, the skills of
the agent are equal to the set of its basic actions A.
At the k-th iteration of the entire process, the set
of admissible options is: OF = OF! U {o*}, where
o* is the option learned at the k-th iteration and
OY = A. Therefore, the initial transition model can
be defined as P°(s,0,s’) = P(s,a,s’), where a € A.
A generic option of € OF is defined as the tuple

(mor, L, 3), where the closed-loop policy of the option
Tor + S x OF~1 — [0,1] is the probability to take an
option in state s, the initial set Z C S is a subset of
the state space where the option is defined, 3(s) is the
probability for the option to terminate in state s. Since
new options are obtained as a composition of the skills
available to the agent, each policy 7 (s, 0) over options
can be flattened upon the initial set of basic actions
A, thus obtaining a policy T = flat(w), defined as
7 :SxA— [0,1]. Finally, we define the state tran-
sition probability, that is the probability to get from
state s to s’ by following a policy 7 over options as:

P.(s,s") = Z 7(s,0)P(s,0,5"). (1)

ocO

This probability may be interpreted as the ease of the
agent to get from s to s’ with the chosen policy 7 given
the transition model P.

2.2. Babbling Phase

In the babbling phase, the agent estimates both the
transition model and the state transition probabilities
using an unbiased exploration policy. Since in this
phase no goal guides the agent behavior, at iteration
k, the explorative policy W% is simply a uniform prob-
ability distribution over the set of available options:

74 (s,0) = ﬁ ()

Since the policy of each option selects basic actions
with different probabilities, the flattened policy gener-
ally is not a uniform distribution over actions:

1
|Al
Thus, while at the first iteration the agent takes ac-

tions at random, when new options are added, its be-
havior is biased by the policy of the options in OF.

Th(s,a) = flat(r}) # (3)

A different exploration policy over basic actions signifi-
cantly affects also the state transition probabilities and
the ability of the agent to move in the environment.
At the k-th iteration, once the option o* is learned,
a new transition model P*(s,0,s'), with o € O, is
generated. In particular, it is interesting to analyze
how the capacity of the agent of moving among states
(Pk(s,s")) consequently changes. Given the random
exploration policy wﬁ%, the state transition probability
can be written as:

P (s,s) = Zwﬁ(s,o)?k(s,o,s’)

0€Ok

= Z h(s,a)P(s,a,s). (4)

acA
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This means that the modification on the state transi-
tion probabilities is caused by a different policy over
the set of actions. In other words, the introduction of a
new option biases the exploration over the state space,
making the agent able to reach more (less) frequently
regions that were previously less (more) visited.

2.3. Motivating Phase

Since the learning process of SMILe is not guided by
any extrinsically-defined reward function, the agent
identifies relevant states according to a given defini-
tion of interest based on the state transition probabil-
ities estimated in the babbling phase (Pﬁé(s, s’)). In
the motivating phase, we introduce a general defini-
tion of an interest function, whose meaning depends
on a chosen local measure of interest. Although sev-
eral characteristics of the state transition model could
be used to compute the local interest of a state, in this
paper we will focus on the following definition:

p(8) = (1 = pin(s)) = pin(s) (1 = pour(s)),  (5)

where p;,(s) ‘?1'25/65 P (s',s) and pout(s) =
> srzs Prr(s,8"). The intuition behind Equation 5 is
that states that, under a random policy, are difficult
to reach or that, once reached, can be easily left are
relevant as subgoals for many complex tasks whose
solution needs the agent to pass through states that
cannot be easily reached without a specific skill.

Since the definition of p(s) considers only one-step
probabilities, it does not take into account the interest
of surrounding states. Thus, a global interest func-
tion I*(s) must be computed by propagating the local
interest function on the basis of the state transition
probabilities estimated in the babbling phase. The
global interest function is defined by the Bellman-like
equation:

I'(s) = p(5) + 7 3 P (5,505 (). (6)
s’eS

The interest function I*(s) can be computed using a
simple iterative policy evaluation algorithm. Given the
global interest function, the agent identifies a new self-
motivated goal as the state with the highest interest
value, 3° = argmax, I*(s).

2.4. Skill Acquisition Phase

The goal of the skill acquisition phase is to learn a
policy that leads the agent to the identified subgoal.
Similarly to (Simsek et al., 2005; McGovern & Barto,
2001) the new option is determined on the basis of a

pseudo reward function R(s) that returns a null re-
ward in all states but the maximum interest state,
where it returns a positive reward. The policy 7« is
the deterministic option that maximizes the value of
the value function Q*(s, o), learned using the SMDP
Q-Learning algorithm, where the reward function is

3. Experimental Activity

The experiment we discuss is a version of the Play-
world proposed in (Stout et al., 2005). The Playworld
is characterized by two rooms with a door in between,
two panels, and a charger. The panels are in the room
at left: the light panel switches the light on and off,
while the door panel opens and closes the door. The
robot perceives the light intensity, whether the door
is open or not, its charge level, and its position (i.e.,
absolute coordinates and orientation). The robot is
initially placed at random in the left room and the
light is switched off. The robot can turn clockwise
and counter clockwise and move ahead.

The experiment consists of two main stages: intrinsi-
cally motivated incremental learning and extrinsically
motivated learning. In the first stage the robot ex-
plores the environment and develops new skills ac-
cording to the self-motivated incremental process de-
scribed in Sec. 2. The salient events we can expect the
robot to find are: light on, light off, open door, close
door, charge. The skills developed in early iterations
(when the robot simply turns the light on and off) bias
the random exploration so that the robot succeeds in
activating new and more complex events (e.g., open
the door and charge). This shows how SMILe en-
ables the robot to autonomously discover interesting
configurations in the environment and to develop self-
motivation in learning new skills for achieving them.

In the second stage, the skills developed in the previ-
ous stage are tested in order to evaluate their level of
reusability on five different goals, imposed by an exter-
nal designer by providing an extrinsic reward function.
In particular, we compare the performance of a robot
that exploits the new skills to that of a robot that
learns through Q-Learning, on five different tasks:
Task1: charge

Task2: charge, move to upper left corner of right room
Task3: charge, move to upper left corner of left room
Task4: charge, move to left room and close the door
Task5: charge, move to left room, close the door,
switch the light off.

While Task2 and Task3 are not strictly related to any
salient event, the other tasks require that the robot
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achieves configurations relevant for the Playworld en-
vironment. Each 1,000 learning episodes, the extrinsic
reward function is changed according to the task that
must be accomplished and the learning robot should
be able to adapt its policy to the new task without
restarting the learning from scratch.

Fig. 1 shows the number of steps per learning episode.
The first 2,100 episodes, labeled as Self-Development
in the graph, represent the first stage of the experiment
in which the SMILe robot autonomously identifies six
different goals for which one new skill is learned at
each iteration. On the other hand, in the first stage
the Q-Learning robot does nothing, since no extrinsic
reward is provided. The second stage starts with the
introduction of a positive extrinsic reward for achiev-
ing the charger. While Q-Learning robot can only use
the basic skills, SMILe robot exploits the skills learned
in the first stage and succeeds in finding the optimal
policy to reach the charger in less episodes than those
needed by Q-Learning. Similarly, SMILe succeeds in
exploiting its skills even for changing tasks, while Q-
Learning took more time to adapt to new extrinsic
reward functions.

Furthermore, in Fig. 2 we compare the total num-
ber of steps for both the algorithms and we report
their difference. In the first stage, SMILe takes al-
most 250,000 steps to explore the environment and to
learn the new skills, while no steps are taken by the Q-
Learning robot. Notwithstanding the initial loss, the
total number of steps needed by SMILe after the ac-
complishment of Task1 is less than that of Q-Learning.
The advantage of SMILe becomes even more relevant
at the end of the second stage when Q-Learning took
almost twice as much of steps than SMILe. This com-
parison suggests that SMILe, even though it requires
potentially expensive exploration of the environment,
leads to the development of useful skills that can be
profitably reused in many different tasks. The number
of steps saved during the extrinsically motivated learn-
ing stage is greater than the number of steps used in
the self-development stage already after the first goal.

4. Conclusions

This paper introduced SMILe, a new intrinsically mo-
tivated learning framework that incrementally builds a
hierarchy of skills independently from any given task
in a three phase process. The experimental activity
suggests that the task-independent skills learned by
SMILe are general enough to be effectively reused to
face different tasks defined on an environment with
the same dynamics but changing reward function, thus
significantly speeding up the learning process. Future
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Figure 1. Comparison of performance between Q-Learning
and SMILe (mobile mean over 10 runs.)
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Figure 2. Comparison of total number of steps between Q-
Learning and SMILe.

works will address the problem of the development of
skills that can be reused in environments with different
dynamics, as in (Ravindran & Barto, 2003).
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