

Electrogenerated Chemiluminescence 69: The Tris(2,2'-bipyridine)ruthenium(II), $(Ru(bpy)_3^{2+})/$ Tri-*n*-propylamine (TPrA) System Revisited—A New Route Involving TPrA⁺⁺ Cation Radicals

Wujian Miao, Jai-Pil Choi, and Allen J. Bard*

Contribution from the University of Texas at Austin, Department of Chemistry & Biochemistry, Austin, Texas 78712

Received July 2, 2002

Abstract: The reaction occurring on electrooxidation of $Ru(bpy)_{3^{2+}}$ (bpy = 2,2'-bipyridine) and tri-*n*propylamine (TPrA) leads to the production of Ru(bpy)₃^{2+*} and light emission. The accepted mechanism of this widely used reaction involves the reaction of Ru(bpy)₃³⁺ and a reduced species derived from the free radical of the TPrA. However, this mechanism does not account for many of the observed features of this reaction. A new route involving the intermediacy of TPrA cation radicals (TPrA++) in the generation of Ru-(bpy)₃^{2+*} was established, based on results of scanning electrochemical microscopy (SECM)-electrogenerated chemiluminescence (ECL) experiments, as well as cyclic voltammetry simulations. A half-life of ~0.2 ms was estimated for TPrA*+ in neutral aqueous solution. Direct evidence for TPrA*+ in this medium was obtained via flow cell electron spin resonance (ESR) experiments at ~20 °C. The ESR spectra of the TPrA⁺⁺ species consisted of a relatively intense and sharp septet with a splitting of \sim 20 G and a g value of 2.0038.

Introduction

Noffsinger and Danielson¹ first reported the chemiluminescence of Ru(bpy)₃³⁺ with aliphatic amines. Following this study, Leland and Powell reported the electrogenerated chemiluminescence (ECL) of the $Ru(bpy)_3^{2+}$ (bpy = 2,2'-bipyridine) with tri-*n*-propylamine (TPrA) as a coreactant.² Since then, a wide range of ECL analytical applications involving $Ru(bpy)_3^{2+}$ or its derivatives as labels have been reported.³ The $Ru(bpy)_3^{2+}$ (or its derivatives) with TPrA exhibit the highest ECL efficiency, and this system forms the basis of commercial systems for immunoassay and DNA analysis.^{2,3,4} The ECL intensity for this system is proportional to the concentration of both $Ru(bpy)_3^{2+}$ and TPrA species^{2,4-6} and also depends on the solution pH and the electrode material.^{1,2,5} The ECL mechanism of this reaction has been investigated by many workers^{1,2,4,5,7} and follows the now familiar coreactant mechanism8 where oxidation of TPrA generates a strongly reducing species. This oxidation can be via a "catalytic route" where electrogenerated $Ru(bpy)_3^{3+}$ reacts with TPrA as well as by direct reaction of TPrA at the electrode described by both Scheme 1 and Scheme 2: [where TPrA $^{++}$ =

- (4) Kanouffi, F.; Zu, Y.; Bard, A. J. J. Phys. Chem. B 2001, 105, 210.
 (5) Zu, Y.; Bard, A. J. Anal. Chem. 2000, 72, 3223.
 (6) Gross, E. M.; Pastore, P.; Wightman, R. M. J. Phys. Chem. B 2001, 105, 1000, 100 8732.
- (7) He, L.: Cox, K. A.: Danielson, N. D. Anal. Lett. 1990, 23, 195.
- (8) Rubinstein, I.; Bard, A. J. J. Am. Chem. Soc. **1981**, 103, 512.

 $(CH_3CH_2CH_2)_3N^{\bullet+}$, $TPrAH^+ = Pr_3NH^+$, $TPrA^{\bullet} = Pr_2NC^{\bullet}HCH_2$ -CH₃, $P_1 = Pr_2N^+C$ =HCH₂CH₃, and $P_2 = Pr_2NH + CH_3CH_2$ -CHO]. The "catalytic" route involving homogeneous oxidation of TPrA with $Ru(bpy)_3^{3+}$ is shown in Scheme 3. The contribution of this process to the overall ECL intensity depends on the $Ru(bpy)_3^{2+}$ concentration and is small when relatively low concentrations of $Ru(bpy)_3^{2+}$ are used.⁵

⁽¹⁾ Noffsinger, J. B.; Danielson, N. D. Anal. Chem. 1987, 59, 865.

Leland, J. K.; Powell, M. J. J. Electrochem. Soc. **1990**, *137*, 3127.
 Bard, A. J.; Debad, J. D.; Leland, J. K.; Sigal, G. B.; Wilbur, J. L.;

Wohlstadter, J. N. Chemiluminescence, Electrogenerated In *Encyclopedia* of Analytical Chemistry: Applications, Theory and Instrumentation; Meyers, R. A., Ed.; John Wiley & Sons: New York, 2000, Vol. 11, p 9842, and references therein.