





![](_page_0_Figure_5.jpeg)

![](_page_0_Figure_6.jpeg)

![](_page_1_Figure_1.jpeg)

![](_page_1_Figure_2.jpeg)

# Properties of Electromagnetic Radiation (EMR) • EMR—light—is a form of energy whose behavior is described by the properties of both waves and particles. • Waves: an oscillating electric and magnetic field which travels through space

![](_page_1_Figure_4.jpeg)

![](_page_1_Figure_5.jpeg)

 Direct Evidence showing light is a stream of discrete particle — *Photoelectric Effect Experiment* 

![](_page_1_Figure_7.jpeg)

![](_page_1_Figure_8.jpeg)

![](_page_2_Figure_1.jpeg)

![](_page_2_Figure_2.jpeg)

Wave Properties of EMR The product of  $\lambda$  and v is constant:  $\lambda \times v = c$ Since v has units of sec<sup>-1</sup>(hz) and  $\lambda$  has units of length, their product, c, is the velocity of the wave: • in a vacuum, all EMR travels at a velocity of: 2.99792458 x 10<sup>8</sup> m/s (= c) ("The Speed of Light") • Wave number:  $v = 1/\lambda$  (unit: cm<sup>-1</sup>)  $C = 3 \times 10^8$  m/s =  $3 \times 10^{10}$  cm/s =  $3 \times 10^{17}$  nm/s =  $3 \times 10^{18}$  Å/s

![](_page_2_Figure_5.jpeg)

![](_page_2_Figure_6.jpeg)

![](_page_3_Figure_1.jpeg)

![](_page_3_Figure_2.jpeg)

| Turbe of Energy Transfer      | Region of  | Sportroscopic Tachpique                                                                       |
|-------------------------------|------------|-----------------------------------------------------------------------------------------------|
| absorption                    | 2-ray      | Mossbauer spectroscopy                                                                        |
|                               | X-ray      | X-ray absorption spectroscopy                                                                 |
|                               | UV/Vis     | UVIVis spectroscopy<br>atomic absorption spectroscopy                                         |
|                               | IR         | infrared spectroscopy<br>raman spectroscopy                                                   |
|                               | Microwave  | microwave spectroscopy                                                                        |
|                               | Radio wave | electron spin resonance spectrosco<br>nuclear magnetic resonance spectr                       |
| emission (thermal excitation) | UV/Vis     | atomic emission spectroscopy                                                                  |
| photoluminescence             | X-ray      | X-ray fluorescence                                                                            |
|                               | UV/Vis     | fluorescence spectroscopy<br>phosphorescence spectroscopy<br>atomic fluorescence spectroscopy |
| chemiluminescence             | UV/Vis     | chemiluminescence spectroscopy                                                                |

![](_page_3_Figure_6.jpeg)

![](_page_4_Figure_1.jpeg)

![](_page_4_Figure_2.jpeg)

![](_page_4_Figure_4.jpeg)

![](_page_4_Figure_5.jpeg)

![](_page_4_Figure_6.jpeg)

![](_page_4_Figure_7.jpeg)

![](_page_5_Figure_1.jpeg)

![](_page_5_Figure_2.jpeg)

 Transitions and Energy Levels

 Image: state state

![](_page_5_Figure_4.jpeg)

# 4 Basic Components of Instruments for Chemical Analysis

- signal generators
- detectors (input transducers)
- signal processors (circuits & electrical devices)
- readout devices

![](_page_6_Figure_1.jpeg)

![](_page_6_Figure_2.jpeg)

![](_page_6_Figure_4.jpeg)

![](_page_6_Figure_6.jpeg)

![](_page_6_Figure_7.jpeg)

![](_page_7_Figure_1.jpeg)

![](_page_7_Figure_2.jpeg)

![](_page_7_Figure_4.jpeg)

![](_page_7_Figure_6.jpeg)

![](_page_7_Figure_7.jpeg)

![](_page_8_Figure_1.jpeg)

![](_page_8_Figure_2.jpeg)

![](_page_8_Figure_4.jpeg)

![](_page_8_Figure_5.jpeg)

![](_page_8_Figure_6.jpeg)

![](_page_8_Figure_7.jpeg)

![](_page_9_Figure_1.jpeg)

![](_page_9_Figure_2.jpeg)

# Beer's Law for Mixture-Additive

At any given wavelength of EMR absorption:  $A^{\lambda} = \varepsilon^{\lambda} bc$ , for a mixture with *n* components, the total  $A^{\lambda}_{Total}$ :

$$A_{Total}^{\lambda} = A_{1}^{\lambda} + A_{2}^{\lambda} + \dots A_{3}^{\lambda} = \sum_{i=1}^{n} A_{i}^{\lambda} = \sum_{i=1}^{n} \varepsilon_{i}^{\lambda} bc_{i}$$

Example: Mixture of Co(II), Cr(III), Ni(II), Cu(II)

29

### In Class Practice:

A mixture solution of Co(II) and Ni(II) shows an absorbance of 1.000 at 500 nm. What percentage of incident light is absorbed by the solution? Under the given conditions if 75.0% of the absorbance is ascribed to the contribution of Co(II), then what the absorbance of Ni(II) will be?

Key: 90.0%; 0.250

![](_page_10_Figure_1.jpeg)

![](_page_10_Figure_2.jpeg)

#### Example:

The concentrations of Fe<sup>3+</sup> and Cu<sup>2+</sup> in a mixture are determined following their reaction with hexacyanoruthenate (II), Ru(CN)<sub>6</sub><sup>4-</sup>, which forms a purple-blue complex with Fe<sup>3+</sup> ( $\lambda_{max} = 550$  nm) and a pale-green complex with Cu<sup>2+</sup> ( $\lambda_{max} = 396$  nm). The molar absorptivities (M<sup>-1</sup> cm<sup>-1</sup>) for the metal complexes at the two wavelengths are summarized in the following table.

$$\begin{array}{c|c} \varepsilon_{550} & \varepsilon_{396} \\ \hline Fe^{3+} & 9970 & 84 \\ Cu^{2+} & 34 & 856 \end{array}$$

When a sample that contains  $Fe^{3*}$  and  $Cu^{2*}$  is analyzed in a cell with a pathlength of 1.00 cm, the absorbance at 550 nm is 0.183 and the absorbance at 396 nm is 0.109. What are the molar concentrations of  $Fe^{3*}$  and  $Cu^{2*}$  in the sample?

![](_page_10_Figure_8.jpeg)

# Limitations to Beer's law

# 1. Concentration Limit: $\leq$ 0.10 M.

(a) At higher *c* the individual particles of analyte no longer are independent of each other-changing the  $\varepsilon$  value. (b) The  $\varepsilon$  value depends on the solution's refractive index that varies with the *c*.

![](_page_11_Figure_4.jpeg)

34

## Limitations to Beer's law

2. Chemical limitations when chemical reactions occur.

Example: different c of a weak acid dissociation in water (acid-base indicators)

HIn (Color 1, in acid) =  $H^+ + In^-$  (Color 2)

Increase total [HIn]<sub>total</sub>, [HIn] and [In<sup>-</sup>] increase non-linearly.

![](_page_11_Figure_12.jpeg)

![](_page_11_Figure_13.jpeg)

![](_page_11_Figure_14.jpeg)

![](_page_12_Figure_1.jpeg)

![](_page_12_Figure_2.jpeg)

• Beer's Law Should be used Only for a Single Wavelength Incident Light.

• It is the basis of quantitative Analysis of Absorption Spectroscopy.

38

## **Photometric Titrations**

- A photometric titration curve is a plot of absorbance as a function of the volume of titrant.
- The spectrometer detects the color change of an indicator allowing the endpoint to be accurately determined.
- For example: titration of an acid and base using phenolphthalein clear ⇔ pink

$$A + T \xleftarrow{Indicator} P$$

![](_page_13_Figure_1.jpeg)

![](_page_13_Figure_2.jpeg)

![](_page_13_Figure_4.jpeg)

![](_page_13_Figure_5.jpeg)

![](_page_13_Figure_6.jpeg)

![](_page_13_Figure_7.jpeg)

![](_page_13_Figure_8.jpeg)

![](_page_14_Figure_1.jpeg)

![](_page_14_Figure_2.jpeg)

![](_page_14_Figure_4.jpeg)

44

# Chapters 24-28 Summary

- Electromagnetic radiation (EMR): waves and particles
- Spectroscopy vs spectra vs spectrometer
- Emission and absorption processes
- Beer's law and its consequences and uses
- Molecular/atomic absorption spectra
- Diagrams of electronic transitions and energy levels
- Deviations from Beer's law
- Atomic absorption spectrometer, HCLs

# Important Equations

 $c = v \cdot \lambda \qquad \overline{v} = 1/\lambda \text{ (unit: cm}^{-1})$   $E = hv = h\frac{c}{\lambda} = hc\overline{v}$   $T = \frac{P}{P_0} = \frac{I}{I_0}$   $A = -\log(T) = abc = \varepsilon bc$ For a mixture with *n* components,  $A_{Total}^{\lambda} = A_1^{\lambda} + A_2^{\lambda} + \dots A_3^{\lambda} = \sum_{i=1}^n A_i^{\lambda} = \sum_{i=1}^n \varepsilon_i^{\lambda} bc_i$