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Abstract Evidence indicates that the immune system,

which protects an organism from parasitic and pathogenic

infections, is frequently suppressed when animals are

engaged in activities involving strenuous exercise. We

tested the hypothesis that birds reduce immune function

during the migratory period in preparation for the antici-

pated heightened energetic demands of long flights.

Swainson’s thrushes (Catharus ustulatus), captured in fall,

were held in an indoor aviary until January, when migra-

tory disposition was induced in half of the birds with an

artificially prolonged daylength. Experimental birds

became hyperphagic and deposited fat stores, and then

displayed nocturnal activity (Zugunruhe) characteristic of

the spring migratory period. Cell-mediated immunity was

measured by intradermal injection of phytohemagglutinin

in the wing patagium of both control and experimental

birds. Birds exhibiting migratory restlessness had a reduced

cell-mediated immune response compared to control birds.

Our results suggest that birds are immunosuppressed dur-

ing the migratory period. The suppression may be a

nonadaptive response due to unrelated physiological pro-

cesses, or it may be an adaptive response to the

physiological demands associated with migration, such as

high energetic demands and the negative consequences of a

hyperactive immune system.
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Introduction

The immune system protects an organism from parasitic and

pathogenic infections. Yet evidence indicates that immune

function is frequently suppressed when animals are engaged

in energetically demanding activities (Norris and Evans

2000). Immunosuppression in response to energetically

demanding activities may reflect a reallocation of energy.

Such a trade-off rests on the assumption that maintaining

and activating the immune system has nutritional or ener-

getic costs (Sheldon and Verhulst 1996; Lochmiller and

Deerenberg 2000), that resources are limiting and that

immune system activation and maintenance comes at the

cost of resource allocation to other costly activities. Alter-

natively, immunosuppression during a resource-demanding

and stressful period may be an adaptive response aimed at

avoiding hyperactivation of the immune system and the

ensuing autoimmune response (see Råberg et al. 1998).

Recent attention has focused on reproductive activities

and their impact on the avian immune system (Sheldon and

Verhulst 1996; Råberg et al. 2000). These studies demon-

strate that animals typically reduce immune activity during

the breeding season compared to other periods of the

annual cycle (Ots and Hõrak 1996; Deerenberg et al. 1997;

Lifjeld et al. 2002; Ilmonen et al. 2003; but see Hasselquist

et al. 1999). Despite the energetic and other demands

associated with migration, few studies have investigated

the immune function of birds during the migration period

(but see Ward and D’Cruz 1968; Silverin et al. 1999; Owen

and Moore 2006; Hasselquist et al. 2007).
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In anticipation of the energy requirements of migration,

especially in relation to non-stop flights across ecological

barriers such as the Gulf of Mexico, a bird in migratory

disposition becomes hyperphagic, depositing up to 50% of

its lean body mass as fat within a few days (Berthold 1975).

Fat is the primary source of energy to fuel migration (Blem

1990) and is typically depleted during long-distance flights

(Bairlein 1985; Moore and Kerlinger 1987). In addition,

body composition is often altered to facilitate migratory

flight (Jehl 1997; Piersma et al. 1999; Landys-Ciannelli

et al. 2003). Flight muscles typically increase in size, while

nonessential tissues and organs atrophy.

Likewise, we suggest that birds may suppress immune

function to assist in meeting the demands associated with

the migratory period. If true, individuals in migratory dis-

position should have a lower immune response than

nonmigratory individuals. Alternatively, birds may have

enhanced immunocompetence during the migratory period

to protect themselves from increased exposure to novel

pathogens and parasites (Moller and Erritzoe 1998;

Hasselquist et al. 2007). Regardless, it is possible to study

the immune response of migratory birds under controlled,

experimental conditions because migratory disposition,

including migratory activity [zugunruhe] and hyperphagia,

can be induced in captive individuals by manipulating

photoperiod (Berthold 1990). This induced activity corre-

sponds approximately to the daily and annual pattern of

migration of free-ranging conspecifics (Berthold 1990). We

induced spring (return) migratory disposition in captive

Swainson’s thrush (Catharus ustulatus) by adjusting

photoperiod. Swainson’s thrushes are long-distance, inter-

continental migrants that breed in the northern United States

and Canada and winter in Central and South America

(Evans and Yong 2000). Swainson’s thrushes are trans-Gulf

migrants with peak passage on the northern coast of the

Gulf of Mexico in mid–late April (Yong and Moore 1997).

Materials and methods

During fall migration (October 2000) we captured 18

hatch-year Swainson’s thrushes at our study site on the Fort

Morgan Peninsula, Alabama, USA. Birds were randomly

assigned to one of two rooms within an enclosed aviary

located within the University Animal Research Facility

[federal permit #21221, IACUC protocol #217-003]. We

housed birds individually in cages equipped with two

horizontal perches attached to microswitches, which

recorded migratory activity via a data logger (JoAC Elek-

tronik, Lund, Sweden). To minimize the effect of

nutritional status on immune activity, both experimental

and control birds were fed ad libitum a mixed diet of meal

worms, blueberries, and moistened ZuPreem monkey

biscuits. We maintained birds on a nonmigratory 12:12

light:dark (L:D) photoperiod from day of capture until 31

January 2001, when we increased the photoperiod of

treatment birds to a 16:8 L:D migratory schedule over a

four-day period. We maintained control birds on a non-

migratory 12:12 L:D schedule throughout the experiment.

We considered birds as migratory when they exhibited

migratory restlessness for longer than 40% of the night and

for more than two nights in a row. This criterion is based

on data collected on the nighttime activity of free-living,

migrating Swainson’s thrushes captured and held overnight

in activity cages (J.C. Owen, unpublished data). We

assessed cell-mediated immune function using phytohem-

agglutinin (PHA), an antigen that induces a nonspecific T-

lymphocyte-dependent response (Stadecker et al. 1977).

PHA induces dermal infiltration of leukocytes, macro-

phages and thrombocytes, causing increased swelling of

the tissue at the inoculation site (Stadecker et al. 1977;

Goto et al. 1978; McCorkle et al. 1980; Martin et al. 2006).

Thus, the amount of swelling reflects the strength of an

unspecific cell-mediated immune response. After treatment

birds exhibited migratory restlessness for approximately

two weeks, we administered (20 February 2001) an intra-

dermal injection of PHA to both control (n = 9) and

treatment birds (n = 9).

Prior to injection, we measured the right and left wing

webs of the thrushes to the nearest 0.01 mm using a

pressure-sensitive micrometer. We measured each wing

web three times, averaging the measurements. We injected

phosphate-buffered saline (PBS; 0.05 ml) into the right

wing web, as a control, and injected PHA (0.25 mg/

0.05 ml PBS) into the left wing web. Twenty-four hours

post-injection, we remeasured each wing web without

knowledge of previous measurements. We calculated the

strength of the immune response by subtracting the change

in thickness for the right wing web (pre- to post-treatment

thickness) from the change in thickness in the left wing

web (Goto et al. 1978; McCorkle et al. 1980).

We quantified the amount of migratory activity by

dividing the number of 20-min nighttime periods in which

each bird displayed at least five hops by the total number of

nighttime periods available (treatment = 48 periods; con-

trol = 36 periods). To ensure that birds did not differ in

migratory activity prior to the change in photoperiod, we

compared the proportion of nighttime activity between the

two groups using a Mann–Whitney test. After the change in

photoperiod, we conducted the same analysis to detect

differences in activity between the treatment and control

groups.

We excluded one individual from each group; one bird

in the control group displayed nighttime activity through-

out the entire experiment, and one treatment bird was

excluded because there was leakage of PHA at the time of
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injection. All analyses are with the 16 remaining individ-

uals. Immune response to PHA was analyzed using a two-

tailed t-test. Data met assumptions of normality, and sta-

tistical significance was set at a = 0.05. Data were

analyzed using SPSS 12.0 (SPSS 2004).

Results

All of the thrushes in the treatment group exhibited

migratory activity consistent with our a priori criteria. As

found in other species (J.C. Owen, unpublished data), the

Swainson’s thrushes exhibit activity consistent with

migration for several nights in a row and then reduce or

suspend activity for one or two nights. The nights in which

individuals reduced their activity were not the same for all

individuals explaining the nightly variation (see Fig. 1). On

a typical night, the number of treatment birds displaying

‘‘migratory’’ (active [40% of night) activity was 5–9

(mean = 6.9) of the nine individuals. In the control group,

the number of birds meeting criteria for migratory activity

ranged between 0 and 4 (mean = 2.7) of the nine indi-

viduals. However, none of the control birds showed

consistent night-to-night activity that met the criteria.

In the 12 days prior to the change in photoperiod, we

found no significant difference in nighttime activity

between the treatment (mean rank = 13.29, n = 12) and

control (mean rank = 11.79, n = 12) groups (z = -0.492,

p = 0.630). In the 22 days following the increase in day-

length, the migratory birds (M rank = 31.07, n = 22)

showed greater nighttime activity than the nonmigratory

birds (M rank = 13.93, n = 22) z = -4.47, p \ 0.001

(Fig. 1). Thrushes displaying migratory activity had sig-

nificantly lower PHA responses than the birds not in

migratory disposition (t = 2.148, p = 0.05, df = 14;

Fig. 2).

Discussion

Our results suggest that Swainson’s thrushes exhibiting

migratory restlessness may suppress their nonspecific cell-

mediated immune response. This reduction in immune

activity is consistent with studies which show that birds

have smaller spleens (Fänge and Silverin 1985; Silverin

et al. 1999; Deerenberg et al. 2003; Muñoz and De la

Fuente 2003) and lower concentrations of leukocytes,

particularly lymphocytes (Owen and Moore 2006) during

the migratory period compared to other periods of the

annual cycle. The avian spleen is a secondary immune

organ, which plays an important role in disease resistance.

It is one of the major sites of production, differentiation,

and storage of lymphocytes, including those responsible for

cell-mediated immune responses (Glick 2000). Therefore,

the size of the spleen is thought to positively reflect a birds’

ability to mount an immune response (John 1994); but see

(Smith and Hunt 2004). In a comparable study, Gylfe et al.

(2000) showed that redwing thrushes (Turdus iliacus) dis-

playing migratory restlessness were more likely to exhibit a

reactivation of a latent infection of Borrelia burgdorferi,

the bacteria that causes Lyme’s disease. Presumably, the

reactivation was caused by a reduction in immune function.
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Fig. 1 Percentage (mean + SE) of the nighttime that Swainson’s

thrushes exhibited migratory activity. Closed circles, experimental

birds; open circles, control birds. Time periods: a, when both groups

were at a 12:12 light:dark (L:D) photoperiod; b, experimental birds

were photoadvanced 1 h each day to induce migratory disposition;

c, experimental birds were at a 16:8 L:D and control birds were at a

12:12 L:D photoperiod. All birds received phytohemagglutinin

injection on day 37
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Fig. 2 Phytohemagglutinin (PHA) responses for nonmigratory (white
bar) and migratory (black bar) Swainson’s thrushes. Birds displaying

migratory activity had reduced immune responses to PHA compared

to nonmigrating individuals (t-test, t = 2.148, df = 14, p = 0.05).

Bars represent mean PHA response + SE. Statistical significance is

based on a Student’s t-test (two-tailed)
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Immunosuppression in migrating birds may be a con-

sequence of unrelated physiological processes that cause

fluctuations in the immune system (i.e., a nonadaptive

response). On the other hand, migration is a predictable

event in a bird’s annual cycle, and suppressing the immune

system may be an adaptation aimed at either allocating

more energy toward other, more critical activities (Sheldon

and Verhulst 1996; Lochmiller and Deerenberg 2000;

Norris and Evans 2000) or at preventing the damaging

effects of an overactive immune response (Råberg et al.

1998). Here we explore these two possibilities.

Nonadaptive immunosuppression

The observed immunosuppression may be a consequence

of a rise in reactive oxygen species (free radicals; ROS)

during strenuous exercise. Increased oxygen consumption

of working muscles generates ROS, which subsequently

cause significant cellular damage (oxidative stress) to

nucleic acids, lipids, and proteins, including those of the

immune system (Niess et al. 1999). Another direct conse-

quence of strenuous exercise and increased muscle use is

inflammation. An inflammatory response is characterized

by the proliferation and activation of several lines of

immune system cells, such as neutrophils (the mammalian

equivalent to avian heterophil), monocytes, and macro-

phages, which also generate ROS (Tidball 2005). In both

cases, the ROS attack cells of the immune system and may

be responsible for a reduced T cell response observed in

migrating birds. Prolonged, intense exercise is character-

istic of some migratory flights, and muscle damage has

been observed in birds following such flights (Guglielmo

et al. 2001). However, the current study was conducted

with captive migrants, and we argue that zugunruhe did not

impose significant energetic costs. Likewise, Hasselquist

et al. (2007) found that red knots (Calidris canutus)

engaging in long flights in a wind tunnel did not have

reduced humoral and cell-mediated immune responses

when compared to non-flying controls. Therefore, such

strenuous exercise is an unlikely explanation for our

results.

Another nonadaptive explanation for the observed

immunosuppression may be linked to the action of mela-

tonin, a primary hormone of the pineal gland, which

mediates the bird’s response to photoperiod. The amount of

melatonin released is inversely related to day length. Evi-

dence suggests that melatonin enhances immune function,

especially in mammals (Nelson and Demas 1996). How-

ever, its role in avian immune function is not clear (Bentley

et al. 1998; Moore and Siopes 2000; Haldar and Singh

2001). Japanese quail exposed to long days had reduced

immune function, as measured by humoral and cell-medi-

ated immune responses (Moore and Siopes 2000).

However, there was only a significant photoperiod effect in

birds exposed to 24 h of light. The cell-mediated and

humoral immune responses did not differ between 8:16 LD

and the 16:8 LD groups, although melatonin levels were

likely higher in the former. In our study, the difference in

photoperiod is far less pronounced.

Baseline level of corticosterone, the primary glucocor-

ticoid in birds, is elevated during the migratory period and

is thought to facilitate hyperphagia and lipogenesis in

relation to the energetic requirements of migration

(Sapolsky et al. 2000). Glucocorticoids are also considered

immunosuppressants, such that glucocorticoids inhibit

cytokine activity, activation and proliferation of T cells

(and to a lesser extent B cells), and the production and

function of peripheral leukocytes (except for neutrophils)

(Sapolsky et al. 2000). Therefore, the consequence of

elevated baseline glucocorticoids during migration may be

reduced immune function. While we did not measure

corticosterone, there is evidence that baseline corticoste-

rone levels rise in captive birds in response to photoperiod

changes (Holberton 1999).

Adaptive immunosuppression

Immunosuppression in migrating birds may be an adaptive

response aimed at enhancing the probability of a successful

migration. For instance, suppression of the immune system

may represent a trade-off in response to the energetic costs

associated with the migratory period (Norris and Evans

2000). There is some evidence, albeit controversial, that the

immune system is energetically costly to deploy (Klasing

and Leshchinsky 1998; Ots et al. 2001; Martin et al. 2003,

but see Svensson et al. 1998, Nilsson et al. 2007) and

maintain (Lochmiller and Deerenberg 2000). Therefore,

individuals that downregulate immune function and real-

locate energy toward migration may gain an advantage.

Animals engaging in intense, prolonged bouts of exercise

exhibit reduced immune function (Hoffman-Goetz and

Pedersen 1994; Pedersen et al. 1997; Råberg et al. 2000;

Peijie et al. 2003; but see Hasselquist et al. 2007), with this

immunosuppressive effect further exacerbated when the

organism is food-deprived (Boyum et al. 1996).

Alternatively, immune function may be downregulated

by neuroendocrine mechanisms in order to avoid immuno-

pathology during periods of stress (Råberg et al. 1998).

Strenuous exercise induces an inflammatory response,

which is characterized by a rise in phagocytic cells and

proinflammatory cytokines (Tidball 2005). The conse-

quence of an unchecked inflammatory response is significant

tissue damage. Therefore, an increase in circulating plasma

corticosterone prior to strenuous exercise may prevent

‘‘overshooting’’ of the immune system and protect the

organism from the subsequent immunopathology (Sapolsky
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et al. 2000). Consequently, corticosterone may have a dual

function in migrating birds; to facilitate fattening and to

prevent overactive immune responses during prolonged

flights.

Regardless of the mechanism, Swainson’s thrushes

exhibiting migratory restlessness had a reduced immune

response to PHA. Our findings appear counter to the

expectation that migratory species invest more resources in

immune defense because migrants are exposed to more

parasites and pathogens by virtue of their migratory life

cycle (sensu Moller and Erritzoe 1998). However, it may

be that migrating birds have a more robust immune system

to begin with and they can thus afford to downregulate it

without severely compromising overall disease resistance.

For instance, human athletes have more active natural

killer cells (Nieman et al. 1995, 2000) and higher PHA

proliferation responses at rest than nonathletes (Nieman

et al. 2000). Natural killer cells are critical in the defense

against viruses, and their increased activity in resting ath-

letes may help offset the immunosuppression that occurs

during intensive exercise. Hence, the reduced immune

response in migrating Swainson’s thrushes may not

increase susceptibility to disease en route.

More studies are needed to determine the functional

significance of reduced immune function during the

migratory period (Viney et al. 2005). During the nonmi-

gratory period there is evidence that even a slight reduction

in nonspecific immune response may translate into a

decreased survival (Møller and Saino 2004). A reduction in

immune function during the migratory period may have

negative fitness consequences; an immunocompromised

bird may be more likely to be infected with a parasite or

pathogen, or may experience recrudescence of a latent

infection during the migratory period.
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