Chapters 5-7

Errors in

Chemical Analysis

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
1

Experimental Errors

\qquad
All measurements have errors
(1) Precision-Uncertainty

- Reproducibility (Closeness of each test)
\qquad
(2) Accuracy
- Nearness to the "truth" \qquad
(3) Our goals are to
- minimize errors and to calculate the size of the errors.

Some Important Terms

\qquad
For a set of measurements:

No. (i)	1	2	3	\cdots	i	\cdots	N
Data (x)	x_{1}	x_{2}	x_{3}	\ldots	x_{i}		x_{N}

\qquad
N : number of measurements
$N-1$: degrees of freedom

$$
\begin{array}{ll}
\text { Mean (Average) } & \text { Sample mean (average): } N<20 \\
\bar{x}=\frac{\sum_{i=1}^{N} x_{i}}{N} & \text { Population mean (average): } N \geq 20 \\
& \bar{x}=\mu \text { (true value): } N \rightarrow \infty \text { (infinite) }
\end{array}
$$

Median

Middle result when the data are arranged by size
a. If the data is an odd numbered set, the median is the middle value.
b. If the data is an even numbered set, the median is the average of the middle two values. For example,

| An odd-numbered set: |
| :---: | :---: |
| 2.9 |
| 2.6 |
| 2.4 |
| 2.3 |
| 2.2 |
| Sum $=12.4$ |
| $\overline{\mathrm{X}}=12.4 / 5=2.5$ |
| Median $=2.4$ |\quad| An even-numbered set: |
| :---: |
| 0.1000 |
| 0.0902 |
| 0.0886 |
| 0.0884 |\quad| Sum $=0.3672$ |
| :---: |
| $\overline{\mathrm{X}}=0.3672 / 4=0.0918$ |
| Median $=(0.0902+0.0886) / 2=0.0894$ |

4

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
5

Precision

--the closeness of results to others obtained in exactly the same way.

Sample standard deviation (s) Population standard deviation (σ)
$s=\sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{N-1}}$
($N<20$)
"Accuracy"
Deviation from the mean $d_{\mathrm{i}} \quad d_{i}=\left|x_{i}-x\right|$

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{N \rightarrow \infty}\left(x_{i}-\mu\right)^{2}}{N}}
$$

($N \geq 20$) μ-true value

7

\qquad
8
\qquad
For example, given the following data set:

$$
\frac{\text { Data }}{2.3} \quad|2.3-2.5|=\frac{\text { Deviation }}{|-0.2|} \quad \bar{x}=\frac{2.3+2.6+2.2+2.4+2.9}{5}=2.5
$$

$$
\begin{array}{ll}
2.6 & |2.6-2.5|
\end{array}=|+0.1|
$$

$$
\begin{array}{ll}
2.6 & |2.6-2.5|=|+0.1| \\
2.2 & |2.2-2.5|=|-0.3| \\
2.4 & |2.4-2.5|=|-0.1| \\
2.9 & |2.9-2.5|=|+0.4|
\end{array} \quad \quad \quad \quad \quad \quad \quad=\sqrt{\frac{\sum_{i=1}^{N} d_{i}^{2}}{N-1}}
$$

$$
\mathrm{s}=\sqrt{\frac{(-0.2)^{2}+(0.1)^{2}+(-0.3)^{2}+(-0.1)^{2}+(0.4)^{2}}{5-1}}
$$

$$
\mathrm{s}=0.3
$$

Relative standard deviation (RSD)

$\mathrm{RSD}=s_{\mathrm{r}}=\frac{s}{\bar{x}}$
Coefficient of variation (CV)-RSD expressed as \%
$\mathrm{CV}=\frac{s}{\bar{x}} \mathrm{x} 100 \%$

RSD can be also expressed in parts per thousand ("ppt", \%o)
RSD in ppt $=\frac{s}{\bar{x}} \mathrm{X} 1000 \%$

- RSD and CV usually give a clear picture of data quality
- Large RSD or CV implies poor quality/precision

Standard deviation of the mean (s_{m})

$$
s_{m}=\mathrm{s} / \sqrt{ } \mathrm{N}
$$

Variance (s^{2})

$$
s^{2}=\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{N-1}
$$

Spread or range (w)

Another way to describe the precision of a set of replicate results.

$$
w=x_{\max }-x_{\min }
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11

Accuracy versus precision

1. Accuracy is the closeness of a measurement to the true (or accepted) value (μ or x_{t}).
2. Accuracy is expressed by the absolute error or the relative error:
Absolute Error $E=x_{i}-x_{t}$
where x_{t} is the true or acepted value of the quantity
\qquad

Relative Error: $E_{r}=\frac{x_{i}-x_{t}}{x_{t}} \times 100 \%$
Relative Error: $E_{r}=\frac{x_{i}-x_{t}}{x_{t}} \times 1000 \% 0 \quad \begin{aligned} & \text { Parts per } \\ & \text { thousand }\end{aligned}$
13

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14
2. Random Error--changes in signal for replicate measurements:

- always present
- unpredictable
- non-correctable (equal probability of being + or -)
- can be reduced by averaging multiple measurements
- can be treated mathematically (with statistical methods)

\qquad
16

$$
\begin{aligned}
& \quad \text { Kjeldahl method (N\% determination) } \\
& \text { 1. Degradation: } \\
& \text { Sample }+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{SO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
& \text { 2. Liberation of ammonia: } \\
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& \text { 3. Capture of ammonia: } \\
& \mathrm{B}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}+\mathrm{B}(\mathrm{OH})_{4}^{-} \\
& \text {4. } \mathrm{Back}-\mathrm{titration:} \\
& \mathrm{~B}(\mathrm{OH})_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{NaHCO}_{3}(\mathrm{aq})+\mathrm{NaB}(\mathrm{OH})_{4}(\mathrm{aq})+ \\
& \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

\qquad
17
3. Gross Error-(Human) silly mistakes:

- occur only occasionally
- often large (+ or -)
- undetected mistakes during the experiment
- can be verify by "Q-test"

Examples:

0.1000 recorded as 0.0100
1.00 g as 1.00 mg

Wrong connection of electrode wires

19

Sources of Systematic (Determinate) Errors

- Instrumental errors--caused by nonideal instrument behavior, by fault calibration, or by use under inappropriate conditions.
- Method errors-arise from nonideal chemical or physical behavior of analytical systems.
- Personal errors-result from e.g., personal limitations of the experimenter.

20

Instrumental Errors

- "Drift" in electronic circuits (e.g., inproper zero)-lamp warm-up
- Temperature controls-PMT sensitivity
- Poor power supply - High voltage supply for PMT
- Instruments calibrations-pipets, burets and volumetric flasks volumes, pH meter with standard pH buffers, Reference electrode potentials
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Method Errors

- Instability of the reagent
- Slowness of some reactions
- Loss of solution by evaporation
- Interferences (pH measurements at high/low pHs)
- Contaminants
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
22

Personal Errors

- Estimating the position of a pointer between two scale divisions \qquad
- The color of a solution at the end position in a titration-color blindness \qquad

23

Detection of Systematic Instrument and Personal Errors

- analysis of standard samples
- independent analysis
- blank determinations
- variation in sample size

Random (Indeterminate) Errors

- Affect precision but not accuracy
- Follows a Gaussian or normal distribution
- Most values fall close to the mean, with values farther away becoming less likely. The width of the distribution tells us something about the precision of our measurement.

\qquad
\qquad
\qquad
25

Gaussian Distribution

Two parameters define a Gaussian distribution for a population, the population mean, μ, and the population standard deviation, σ.

$$
\sigma=\sqrt{\frac{\sum_{1}^{N}\left(x_{i}-\mu\right)^{2}}{N}}
$$

\qquad
\qquad
\qquad
\qquad

$$
y=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

\qquad
\qquad
\qquad
26

[^0]\[

$$
\begin{aligned}
& \text { Another way to think about } \\
& \text { this curve is with the } \\
& \text { variable } z \text {, which is the } \\
& \text { deviation relative to the } \\
& \text { standard deviation. } \\
& \text { So when } \mathrm{x}-\mu=\sigma, \mathrm{z}=1 \text {; when } \mathrm{x}-\mu \\
& =2 \sigma, z=2 \text {. } \\
& y=\frac{e^{-(x-\mu)^{2} / 2 \sigma^{2}}}{\sigma \sqrt{2 \pi}} \rightarrow y=\frac{e^{-z^{2} / 2}}{\sigma \sqrt{2 \pi}}
\end{aligned}
$$
\]

General properties of a normal error curve (a normalized Gaussian distribution of errors)
a. The mean (or average) is the central point of maximum frequency (i.e., the top of the bell curve).
b. The curve is symmetric on both sides of the mean (i.e., 50% per side).
c. There is an exponential decrease in resulting frequency as you move away from the mean.
d. If time and expense permit, you need to perform more than 20 replicates when possible to be sure that the sample mean and standard deviation are sufficiently close to the population mean and standard deviation.

28

29
8

Review: Sample vs Population Standard Deviations

The sample standard deviation s is given by

$$
s=\sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\bar{x}\right)^{2}}{N-1}} \quad \begin{aligned}
& \text { where } \bar{x} \\
& \text { is the sample mean. }
\end{aligned}
$$

The population standard deviation σ is given by

$$
\sigma=\sqrt{\frac{\sum_{i=1}^{N}\left(x_{i}-\mu\right)^{2}}{N}} \quad \begin{gathered}
\text { where } \mu \text { is the } \\
\text { population mean. }
\end{gathered}
$$

\qquad

$\mathrm{N} \geq 20$		
$\mathrm{~N}<20$		
statistic	population	sample
mean	μ	\bar{x}
st. dev.	σ	S
variance	σ^{2}	S^{2}

\qquad
\qquad
\qquad
\qquad
\qquad

31

Confidence Intervals (CI) or Confidence Limits (CL)
Questions:
How can we predict the true value of the sample
with a limited measurements?
Or
How confident would be to locate the true value on the
basis of a single or several replicate measurements?
True value
CI
CL

\qquad
32

\qquad

The error bar (uncertainty) depends on:

- Number of measurements (N) (smaller at larger N)
- Confidence \% (smaller at less confidence)
- Standard deviations (σ, s) (smaller at smaller σ, s)

Two cases:

- When σ is known $\rightarrow \mathrm{Z}$ table
- When σ is unknown $\rightarrow s$ value to replace $\sigma \rightarrow t$ table

Single vs replicate measurements ($\mathrm{N} \geq 1$)

34

Calculation of $\mathrm{CI}(\mu)$ when σ is known

Number of measurements	Confidence Intervals $[\mathbf{C I}, \mathbf{C L}$, or $\mu]$

(N)

$$
[\mathrm{CI}, \mathrm{CL}, \text { or } \mu]
$$

Single
Replicate

$$
\begin{aligned}
& \mu=\mathrm{x} \pm \frac{\mathrm{z} \sigma}{\sqrt{1}} \\
& \mu=\overline{\mathrm{x}} \pm \frac{\mathrm{z} \sigma}{\sqrt{\mathrm{~N}}}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
35

	TABLE 7-1	
	Confidence Levels for Various Values of \boldsymbol{z}	
	Confidence Level, \%	z
\cdots	50	0.67
	68	1.00
--- -	80	1.28
+ ${ }^{\circ}$	90	1.64
	95	1.96
- -	95.4	2.00
\cdots	99	2.58
	99.7	3.00
-	99.9	3.29

EXAMPLE 7-1 $\quad \mathrm{N}=7$

Determine the 80% and 95% confidence intervals for ($\left.{ }^{(}\right)$the first entry (1108 mg / L glucose) in Example $6-2$ (page 124) and (b) the mean value (1100.3 mg / L) for month I in the example. Assume that in each part, $s=19$ is a good estimate of σ.
(a) From Table 7-1, we see that $z=1.28$ and 1.96 for the 80% and 95% confidence levels. Substituting into Equation 7-1,

$$
\begin{aligned}
& 80 \% \mathrm{CI}=1108 \pm 1.28 \times 19=1108 \pm 24.3 \mathrm{mg} / \mathrm{L} \\
& 95 \% \mathrm{CI}=1108 \pm 1.96 \times 19=1108 \pm 37.2 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

From these calculations, we conclude that it is 80% probable that μ, the population mean (and, in the absence of determinate ermr, the true value), lies in the interval 1083.7 to $1132.3 \mathrm{mg} / \mathrm{L}$ glucose. Furthermore, the probability is 95% that μ lies in the interval between 1070.8 and $1145.2 \mathrm{mg} / \mathrm{L}$.

37
(b) For the seven measurements,

$$
\begin{aligned}
& 80 \% \mathrm{CL}=1100.3 \pm \frac{1.28 \times 19}{\sqrt{7}}=1100.3 \pm 9.2 \mathrm{mg} / \mathrm{L} \\
& 95 \% \mathrm{CL}=1100.3 \pm \frac{1.96 \times 19}{\sqrt{7}}=1100.3 \pm 14.1 \mathrm{mg} / \mathrm{L}
\end{aligned}
$$

Thus, there is an 80% chance that μ is located in the interval between 1091.1 and $1109.5 \mathrm{mg} / \mathrm{L}$ glucose and a 95% chance that it lies between 1086.2 and $1114.4 \mathrm{mg} / \mathrm{L}$ glucose.

CI for $\mu=\overline{\mathrm{x}} \pm \frac{\mathrm{z} \sigma}{\sqrt{\mathrm{N}}}$

38

Calculation of $\mathrm{CI}(\mu)$ when σ is unknown

Number of measurements (\mathbf{N})	Confidence Intervals [CI, CL, or $\boldsymbol{\mu}]$
Single	$\mu=x \pm \frac{t s}{\sqrt{1}}$
Replicate	$\mu=\bar{x} \pm \frac{t s}{\sqrt{N}}$

40

TABLE 7-3					
Values of t for Various Levels of Probability					
$\begin{array}{\|c\|c} \begin{array}{c} \text { Degrees of } \\ \text { Freedom } \end{array} & \mathrm{N}-1 \\ \hline \end{array}$	80\%	90\%	95\%	99\%	9999\%
1	3.08	6.31	12.7	63.7	637
2	1.89	2.92	4.30	9.92	31.6
3	1.64	2.35	3.18	5.84	12.9
4	1.53	2.13	2.78	4.60	8.61
5	1.48	2.02	2.57	4.03	6.87
6	1.44	1.94	2.45	3.71	5.96
7	1.42	1.90	2.36	3.50	5.41
8	1.40	1.86	2.31	3.36	5.04
9	1.38	1.83	2.26	3.25	4.78
10	1.37	1.81	2.23	3.17	4.59
15	1.34	1.75	2.13	2.95	4.07
20	1.32	1.73	2.09	2.84	3.85
40	1.30	1.68	2.02	2.70	3.55
60	1.30	1.67	2.00	2.62	3.46
∞	1.28	1.64	1.96	2.58	3.29

- 2004 Thomson - Brooks/Cole

41

$$
\begin{aligned}
& \text { EXAMPLE 7-3 } \\
& \text { A chemist obtained the following data for the alcohol content of a sample of } \\
& \text { blood: \% } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}: 0.084,0.089 \text {, and } 0.079 \text {. Calculate the } 95 \% \text { confidence } \\
& \text { interval for the mean assuming (a) the three results obtained are the only indica- } \\
& \text { tion of the precision of the method and (b) from previous experience on hun- } \\
& \text { dreds of samples, we know that the standard deviation of the method } s= \\
& 0.005 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \text { and is a good estimate of } \sigma \text {. } \\
& \text { (a) } \Sigma x_{i}=0.084+0.089+0.079=0.252 \\
& \Sigma x_{i}^{x_{i}}=0.007056+0.007921+0.006241=0.021218 \\
& 3-s=\sqrt{\frac{0.021218-(0.252)^{2} / 3}{3-1}}=0.0050 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \\
& \text { Here, } \bar{x}=0.25374=0.084 \text {. Table 7-3 indicates that } t=4.30 \text { for two } \\
& \text { degrees of freedom and the } 95 \% \text { confidence level. Thus, } \\
& 95 \% \mathrm{Cl}=\bar{x} \pm \frac{t s}{\sqrt{N}}=0.084 \pm \frac{4.30 \times 0.0050}{\sqrt{3}} \\
& =0.084 \pm 0.012 \% \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
\end{aligned}
$$

\qquad

42

Error Propagation
$y=\left(a \pm s_{a}\right)+\left(b \pm s_{b}\right)+\left(c \pm s_{c}\right)$
$y=(a+b+c) \pm s_{y}$
$s_{y}=\sqrt{s_{a}{ }^{2}+s_{b}{ }^{2}+s_{c}{ }^{2}}$

\qquad
44

Standard Deviation of Calculated Results

- Standard Deviation of a Sum or Difference

$$
\begin{aligned}
& \begin{array}{cl}
+0.50 & (\pm 0.02) \\
+4.10 & (\pm 0.03) \\
-1.97 & (\pm 0.05) \\
\hline 2.63 & (?)
\end{array} \\
& s_{\max }=+0.02+0.03+0.05=+0.10 \\
& s_{\text {min }}=-0.02-0.03-0.05=-0.10 \\
& \text { Possibly } \\
& s_{\min }=-0.02-0.03+0.05=0 \\
& \text { The variance }\left(s^{2}\right) \text { of a sum or difference is equal to the sum of } \\
& \text { the individual variances } \\
& \begin{array}{l}
s_{y}^{2}=s_{a}^{2}+s_{b}^{2}+s_{c}^{2} \\
S_{y}=\sqrt{S_{a}^{2}+S_{b}^{2}+s_{c}^{2}}
\end{array}
\end{aligned}
$$

45

$$
\begin{aligned}
& \text { Error Propagation } \\
& y=a \times b / c \\
& \text { or } y=\left(a \pm s_{a}\right) \times\left(b \pm s_{b}\right) /\left(c \pm s_{c}\right) \\
& y=a \times b / c \pm s_{y} \\
& \frac{s_{y}}{y}=\sqrt{\left(\frac{s_{a}}{a}\right)^{2}+\left(\frac{s_{b}}{b}\right)^{2}+\left(\frac{s_{c}}{c}\right)^{2}}
\end{aligned}
$$

46
$e . g$.
$a=10.05 \pm 0.050$
$b=1005.0 \pm 5.000$
$y=a / b=?=\frac{10.05 \pm 0.050}{1005.0 \pm 5.000}=\frac{10.05}{1005.0} \pm s_{y}=0.01000 \pm s_{y}$
$\frac{s_{y}}{y}=\sqrt{\left(\frac{s_{a}}{a}\right)^{2}+\left(\frac{s_{b}}{b}\right)^{2}}=\sqrt{\left(\frac{0.05}{10.05}\right)^{2}+\left(\frac{5.000}{1005.0}\right)^{2}}=7.03 \times 10^{-3}$
$s_{y}=y \times 7.03 \times 10^{-3}=0.01000 \times 7.03 \times 10^{-3}=7.03 \times 10^{-5}$
$y=0.01000 \pm 7.03 \times 10^{-5}=0.01000 \pm 0.00007$
\qquad
47

\qquad
48

$$
\frac{2.7(\pm 0.283) \times 0.050(\pm 0.001)}{1850(\pm 11.2) \times 42.3(\pm 0.4)}=1.725 \times 10^{-6}
$$

The equation now contains only products and quotients, and Equation 6-12 applies. Thus,

$$
\frac{s_{y}}{y}=\sqrt{\left(\frac{0.283}{2.7}\right)^{2}+\left(\frac{0.001}{0.050}\right)^{2}+\left(\frac{11.2}{1850}\right)^{2}+\left(\frac{0.4}{42.3}\right)^{2}}=0.107
$$

$$
s_{y}=y \times 0.107=1.725 \times 10^{-6} \times 0.107=0.185 \times 10^{-6}
$$

and round the answer to $1.7(\pm 0.2) \times 10^{-6}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

49

\qquad
50

Detection of Gross Errors- Q test

- On occasion, a set of data may contain a result that appears to be an outlier (i.e. outside of the range of that accounted for by random error).
- Inappropriate or unethical to discard data without a reason.
- The criterion used to decide whether or not to remove the potential outlier from the data set is the Q Test.
- The quantity Q (the rejection quotient) is calculated as:

where x_{q} is the questionable result, x_{n}, is the nearest neighbour to the questionable result and w is the spread of the entire set.
- Q is compared to critical Q values, $Q_{\text {crit }}$, looked up from the Q-Table at a given confidence level.
- If Q is greater than $Q_{\text {crit }}$, then the questionable result may be rejected at the indicated confidence level.

52

TABLE 7-5			
Critical Values for the Rejection Quotient, Q^{*}			
Number of Observations	$Q_{\text {crit }}\left(\right.$ Reject if $\left.Q>Q_{\text {crit }}\right)$		
	90\% Confidence	95\% Confidence	99\% Confidence
3	0.941	0.970	0.994
4	0.765	0.829	0.926
5	0.642	0.710	0.821
6	0.560	0.625	0.740
7	0.507	0.568	0.680
8	0.468	0.526	0.634
9	0.437	0.493	0.598
10	0.412	0.466	0.568
${ }^{*}$ Reprinted with permission from D. B. Rorabacher. Anal. Chem., 1991, 63, 139. Copyright 1991 American Chemical Society. - 2004 Thomson - Brooks/Cole			

53

\qquad
\qquad
\qquad
\qquad
\qquad

54

Procedures for Q-test

- Re-arrange the set of data from small to large or large to small
- Identify the smallest and largest questionable data values
- Calculate the Q values for both of the above isolated values
- Compare calculated Q values with the Q values obtained from the Q table at certain confidence levels
- Discard the experimental value if the calculated $\mathrm{Q}>\operatorname{table} \mathrm{Q}$ and keep the value if the calculated $\mathrm{Q}<$ table Q
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
55

Example

An Analyst is given a solution containing an unknown concentration of strong base. Titration with 0.1000 M strong acid was used to determine the following results:

0.1012	25.30
0.1014	25.35
0.1015	25.37
0.1035	25.88
the 0.1035 M result be rejected with 90% confidence?	

$$
\begin{aligned}
& Q_{\text {Exp }}=\frac{0.1035-0.1015}{0.1035-0.1012}=0.87 \\
& Q_{(90 \% \text { Conf }, N=4)}=0.76 \\
& \text { Data Point May Be Discarded Since } Q_{\text {Exp }}>Q_{\text {Theoretial }}
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
56
The analysis of a calcite sample yielded CaO percentages of $55.95,56.00$, $56.04,56.08$, and 56.23 . The last value appears anomalous; should it be retained or rejected at the 95% confidence level?
The difference between 56.23 and 56.08 is 0.15%. The spread (56.23 -55.95) is 0.28%. Thus,

$$
Q=\frac{0.15}{0.28}=0.54
$$

For five measurements, $Q_{\text {crit }}$ at the 95% confidence level is 0.71 . Because $0.54<0.71$, we must retain the outlier at the 95% confidence level.
\qquad
\qquad

57

Grubbs Test (G-Test)

The recommended way of identifying outliers is to use the Grubb's Test. A Grubb's test is similar to a Q-test however $G_{\text {exp }}$ is based upon the mean and standard deviation of the distribution instead of the next-nearest neighbor and range.

58

Comparison of Two Experimental Means --the t test for differences in means

Ex: The homogeneity of the chloride level in a
\qquad
\qquad water sample from a lake was tested by analyzing portions drawn from the top and from
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad near the bottom of the lake, with the following results in ppm Cl:

Question:
Apply the t-test at the 95% confidence level to determine if the means are different?

59

$$
\begin{aligned}
& t=\frac{\bar{x}_{1}-\bar{x}_{2}}{s_{\text {pooled }} \sqrt{\frac{N_{1}+N_{2}}{N_{1} N_{2}}}} \text { Eqs (7-7) (p155) and (6-7) (p124) } \\
& s_{\text {pooled }}=\sqrt{\frac{\sum_{i=1}^{N_{1}}\left(x_{i}-\bar{x}_{1}\right)^{2}+\sum_{j=1}^{N_{2}}\left(x_{j}-\bar{x}_{2}\right)^{2}+\sum_{k=1}^{N_{3}}\left(x_{k}-\bar{x}_{3}\right)^{2}+\ldots}{N_{1}+N_{2}+N_{3}+\ldots-N_{t}}} \\
& =\sqrt{\frac{\left(N_{1}-1\right) s_{1}^{2}+\left(N_{2}-1\right) s_{2}^{2}}{N_{1}+N_{2}-2}}(\text { when comparing } 2 \text { sets of data) } \\
& \overline{x_{1}}, \overline{x_{2}}-\text { mean of the } 1 \text { st and 2nd set data } \\
& N_{1}, N_{2}-\text { number of the 1st and 2nd set tests } \\
& s_{\text {pooled }}-\text { pooled standard deviation } \\
& N_{t}-\text { total number of data sets that are pooled }
\end{aligned}
$$

Calculated t vs. critical (theoretical) t
(from Table 7-3, where degrees of freedom: $N_{1}+N_{2}-2$)
(Page 147)
If $t_{\text {calculated }}<t_{\text {critical }}$,
NO significant difference between two sets of data

If $t_{\text {calculated }}>t_{\text {critical, }}$
Significant difference between the means

61

One Sample t-test	
Number of measurements (\boldsymbol{N})	t
Single	$t=\frac{x-\mu}{s}$
Replicate	$t=\frac{\bar{x}-\mu}{s / \sqrt{N}}$

t depends on the desired confidence level and is used to determine if the difference between the experimental mean and the accepted value is due to random error or a systematic error.

62

Calculated t vs. critical (theoretical) t (from Table $7-3$, where degrees of freedom: $N-1)$
(Page 147)
:---
Measured average agrees with the "true value"
If $t_{\text {calculated }}>t_{\text {critical, }}$ Significant difference between the measured average and the "true value"; systematic error exists.

Calculated t vs. critical (theoretical) t
(from Table 7-3, where degrees of freedom: $N-1$)
(Page 147)

$$
\begin{aligned}
& \text { If } t_{\text {calculated }}<t_{\text {critical, }} \\
& \text { Measured average agrees with the "true value" }
\end{aligned}
$$

If $t_{\text {calculated }}>t_{\text {critical, }}$
Significant difference between the measured exists.

63
\qquad

Solution to the Ex.

| For the Top data set: | $\bar{x}=26.338$ |
| :--- | :--- | :--- |
| For the Bottom data set: | $\bar{x}=26.254$ |

$s_{\text {pooled }}=0.1199$
degrees of freedom $=5+5-2=8$
For 8 degrees of freedom at 95% confidence $t=2.31$ (Table 7-3)

$$
t=\frac{26.338-26.254}{0.1199 \sqrt{\frac{5+5}{5 \times 5}}}=1.11 \begin{aligned}
& \text { Since } 1.11<2.31, \underline{\text { no significant }} \\
& \underline{\text { difference exists at } 95 \% \text { confidence }}
\end{aligned}
$$

64

Comparison of Precision

--the F test for differences in standard deviations
An F-test can provide insights into two areas:
\qquad

1) Is method A more precise than method B ?
2) Is there a difference in the precision of the two methods?
$F=\frac{\text { Larger Variance }}{\text { Smaller Variance }}=\frac{s_{1}{ }^{2}}{s_{2}{ }^{2}}=\frac{\text { numerator }}{\text { denominator }}>1$
s : standard deviation
If $F_{\text {calculated }}<F_{\text {critical }}$ (Table 7-4)
NO significant improvement in precision

65

TABLE 7-4									
Critical Values of F at the 5\% Probability Level (95\% confidence level)									
Degrees of Freedom			rees of F	reedom	Numera				
(Denominator)	2	3	4	5	6	10	12	20	∞
2	19.00	19.16	19.25	19.30	19.33	19.40	19.41	19.45	19.50
3	9.55	9.28	9.12	9.01	8.94	8.79	8.74	8.66	8.53
4	6.94	6.59	6.39	6.26	6.16	5.96	5.91	5.80	5.63
5	5.79	5.41	5.19	5.05	4.95	4.74	4.68	4.56	4.36
6	5.14	4.76	4.53	4.39	4.28	4.06	4.00	3.87	3.67
10	4.10	3.71	3.48	3.33	3.22	2.98	2.91	2.77	2.54
12	3.89	3.49	3.26	3.11	3.00	2.75	2.69	2.54	2.30
20	3.49	3.10	2.87	2.71	2.60	2.35	2.28	2.12	1.84
∞	3.00	2.60	2.37	2.21	2.10	1.83	1.75	1.57	1.00

e2004 Themsen - Brocs
\qquad

EXAMPLE 7-8

> A standard method for the determination of the carbon monoxide (CO) level in gascous mixtures is known from many hundreds of measurements to have a standard deviation of 0.21 ppm CO. A modification of the method yields a value for s of 0.15 ppm CO for a pooled data set with 12 degrees of freedom. A second modification, also based on 12 degrees of freedom, has a standard deviation of 0.12 ppm CO . Is either modification significantly more precise than the original?

$$
F_{1}=\frac{s_{\mathrm{sd}}^{2}}{s_{1}^{2}}=\frac{(0.21)^{2}}{(0.15)^{2}}=1.96
$$

and for the second,

$$
F_{2}=\frac{(0.21)^{2}}{(0.12)^{2}}=3.06
$$

67

> For the standard procedure, $s_{\text {ad }}$ is a good estimate of σ, and the number of degrees of freedom from the numerator can be taken as infinite. From Table 7-4, the critical value of F at the 95% confidence level is $F_{\text {crit }}=2.30$.
> Since F_{1} is less than 2.30 , we cannot reject the null hypothesis for the first modification. We conclude that there is no improvement in precision. For the second modification, however, $F_{2}>2.30$. Here, we reject the null hypothesis and conclude that the second modification does appear to give better precision at the 95% confidence level.
> (continued)

It is interesting to note that if we ask whether the precision of the second modification is significantly better than that of the first, the F test dictates that we must accept the null hypothesis. That is,

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{(0.15)^{2}}{(0.12)^{2}}=1.56
$$

In this case, $F_{\text {crit }}=2.69$. Since $F<2.69$, we must accept H_{0} and conclude that the two methods give equivalent precision.

68

The t-test versus the F-test

- t test is valid for comparison of different sets of data obtained with the same experimental methodology
- F test is used to compare precisions obtained with different analytical techniques, e.g., spectroscopic vs electrochemical method
\qquad

Significant Figures/Significant Digits (sig figs/sig digs)

"digits that carry meaning contributing to a number's precision"
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
70

Significant Figures

\qquad
\qquad

(b)
\qquad
\qquad
Significant figures - all digits in a number representing data or results that are known
\qquad with certainty plus one uncertain digit.

71

RECOGNITION OF SIGNIFICANT FIGURES

- All nonzero digits are significant.
- 3.51 has 3 sig figs
- The number of significant digits is independent of the position of the decimal point
- Zeros located between nonzero digits are significant
- 4055 has 4 sig figs
- Zeros at the end of a number (trailing zeros) are significant if the number contains a decimal point.
- 5.7000 has 5 sig figs
- Trailing zeros are ambiguous if the number does not contain a decimal point
- 2000. versus 2000
- Leading zeros are not significant.
- 0.00045 (note: 4.5×10^{-4})

73

Examples:

How many significant figures are in
\qquad
\qquad the following?
$4 \quad 7.500$
42009 \qquad
3600.
$4 \quad 0.003050$
$6 \quad 80.0330$

74
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SCIENTIFIC NOTATION \& Sig Figs

- Often used to clarify the number of significant figures in a number.
- Example:

$$
\begin{aligned}
& 4,300=4.3 \times 1,000=\underline{4} . \underline{3} \times 10^{3} \\
& 0.070=7.0 \times 0.01=\underline{7} .0 \times 10^{-2}
\end{aligned}
$$

76

SIGNIFICANT FIGURES IN CALCULATION OF RESULTS

\qquad
I. Rules for Addition and Subtraction \qquad

- the result should have as many decimal places as the measured number with \qquad the smallest number of decimal places
- example: $54.4 \mathrm{~cm}+2.02 \mathrm{~cm}$

$54.4 \mid \mathrm{cm}$	$15.0 \underline{2}$
$\underline{2.02 \mathrm{~cm}}$	$9,986 . \underline{0}$
56.42 cm	$3.51 \underline{8}$
correct answer 56.4 cm	10004.538

77

Class Practice:
$2.0118+0.009567=2.021367 ?$
$\mu=2.0123 \pm 0.008167=?$

II. Rules for Multiplication and Division

- the result should have as many significant figures as the measured
\qquad number with the smallest number of significant figures.
$\frac{4.2 \times 10^{3}}{2.255 \times 15.94)}=2.9688692 \times 10^{-8}$ (on calculator)
Which number has the fewest sig figs?
The answer is therefore, 3.0×10^{-8}
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
79
- For example, if you measured the length, \qquad width, and height of a block you could calculate the volume of a block: \qquad
Length: 0.11 cm
Width: 3.47 cm \qquad
Height: 22.70 cm
Volume $=0.11 \mathrm{~cm} \times 3.47 \mathrm{~cm} \times 22.70 \mathrm{~cm}$ \qquad $=8.66459 \mathrm{~cm}^{3}$

Where do you round off?

$$
=8.66 ?=8.7 ? \quad 8.66459 ?
$$

\qquad
\qquad
80

III. Rules for Logarithms and Antilogarithms

1. In a logarithm of a number, keep as many digits to the right of the decimal point as there are significant figures in the original number.
2. In an antilogarithm of a number, keep as many digits as there are digits to the right of the decimal point in the original number.
```
EXAMPLE 6-7
Round the following answers so that only significant digits are retained:
(a) }\operatorname{log}4.000\times1\mp@subsup{0}{}{-5}=-43979400, and (b) antilog 125=3162277\times1\mp@subsup{0}{}{12
Solution
(a) Following rule 1,we retain 4 digits to the right of the decimal point
    log}4.000\times1\mp@subsup{0}{}{-5}=-4.307
(b) Following rule 2, we may retain only I digit
    antilog 12.5=3\times10
```


Rules for Rounding Off Numbers

- When the number to be dropped is less than 5 the preceding number is not changed.
- When the number to be dropped is 5 or larger, the preceding number is increased by one unit.
- Round the following number to 3 sig figs: 3.34966×10^{4}

$$
=3.35 \times 10^{4}
$$

82

83

[^0]: ALL normal error curve plots will be the same shape in these z units

