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Abstract

Learning capabilities of computer systems
still lag far behind biological systems. One
of the reasons can be seen in the inefficient
re-use of control knowledge acquired over the
lifetime of the artificial learning system. To
address this deficiency, this paper presents a
learning architecture which transfers control
knowledge in the form of behavioral skills and
corresponding representation concepts from
one task to subsequent learning tasks. The
presented system uses this knowledge to con-
struct a more compact state space represen-
tation for learning while assuring bounded
optimality of the learned task policy by uti-
lizing a representation hierarchy.

To demonstrate this control knowledge trans-
fer, a sequence of experiments in a video
game domain is presented, illustrating its
ability to reduce representational complexity
and to enhance learning performance.

1. Introduction

Learning capabilities in biological systems far exceed
the ones of artificial agents, partially because of the
efficiency with which they can transfer and re-use con-
trol knowledge acquired over the course of their lives.

To address this, knowledge transfer across learning
tasks has recently received increasing attention (Ando
& Zhang, 2004; Taylor & Stone, 2005; Marthi et al.,
2005; Marx et al., 2005). The type of knowledge
considered for transfer includes re-usable behavioral
macros, important state features, information about
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expected reward conditions, and background knowl-
edge. Knowledge transfer is aimed at improving learn-
ing performance by either reducing the learning prob-
lem’s complexity or by guiding the learning process.

The work presented here focuses on the construction
and transfer of control knowledge in the form of behav-
ioral skill hierarchies and associated representational
hierarchies in the context of a reinforcement learning
agent. In particular, it facilitates the acquisition of in-
creasingly complex behavioral skills and the construc-
tion of appropriate, increasingly abstract and compact
state representations which accelerate learning perfor-
mance while ensuring bounded optimality.

Recent work in Hierarchical Reinforcement Learning
(HRL) has led to approaches for learning with tempo-
rally extended actions using the framework of Semi-
Markov Decision Processes (SMDPs) (Sutton et al.,
1999), for learning subgoals and hierarchical action
spaces (Barto & Mahadevan, 2003), and for learning
abstract representations (Kim & Dean, 2003). How-
ever, most of these techniques only address one of the
aspects of transfer and do frequently not directly ad-
dress the construction of action and representation hi-
erarchies in life-long learning.

The approach to hierarchical learning and knowledge
construction presented here provides an integrated sys-
tem which forms increasingly complex behavioral skills
and corresponding state representation concepts that
provide formal properties for new tasks. In particular,
it forms a state hierarchy that encodes the functional
properties of the skill hierarchy, providing a compact
basis for learning that ensures bounded optimality.

2. Hierarchical Knowledge Transfer

In the approach presented here, skills are learned
within the framework of Semi-Markov Decision Pro-
cesses (SMDP) where new task policies can take ad-
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vantage of previously learned skills, leading from an
initial set of basic actions to the formation of a skill
hierarchy. At the same time, abstract representation
concepts are derived which capture each skill’s goal ob-
jective as well as the conditions under which use of the
skill would predict achievement of the objective. The
latter captures important aspects of the state in the
context of the specific skills and is similar to “affor-
dances” (Gibson, 1977) which are considered impor-
tant representational abstractions in biological staged
development. Figure 1 shows the approach.
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Figure 1. System Overview of the Approach for Hierarchi-
cal Behavior and State Concept Transfer.

Here, the agent maintains and incrementally augments
a skill hierarchy and a corresponding representation
hierarchy. When a new task is presented, the agent
forms actions sets, including one containing actions
which are considered relevant and one with all actions
not deemed redundant. It then constructs a hierar-
chy of state representations from the goal and proba-
bilistic affordance concepts associated with these skill
sets. The state representations are formed here within
the framework of Bounded Parameter Markov Deci-
sion Processes (BPMDPs) (Kim & Dean, 2003) and
include a decision-level model and a more complex
evaluation-level model. Learning of the new task is
then performed on the decision-level model using Q-
learning, while a second value function is maintained
on the evaluation-level model. When an inconsistency
is discovered between the two value functions, a refine-
ment augments the decision-level model by including
the concepts of the action that led to the inconsistency.

Once a policy for the new task is learned, subgoals are
extracted from the system model and corresponding
subgoal skills are learned off-line. Then goal and prob-
abilistic affordance concepts are learned for the new
subgoal skills and both, the new skills and concepts
are included into the skill and representation hierar-
chies in the agent’s memory, making them available
for subsequent learning tasks.

2.1. Learning Transferable Skills

To learn skills for transfer, the approach presented here
tries to identify subgoals. Subgoals of interest here
are states that have properties that could be useful for
subsequent learning tasks. Because the new tasks’ re-
quirements, and thus their reward functions, are gener-
ally unknown, the subgoal criterion used here does not
focus on reward but rather on local properties of the
state space in the context of the current task domain.
In particular, the criterion used attempts to identify
states which locally form a significantly stronger “at-
tractor” for state space trajectories as measured by the
relative increase in visitation likelihood.

To find such states, the subgoal discovery method
first generates N random sample trajectories from
the learned policy and for each state, s, on these
trajectories determines the expected visitation like-
lihood, C∗

H(s). The change of visitation likelihoods
along a sample trajectory, hi, is then determined as
∆H(st) = C∗

H(st)−C∗

H(st−1), where st is the tth state
along the path. The ratio of this change along the
path is then computed as

∆H(st)

max(1,∆H(st+1))

for every state in which ∆H(st) > 0. Finally, a state st

is considered a potential subgoal if its average change
ratio is significantly greater than expected from the
distribution of the ratios for all states 1. For all sub-
goals found, corresponding policies are learned off-line
as SMDP option, oi, and added to the skill hierarchy.

2.2. Learning Functional Descriptions of State

The power of complex actions to improve learning per-
formance has two main sources; (i) their use reduces
the number of decision points necessary to learn a
policy, and (ii) they usually permit learning to oc-
cur on a more compact state representation. To har-
ness the latter, it is necessary to automatically derive
abstract state representations that capture the func-
tional characteristics of the actions. To do so, the pre-
sented approach builds a hierarchical state representa-
tion within the basic framework of BPMDPs extended
to SMDPs, forming a hierarchical Bounded Parame-
ter SDMP (BPSMDP). Model construction occurs in
a multi-stage, action-dependent fashion, allowing the
model to adapt rapidly to action set changes.

The BPSMDP state space is a partition of the original
state space where the following inequalities hold for all
blocks (BPSMDP states) Bi and actions oj :

1The threshold is computed automatically using a t-test
based criterion and a significance threshold of 2.5%.
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where R(s, o) is the expected reward for executing op-
tion o in state s, and F (s′|s, o) is the discounted transi-
tion probability for option o initiated in state s to ter-
minate in state s′. These properties of the BPSMDP
model ensure that the value of the policy learned on
this model is within a fixed bound the optimal pol-
icy value on the initial model, where the bound is a
function of ε and δ (Kim & Dean, 2003).

To make the construction of the BPSMDP more effi-
cient, the state model is constructed in multiple steps.
First functional concepts for each option, o, are learned
as termination concepts Ct,o, indicating the option’s
goal condition, and probabilistic prediction concepts
(“affordances”), Cp,o,x, indicating the context under
the option will terminate successfully with probability
x±ε. These conditions guarantee that any state space
utilizing these concepts in its state factorization fulfills
the conditions of Equation 1 for any single action.

To construct an appropriate BPMDP for a specific ac-
tion set Ot = {oi}, an initial model is constructed
by concatenating all concepts associated with the op-
tions in Ot. Additional conditions are then derived to
achieve the condition of Equation 1 and, once reward
information is available, the reward condition of Equa-
tion 2. This construction facilitates efficient adapta-
tion to changing action repertoires.

To further utilize the power of abstract actions, a hi-
erarchy of BPSMDP models is constructed here where
the decision-level model utilizes the set of options con-
sidered necessary while the evaluation-level uses all ac-
tions not considered redundant. In the current system,
a simple heuristic is used where the decision-level set
consists only of the learned subgoal options while the
evaluation-level set includes all actions.

2.3. Learning on a Hierarchical State Space

To learn new tasks, Q-learning is used here at the
decision-level of the BPSMDP hierarchy. Because the
compact decision-level state model encodes only the
aspects of the environment relevant to a subset of the
actions, it only ensures the learning of a policy within
the pre-determined optimality bounds if the policy
only utilizes the actions in the decision-level action
set. Since, however, the action set has to be selected
without knowledge of the new task, it is generally not
possible to guarantee that it contains all required ac-

tions. To address this, the approach maintains a sec-
ond value function on top of the evaluation-level sys-
tem model. While decisions are made strictly based
on the decision-level states, the evaluation-level value
function is used to discover value inconsistencies, in-
dicating that a significant aspect of the state space
is not represented in the evaluation-level state model.
The determination of inconsistencies here relies on the
fact that the optimal value function in a BPMDP, V ∗

P ,
is within a fixed bound of the optimal value function,
V ∗, on the underlying MDP (Kim & Dean, 2003).

Inconsistencies are discovered when the evaluation-
level value for a state significantly exceeds the value
of the corresponding state at the decision level. In
this case, the action producing the higher value is in-
cluded for the corresponding block at the decision level
and the block is refined with this action to fulfill Equa-
tions 1 and 2 as illustrated in Figure 2.
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Figure 2. Decision-level model with 3 initial blocks
(B1, B2, B3) where block B3 has been further refined.

As a result, the system is capable of adjusting its state
representation on-line to ensure that a policy can be
learned which is within a bound of the optimal policy.

3. Experiments

To evaluate the approach, it has been implemented on
the Urban Combat Testbed (UTC), a computer game.
For the experiments presented here, the agent is given
the abilities to move through the environment shown
in Figure 3 and to retrieve and deposit objects.

Figure 3. Urban Combat Testbed (UCT) domain.

The state is here characterized by the agent’s pose as
well as by a set of local object percepts, resulting in
an effective state space with 20, 000 states.

The agent is first presented with a reward function to
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learn to move to a specific location. Once this task is
learned, subgoals are extracted by generating random
sample trajectories as shown in Figure 4.
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Figure 4. Number of subgoals discovered using sampling.

As the number of samples increases, the system identi-
fies an increasing number of subgoals until, after 2, 000
samples, all 29 subgoals that could be found using ex-
haustive calculation have been captured.

Once subgoals are extracted, subgoal options, oi, are
learned and termination concepts, Ct,oi

and proba-
bilistic outcome predictors, Cp,oi,x are generated using
a genetic-algorithm based classifier learner. These sub-
goal options and the termination and prediction con-
cepts are then transferred to the next learning tasks.

The system then builds a hierarchical BPSMDP sys-
tem model where the decision-level only utilizes the
learned subgoal actions while the evaluation-level
model is built for all available actions. On this model,
a second task is the learned where the agent is re-
warded for retrieving a flag (from a different location
than the previous goal) and return it to the home base.
During learning, the system augments its decision-level
state representation to allow learning of a policy that
is within a bound of optimal as shown in Figure 5.
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Figure 5. Size of the decision-level state representation
(left) and learning performance with and without skill and
representation/concept transfer (right).

The left graph here shows that the system starts with
an initial state representation containing 43 states.
During learning, as value function inconsistencies are
found, new actions and state splits are introduced,
eventually increasing the decision-level state space to
81 states. On this state space, a bounded optimal pol-
icy is learned as indicated in the right graph. This
graph compares the learning performance of the sys-
tem against a learner that only transfers the discov-

ered subgoal options and a learner without any trans-
fer mechanism. These graphs show a transfer ratio2 of
≈ 2.5 when only subgoal options are transferred, illus-
trating the utility of the presented subgoal criterion.
Including the representation transfer and hierarchical
BPSMDP learning approach results in significant fur-
ther improvement with a transfer ratio of ≈ 5.

4. Conclusion

Most artificial learning agents suffer from the ineffi-
cient re-use of acquired control knowledge in artificial.
To address this deficiency, the learning approach pre-
sented here provides a mechanism which extracts and
transfers control knowledge in the form of potentially
useful skill and corresponding representation concepts
to improve the learning performance on subsequent
tasks. The transferred knowledge is used to construct
a compact state space hierarchy that captures the im-
portant aspects of the environment in the context of
the agent’s capabilities and thus results in significant
improvements in learning performance. Initial experi-
ments in a video game domain have demonstrated the
benefit of the presented mechanism.

References

Ando, R. K., & Zhang, T. (2004). A framework

for learning predictive structures from multiple tasks

and unlabeled data (Tech. Rep. RC23462). IBM.

Barto, A., & Mahadevan, S. (2003). Recent Advances
in Hierarchical Reinforcement Learning. Discrete

Event Dynamic Systems, 13, 341–379.

Gibson, J. (1977). The theory of affordances. In Per-

ceiving, acting and knowing. Erlbaum.

Kim, K., & Dean, T. (2003). Solving Factored MDPs
using Non-Homogeneous Partitions. AI 147, 225.

Marthi, B., Russell, S., Latham, D., & Guestrin, C.
(2005). Concurrent hierarchical reinforcement learn-
ing. IJCAI-05. Edinburgh, Scotland.

Marx, Z., Rosenstein, M. T., & Kaelbling, L. P. (2005).
Transfer leraning with an ensemble of background
tasks. NIPS Transfer Learning. Whistler, Canada.

Sutton, R., Precup, D., & Singh, S. (1999). Between
MDPs and Semi-MDPs. AI 112, 181–211.

Taylor, M. E., & Stone, P. (2005). Behavior trans-
fer for value-function-based reinforcement learning.
AAMAS 2005 (pp. 53–59).

2The transfer ratio is the ratio of the area over the learn-
ing curve between the no-transfer and the transfer learner.


