

Chapters 31-33

Chapter 30 An Introduction to Chromatographic Separations

	Introduction
• (<u>Thromatography</u> - Techniques for separation of
	components in a mixture based upon the
	distribution of the components between
	mobile phase and a stationary phase that
	has a large surface area.
• <u>N</u>	Mobile Phase - A liquid or gas that moves the analytes
	through a solid or liquid stationary phase.
• St	ationary Phase - A solid or immobilized liquid upon
	which analyte species are partitioned (separat
	during passage of the mobile phase

ed)

A. Classification of Methods

- 1. <u>Column Chromatography</u> The stationary phase is packed in a narrow tube (column) and the mobile phase is forced through the column under pressure.
- 2. <u>Planar Chromatography</u> -The stationary phase is on a flat plate or is paper and the mobile phase moves through the stationary phase by capillary action or gravity.

B. Column Chromatography

- Three Basic Types:
- 1. Liquid Chromatography
- 2. Gas Chromatography
- 3. Supercritical Fluid Chromatography

General Classification	Specific Method	Stationary Phase	Type of Equilibrium
Liquid chromatography (LC) (mobile phase: liquid)	Liquid-liquid, or partition	Liquid adsorbed on a solid	Partition between immis- cible liquids
	Liquid-bonded phase	Organic species bonded to a solid surface	Partition between liquid and bonded surface
	Liquid-solid, or adsorp- tion	Solid	Adsorption
	Ion exchange Size exclusion	Ion-exchange resin Liquid in interstices of a polymeric solid	Ion exchange Partition/sieving
Gas chromatography (GC) (mobile phase: gas)	Gas-liquid	Liquid adsorbed on a solid	Partition between gas and liquid
	Gas-bonded phase	Organic species bonded to a solid surface	Partition between liquid and bonded surface
	Gas-solid	Solid	Adsorption
Supercritical-fluid chroma- tography (SFC) (mobile phase: supercritical fluid)		Organic species bonded to a solid surface	Partition between super- critical fluid and bonded surface

 Components of the mixture that are strongly retained on the stationary phase move slower than weakly retained components.

Components are separated into discrete <u>bands</u>.

The rate that a <u>band</u> migrates depends upon the fraction of time it spends in the mobile phase.

Important:

- chromatogram (concentration versus elution time)
- · more strongly retained species elutes last (elution order)
- analyte is "diluted" during elution (dispersion)
- · zone broadening proportional to elution time

By changing experimental conditions, non-separated bands can be separated

(A) adjust migration rates for A and B (increase band separation)

(B) adjust zone broadening (decrease band spread)

II. Migration of Analytes in a Column

 The rate of migration of an analyte through a column depends on the equilibrium of the analyte between the stationary phase and the mobile phase (i.e. the rates of association and dissociation of the analyte to the stationary phase).

A) Distribution Constant (K)

 The analyte is constantly binding to and dissociating from the stationary phase as it moves through the column.

 $A_{\text{stationary}} \longrightarrow A_{\text{mobile}}$

• The distribution constant (K) is an equilibrium constant that describes the ratio of the analyte concentrations in the mobile phase and the stationary phase.

 c_s = concentration of analyte in stationary phase c_m = concentration of analyte in mobile phase

- Some analyte molecules spend more overall time in the mobile phase while others spend less. The peak of the curve represents the average time an analyte spends on the column.
- The width of the peak is directly proportional to the length of the column.
 The longer the column, the wider the peak.
- Peak width is inversely proportional to the flow rate (velocity) of the mobile phase. The higher the flow rate, the narrower the peak.

TABLE 30-5				
Variables That Influence Column Efficiency				
Variable	Symbol	Usual Units		
Linear velocity of mobile phase	11	cm s ⁻¹		
Diffusion coefficient in mobile phase®	D_{M}	$cm^{2} s^{-1}$		
Diffusion coefficient in stationary phase*	D_{S}	cm2 s-1		
Retention factor (see Equation 30-18)	k	unitless		
Diameter of packing particles	dp	cm		
Thickness of liquid coating on stationary phase	d_{f}	cm		
Thickness of liquid coating on stationary phase	df	cm		

Chapter 31 Gas Chromatography

Gas Chromatography (GC)

- GC involves a **vaporized sample** being injected into the head of a chromatographic column.
- an inert gas as mobile phase.
- In contrast to most other types of chromatography, the mobile phase does not interact with molecules of the analyte. Its only function is to transport the analyte through the column.

Two major types

- Gas-solid chromatography
 - (stationary phase: solid)
- Gas-liquid chromatography

(stationary phase: immobilized liquid)

Separation is based on differences in boiling points of the solutes and the solutes' interaction with the stationary phase.

Carrier gas:	He (common), N ₂ , H ₂
	Pinlet 10-50 psig
	F=25-150 mL/min packed column
	F=1-25 mL/min open tubular column
Column:	2-50 m coiled stainless steel/glass/Teflon
Oven:	0-400 $^{\rm o}C$ ~ average boiling point of sample
	accurate to <1 °C
Detectors:	FID, TCD, ECD, (MS)

Flame Ionization Detector, Thermal Conductivity Detector, Electron Capture Detector

Chapter 32

High Performance Liquid Chromatography

HPLC

originally referred to: High Pressure Liquid Chromatography currently refers to:

High Precision Liquid Chromatography

 high pressure to be able to use small particle size to allow proper separation at reasonable flow rates

Four Types of HPLC

- Partition
- Adsorption (liquid-solid)
- Ion exchange
- Size exclusion or gel

	Normal Phase	Reversed Phase
Stationary phase	Polar (silica gel)	Non-polar (C18)
Mobile phase	Non-polar (organic solvents)	Polar (aqueous/organic)
Sample movement	Non-polar fastest	Polar fastest
Separation based on	Different polarities (functionality)	Different hydrocarbon content

(a)	(b)
Normal-phase chromatography	Reversed-phase chromatography
Low-polarity mobile phase	High-polarity mobile phase
	$ \xrightarrow{A} \xrightarrow{B} \xrightarrow{C} $
Medium-polarity mobile phase	Medium-polarity mobile phase
٨٨٨	$\Lambda \Lambda \Lambda$

