ADDITIVE CYCLIC SQUARE WAVE VOLTAMMETRY FOR ADSORPTIVE COMPLEX CATALYTICAL IRREVERSIBLE SYSTEM

Jinyuan MO, Wujian MIAO, Peixiang CAI and Runjian ZHANG

(Department of Chemistry, Zhongshan University, 510275, Guangzhou, China.)

In this paper, the current and peak potential equations of Additive Cyclic Square Wave Voltammetry for adsorptive complex catalytical irreversible system were reported.

For equilibrium constant of complexing reaction \(K < < 1 \), the current is controlled by the rate of complexing reaction and the equation is:

\[
ic{A}(j) = nFA(DoKC_L C_q k_s C_z)\frac{1}{2}taC_m^*[X(j) + X(j + 1) + X(4H + 1 - j) + X(4H + 2 - j)]
\]

where \(X(j) = k_{j+1}^+ / k_j C_z \)^\frac{1}{2} + \sum_{j=1}^{\tau} \exp[\tau \cdot T(j)] \exp[- \tau \cdot T(j)] .

\[
T(j) = \sum_{j=1}^{\tau} K_j
\]

The peak potential equation is:

\[
E_{p} = E^0 + \frac{RT}{nF} \ln \frac{2K_s RT}{anF \Delta E} + INT(\frac{E_s - 5\Delta E}{2\Delta E}) \Delta E
\]

For \(K > > 1 \), the current is not controlled by the rate of complexing reaction, equations of additive cyclic current and peak potential are:

\[
ic{A}(j) = nFA(Do k_\text{acc} C_z)\frac{1}{2} C_m^*[X(j) + X(j + 1) + X(4H + 2 - j)]
\]

\[
E_{p} = E^0 + \frac{RT}{anF} \ln \frac{2K_a RT}{anF \Delta E} + INT(\frac{E_s - 7\Delta E}{2\Delta E}) \Delta E
\]

It is shown that \(\text{i}_{cA} \) is proportional to \(ta \) and \(C_m^* \) \(\frac{1}{2} \) for \(K < < 1 \) but proportional to \(\frac{1}{2} \) and independent of complexant concentration for \(K > > 1 \). Therefore, we could decide which type of reaction (\(K < < 1 \) or \(K > > 1 \)) in the adsorptive complex catalytical irreversible system being occurred. However, other properties of \(\text{i}_{cA} \) for \(K < < 1 \) and \(K > > 1 \) are quite similar. For example, current curve is asymmetrical, peak current is proportional to \(C_m^* \) and in linear dependence of \(C_z \frac{1}{2} \), \(\Delta E \), and \(1 / \tau \) respectively. It is also shown that \(E_p \) moves to more positive as \(E_s \) increases. The equations are experimentally verified with Ti(IV)-PAR-H_2O_2-BrO_3^- system, experiment and theory are found to be in reasonable agreement.

\(\diamond \) This project is supported by NNSFC and UPDDASRF grant.