ADDITIVE CYCLIC SQUARE WAVE VOLTAMMETRY FOR ADSORPTIVE - COMPLEX IRREVERSIBLE SYSTEM (1) —— CONTROLL ED BY THE RATE OF COMPLEXING REACTION

MO Jinyuan, MIAO Wujian, CAI Peixiang and ZHANG Runjian

Department of Chemistry, Zhongshan (Sun Yatsen) University, 510275 Guangzhou, P. R. China

The Faradaic current of adsorptive - complex irreversible electrode processes can be written as

\[i(t) = nF Ak_f \Gamma_0(t) \]

(1)

where

\[k_f = k_n \exp\left[-\frac{nF(E - E^*)}{RT}\right] \]

(2)

\[\Gamma_0(t) = \int_0^t \left(\frac{\partial G}{\partial X} \right)_{X=0} dt + \int_t^t \frac{\partial G}{\partial X} \left|_{X=0} \right. dt - \int_t^t k_f \Gamma_0(t) dt \]

(3)

and

\[\left(\frac{\partial G}{\partial X} \right)_{X=0} = C_k D_0^{-1/2} \left[K_k C_k^2 C_0^2 \cdots \right]^{1/2} \]

(4)

\[\Gamma_0(t) \] is the surface concentration (in moles per unit area) of the reactant MLxQy... (i.e. O), \(\tau_a \) is adsorptive time before scanning, \(C_k \) & \(C_0 \) are complexants concentration, \(K = C_0/C_k \), and \(C_k^2 \) is the determinand M ion bulk concentration. Then

\[i(t) = nFA(D_0 K_k C_k^2 C_0^2 \cdots)^{1/2} C_k \tau_a k_f \]

\[\cdot \left[1 + 1/\tau_a \int_0^t \exp\left(\int_0^t k_f dt \right) dt \right] \cdot \exp\left(-\int_0^t k_f dt \right) \]

(5)

Eq. (5) is suited for any waveform of polarization potential. For cyclic square wave voltammetry, the sweep potential equations are expressed as follows

\[E(j) = E_i - INT[(j - 1)/2] \Delta E + (-1)^j E_s \]

(when \(j = 1, 2 \ldots 2H + 1 \))

\[E(j) = E_i - 2H \Delta E + INT(j/2) \Delta E + (-1)^j E_s \]

(when \(j = 2H + 2 \ldots 4H + 1 \))

(6)

\((\Delta E, E_s > 0) \)

For forward sweep \(1 \leq j \leq 2H + 1 \), but for reverse sweep \(2H + 1 \leq j \leq 4H + 1 \), where \(H \) is the staircase number of forward or reverse sweep. In eq. (5), the two integral parts can be solved by means of the superposition principle

\[\int_0^t k_f dt = \int_0^t k_{t_1} dt + \int_0^t k_{t_2} dt + \cdots + \int_0^t k_{t_{2H+1}} dt = \tau T(J) \]

(7)

\[T(J) = \sum_{j=1}^{2H+1} k_{t_j} \]

(8)

\[\int_0^t \exp\left(\int_0^t k_f dt \right) dt = \int_0^t \exp\left[\tau T(J) \right] dt = \tau \sum_{j=1}^{2H+1} \exp\left[\tau T(J) \right] \]

(9)

where \(\tau \) is a pulse duration, \(t = \tau_a + j \tau \), and \(J \) is pulse ordinal number. Thus, for cyclic square wave voltammetry, the current at any pulse \(J \) is

\[i(J) = nFA(D_0 K_k C_k^2 C_0^2 \cdots)^{1/2} C_k \tau_a X(J) \]

(10)

\[X(J) = k_f \left[1 + \frac{\tau}{\tau_a} \sum_{j=1}^{2H+1} \exp\left[\tau T(J) \right] \right] \exp\left[-\tau T(J) \right] \]

(11)

* The project supported by National Natural Science Foundation of China
Therefore, the additive current for square wave voltammetry is given by

\[i_a(J) = nF A(D_0 k_1 C_1^0 C_2^0 \cdots)^{1/2} C_n^* \Delta t [X(J) + X(J+1)] \]

(12)

For forward sweep \(J = 1, 3, 5 \cdots 2H-1 \), and for reverse sweep \(J = 2H + 2, 2H + 4 \cdots 4H \). Then, the additive cyclic current equation

\[i_{ca}(J) = nF A(D_0 k_1 C_1^0 C_2^0 \cdots)^{1/2} C_n^* \Delta t \]

\[\cdot \left[X(J) + X(J+1) + X(4H+1-J) + X(4H+2-J) \right] \]

(13)

\[(J = 1, 3, 5 \cdots 2H-1) \]

all-order derivative convolution and derivative equation

\[i_\beta = nF A(D_0 k_1 C_1^0 C_2^0 \cdots)^{1/2} C_n^* \Delta t \]

\[\cdot \lim_{N \to \infty} \frac{1}{N-1} \sum_{l=0}^{N-1} \sum_{l=0}^{N-1} \frac{\Gamma(l-q) X(l)}{\Gamma(-q) \Gamma(l+1)} \]

(14)

\[[l = q, q + 1, 4H + 1 - q, 4H + 2 - q; \text{for practical calculation } N = (J + 1)/2] \]

can be obtained. When \(q = -0.5, 0, 0.5, 1, 1.5, i_\beta \) is convolution, normal, deconvolution, first derivative & second derivative convolution convolution current respectively. The peak potential equation of additive cyclic current was deduced as follows

\[E_p = E^* + \frac{RT}{a nF} \ln \left(\frac{2RTk_1 \tau}{a nF \Delta E} \right) + \text{INT} \left(\frac{E_s - \Delta E}{2 \Delta E} \right) \Delta E \]

(15)

It could be known from (13) and (14) that additive cyclic current and its all-order derivative convolution & derivative currents were proportional to \(C_n^*, C_1^{1/2}, C_2^{1/2} \). By the treatment of eqs. (10), (12) to (15) with a microcomputer, some conclusions were obtained: 1) For forward sweep, the positive and negative pulse currents \(i_{pa}, i_{pn} \) are in same direction, the peak shapes are asymmetrical, \(i_{pa} > i_{pn} \), and the additive current of forward sweep \(i_{pa} \) is also-asymmetrical. 2) For reverse sweep, the positive and negative pulse currents \(i_{pr}, i_{pn} \) approach to zero, and there are no appearance of the reduction peak. 3) The peak shape of additive cyclic current \(i_{ca} \) is asymmetrical. 4) \(i_{ca} \) increases rapidly with \(q \) value, and the resolution improved. 5) A linear dependence of \(i_{ca} \) on \(\Delta E^{1+\tau}, (1/\tau)^{1+\tau} \) and \(\tau \) is predicted, \(i_{ca} \) is linear decreased slightly as \(E \) increases, and the more \(q \) value is, the faster it decreases. 6) \(E_p \) moves to positive potential as \(E \) increases. All current equations given above are also suited for the system of complexant reducted, but in the case, "n" is the electron number of a complexant (Q or L) reducted.

Experiments with Zn(II) - Zincon complex were carried out to verify the theory. The results were in good agreements with the theoretical conclusions.